THE IMPACT OF PAUSE USE ON FLUENCY IN
MULTILINGUAL SPEAKERS IN SOUTH AFRICA

Penelope Ann Littlejohns

A dissertation submitted to the Faculty of Humanities,
School of Human and Community Development,
Discipline of Speech Pathology & Audiology,
University of the Witwatersrand, Johannesburg
in fulfillment of the requirements for
the degree of Doctor of Philosophy

October 2010
DEDICATION

In the midst of a stuttering awareness week campaign, a journalist once asked me, “How can you dedicate so much time and energy to a disorder that impacts only 1% of the population while living in a country with such a high percentage of HIV?” Never, not that day, nor today, have I ever questioned my passion for this area of study.

This research is thus, most appropriately dedicated to not only the 1% of the population who stutter, but to all of those who strive to improve the research and service delivery for people who stutter each and every day.
DECLARATION

I, Penelope Ann Littlejohns, declare that this dissertation is my own unaided work, other than the technical assistance as detailed in the Acknowledgement; I alone am responsible for the content of this study and the conclusions presented; and that no part of this dissertation has been submitted for a degree at any other university.

__

Penelope Ann Littlejohns

Date
ACKNOWLEDGEMENTS

My journey has been paved with the wisdom, inspiration and reassurance that enabled the bridge to be built that I have crossed. This work truly could not have been completed without the exceptional and unwavering support from the following people.

Dr. Nola Chambers: My amazing supervisor, for bestowing upon me an unbelievable amount of knowledge and respect for the research process; for her patience and humor in my darkest of hours; for her unwavering “you can do this” support; and for her genius ability to see the forest AND the trees and everything in between. She has taught me so much beyond the academic process. For this I am eternally thankful.

Dr.’s Glyndon and Jeanna Riley: My employers in my first years as a speech therapist; my confidantes as I embarked on this journey to South Africa; my cheerleaders when I professed an interest in furthering my studies; and the best host and hostess for shared experiences over refreshments. Thank you for lighting my fire and keeping it burning bright. You have inspired me to be the best clinician I can be…every day.

The 14 people who stutter and the 80 fluent speakers, for without their contribution of time and numerous speech samples, this study would not have been possible.

Cindy-Lee Pombo: My research assistant who embraced the fluent speaker data collection process. The hours spent collecting, transcribing and analyzing speech samples are greatly appreciated. Without your patience and commitment, I never would have survived the thought of increasing sample size from 40 to 80. Thank you for your immeasurable contribution to this study.

Bontle Baloyi and Jessica Kuhn: My reliability coders who spent hours carefully counting syllables and pauses in the midst of fluent and dysfluent speech; for allowing my pedantic and often painful specificity with the coding of the data. Thank you each for your time and significant contribution to this study.
Jade Calogridis and Tracey Le Roux: my pilot study research assistants for volunteering their time beyond their academic day, and often into the late rainy evenings to help the early stages of the pause instruction development. Their consideration with the treatment fidelity and honest critique of the process improved this study immeasurably and gave me the confidence to embark on the larger study.

Tracey Kennedy, Gina Posner, Taahirah Choonara, Heena Chania, Marika Mavrokordatos, Aatiqah Moolla, Namita Ramdin, and Ashleigh Van Zyl: The student therapists who completed the 6 hours of pause instruction for each of the 14 participants who stutter. Thank you for your commitment to the participants and to the research process.

The National Research Foundation: This study would not have been possible without the generous funding provided by the National Research Foundation’s “Researchers in Training” Thuthuka Grant.

My treasured friends in both South Africa and the USA: Thank you for putting up with the constant chatter, endless emails, make-ups and break-ups and the highs and lows that spanned the past 4 years. The constant encouragement and holding the candles to light the path in dark hours has been invaluable and I can only hope to return the support tenfold in years to come.

My beloved family: Mom, Dad, Amanda, John, Madison and Emily. Without you, none of this would have been possible and none of it would have been worth the while. Thank you empowering me on this journey, helping me climb all the hills and for being the constant “wind beneath my wings.”
ABSTRACT

Background: Speech rate plays an essential role in overall speech intelligibility in fluent speakers and is an important variable affecting fluency in people who stutter (PWS). Speech rate consists of both articulation rate and the pause intervals that occur within uninterrupted articulatory sequences (Tsao & Weismer, 1997). There are no normative speech rate data for South African English (SAE). In PWS, attempts to manipulate speech rate for improved fluency have mostly focused on articulation rate. This has typically involved either a reduction in the speed of articulatory movements, or in the prolonged movements between words to maintain a continuous voicing. However, articulation movements have been linked neurologically to the cerebellum (Ackermann & Hertrich, 1997; Ackermann, Graber, Hertrich & Daum, 1999; Hertrich & Ackermann, 1999), resulting in “pre-wired” articulation rates which may be difficult to generalise as a new “habitual” rate. Revisiting the role of pauses in speech rate and the manipulation of both frequency and duration of pauses was deemed necessary to investigate a potentially valuable alternative strategy to assist PWS in rate reduction and possible improved fluency.

Aims: The aims of this study were to investigate the speech rate and pause use (frequency and average duration of pauses) for first language (L1) and second language (L2) SAE fluent speakers and PWS in both monologue and reading tasks. In addition, this study investigated if the manipulation of pause use could increase fluency in L1 and L2 PWS given six sessions of pause instruction in SAE.

Methods: 80 fluent speakers (40 L1 SAE and 40 L1 isiZulu) and 14 PWS (7 L1 SAE and 7 L1 isiZulu) were recruited from the Johannesburg community and the University of the Witwatersrand campus. The fluent speakers and PWS were asked to engage in a 2-minute monologue and a reading task in order to calculate the mean speech rate, frequency of pauses and average pause duration for each group. Following baseline measures, the 14 PWS were randomly assigned to either immediate or delayed intervention consisting of 6 sessions addressing manipulation of pauses. A crossover treatment design allowed for repeated measures of speech rate and pause use across three data collection periods.

Results: Results revealed L1 and L2 SAE fluent speakers differed significantly in speech rate and frequency of pauses in reading and in pause length in the monologue. L1 and L2 PWS differed in frequency of pauses in reading. L1 fluent speakers and PWS differed in speech rate and both measures of pause use in reading. L2 fluent speakers and PWS differed in frequency of pauses in the monologue. Results from the crossover intervention for the PWS revealed a significant decrease in percentage syllables stuttered (% SS) for the delayed treatment group and a clinically significant decrease in % SS for both groups, in conjunction with a reduced speech rate that could be linked to increased frequency and/or average duration of pauses.

Conclusions: This study presented speech rate and pause use norms for both fluent speakers and PWS, L1 and L2 SAE speakers that may provide useful guidelines for speech language pathologists in South Africa. Additionally, the intervention results for PWS presented efficacy data for six sessions of pause manipulation with measurable findings for improved fluency.

Key words: Speech rate, people who stutter (PWS), pauses, fluency
CONTENTS

Dedication ii
Declaration iii
Acknowledgements iv
Abstract vi
List of Tables xi
List of Figures xiii
List of Appendices xv
Glossary of Terms xvi

Chapter One:	Introduction	1
Chapter Two:	Speech Rate	6
	Factors Impacting Speech Rate	13
	The Sociolinguistic Variable Impacting Speech Rate	13
	The Neuromuscular Variable Impacting Speech Rate	14
Chapter Three:	Pause Use	18
	Features of Pauses	21
	The Physiological Nature of Pauses	21
	The Neurolinguistic Function of Pauses	22
	The Sociolinguistic Function of Pauses	23
Chapter Four:	A Multilingual Perspective	25
	Language Policy in South Africa	25
Language Proficiency in Bi- and Multilingual Speakers	27	
Linguistic Features of SAE and isiZulu	30	
Multilingual People Who Stutter	34	

Chapter Five: Speech Rate and Pause Use with PWS 37
- Speech Rate and PWS: The Similarities to Fluent Speakers 37
- Speech Rate and PWS: The Differences to Fluent Speakers 39
- Pause Use in PWS 42

Chapter Six: Rate Control Therapy for PWS 47
- Traditional Approaches to Fluency Therapy 47
- Influence of Pause Manipulation on Fluency 53
- Development of Pause Instruction Intervention for Enhancing Fluency 57

Chapter Seven: Methodology 60
- Aims of the Study 60
 - Phase I: Descriptive Group Design 60
 - Phase II: Crossover Intervention Design 61
- Design of the Study 62
 - Phase I: Descriptive Group Design 62
 - Phase II: Crossover Intervention Design 62
- Participants 64
 - Participant Recruitment 66
 - Inclusion Criteria 67
 - Participant Characteristics 69
- Measures 81
 - Stuttering Severity for the PWS Participants 81
Speech Rate 82
Pause Use 83

Data Collection Procedures 84
Data Collection for Phase I 84
Data Collection for Phase II 91
Treatment Fidelity 95
Reliability/Inter-Observer Agreement 98

Data Analysis 101

Chapter Eight: Preliminary Investigation of the Measures and Intervention 103
Aim of the Pilot Study 103
Design of the Pilot Study 104
Participant in the Pilot Study 104
Results of the Pilot Study 105

Chapter Nine: Results 110
Phase I: Results of Aims of the Descriptive Group Design 110
Fluent Speakers 110
PWS 111
Fluent Speakers and PWS 112
Phase II: Results of the Crossover Intervention Phase 115

Chapter Ten: Discussion 125
Phase I: Descriptive Design 125
Speech Rates in L1 and L2 SAE Fluent Speakers 126
Speech Rates in L1 and L2 SAE PWS 131
Speech Rates of Fluent Speakers Compared to PWS 131

Frequency and Average Duration of Pauses in Fluent Speakers 134
Frequency and Average Duration of Pauses in PWS 135
Pause Use of Fluent Speakers Compared to PWS 138

Phase II: Impact of Pause Intervention on Fluency, Speech Rate and Pause Use 142

Chapter Eleven: Conclusion 147

Methodological Limitations 147
Procedural Limitations 147
Sample Limitations 148
Implications for Future Research 150
Conclusion 152

References 154
LIST OF TABLES

Table 1: Example of Two Words Produced in SAE (Stress-timed Language) Versus the L2 Production in isiZulu (Syllable-timed Language) 31

Table 2: Occurrence of Filled Pauses (FPs) for Fluent Speakers and PWS in a Picture Description Task 44

Table 3: Research Summary of Prolonged Speech and/or Smooth Speech Approaches for Improved Fluency as Reported by Bothe et al. (2006) 50

Table 4: Summary of the Dembi et al. (2001) Findings Comparing Frequency of Pauses and Average Pause Duration Before and After Pause Instruction for Fluent Speakers ($n = 8$) and PWS ($n = 7$) 55

Table 5: PWS Participants in Phase II Crossover Treatment Design 63

Table 6: Demographic Characteristics of Fluent Speaker Participants 70

Table 7: Language Abilities as Rated by Fluent Speaker Participants 72

Table 8: Demographic Characteristics of L1 and L2 PWS Participants 74

Table 9: Language Abilities as Rated by the PWS Participants 76

Table 10: Past and Ongoing Therapy of PWS Participants 78

Table 11: Stuttering Characteristics of PWS Participants 80

Table 12: Aims, Procedures and Criteria for the Six Sessions of Pause Instruction 92

Table 13: Statistical Procedures Selected to Address the Aims in This Study 102

Table 14: % SS, Speech Rate and Pause Use Pre- and Post-Pause Instruction for the Pilot Study Participant 107

Table 15: Mean Speech Rates and Pause Use for L1 and L2 Fluent Speakers in the 2-minute Monologue and the Reading Passage 111

Table 16: Mean Speech Rate and Pause Use for L1 and L2 PWS in the 2-minute Monologue and the Reading Passage 112

Table 17: Speech Rates and Pause Use for L1 Fluent Speakers versus L1 PWS 113
LIST OF FIGURES

Figure 1: AE speaking and reading rate averages (in spm) as reported by several studies (Andrews & Ingham, 1971; Darley & Sprietersbach, 1978; Tsao & Weismer, 1997; Venkatagiri, 1999)

Figure 2: Speaking rates for BE (n = 59), AuE (n = 60) and AE (combined results from several studies, thus no sample size reported) as reviewed by Robb et al. (2004)

Figure 3: Reading rates in BE (n = 19), AuE (n = 60), NZE (n = 40) and AE (n = 40) Presented by Robb et al. (2004)

Figure 4: Hypothesized variables underlying speech rate

Figure 5: Group Comparisons for Phase I

Figure 6: Calculations of pause frequency and average pause duration

Figure 7: Changes in % SS in monologue task for immediate treatment (n = 7), with participant 8 included, and delayed treatment (n = 6) PWS groups

Figure 8: Changes in % SS in monologue task for immediate treatment (n = 7), with participant 8 excluded, and delayed treatment (n = 6) PWS groups

Figure 9: Changes in % SS in reading passage for immediate treatment (n = 7), with participant 8 included, and delayed treatment (n = 6) PWS groups

Figure 10: Changes in % SS in reading passage for immediate treatment (n = 7), with participant 8 excluded, and delayed treatment (n = 6) PWS groups

Figure 11: Speech and reading rates of AE, AuE, BE and NZE dialects, as reported by Robb et al. (2004), along with L1 and L2 SAE rates from present study
Figure 12: Variables affecting speech rate, with added factor of dialectal influence for pausing

Figure 13: Summary of frequency of pauses in monologue and reading passage for L1 and L2 SAE fluent speakers and PWS

Figure 14: Summary of the average duration of pauses (in ms) in monologue and reading passage for L1 and L2 SAE fluent speakers and PWS
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Ethical Clearance Certificate</td>
<td>166</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Letter of Invitation for Fluent Speakers</td>
<td>167</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Letter of Invitation for People Who Stutter</td>
<td>169</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Consent Form for Participation</td>
<td>171</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Consent Form to be Videotaped</td>
<td>172</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Participant Case History</td>
<td>173</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Monologue Sample Questions</td>
<td>177</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Sample Session from Pause Instruction Manual</td>
<td>178</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Reliability Coding Instructions for Fluent Speaker Samples</td>
<td>185</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Reliability Coding Instructions for PWS Samples</td>
<td>188</td>
</tr>
</tbody>
</table>
GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>American English</td>
</tr>
<tr>
<td>Articulation rate</td>
<td>The number of syllables or words per unit of time excluding pause intervals</td>
</tr>
<tr>
<td>AuE</td>
<td>Australian English</td>
</tr>
<tr>
<td>Average Pause Duration</td>
<td>Total pause time in milliseconds divided by number of total pauses</td>
</tr>
<tr>
<td>BCC</td>
<td>Behavior Change Consortium</td>
</tr>
<tr>
<td>BE</td>
<td>British English</td>
</tr>
<tr>
<td>FP</td>
<td>Filled pause</td>
</tr>
<tr>
<td>NZE</td>
<td>New Zealand English</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>L1</td>
<td>First language</td>
</tr>
<tr>
<td>L2</td>
<td>Second language</td>
</tr>
<tr>
<td>ms</td>
<td>Milliseconds</td>
</tr>
<tr>
<td>Pause</td>
<td>An interruption of the sound wave during speech that lasts a minimum of 200 or 250 milliseconds</td>
</tr>
<tr>
<td>Pause Frequency</td>
<td>Total number of pauses</td>
</tr>
<tr>
<td>PWS</td>
<td>People who stutter</td>
</tr>
<tr>
<td>SAE</td>
<td>South African English</td>
</tr>
<tr>
<td>SIQ</td>
<td>Semi-interquartile range</td>
</tr>
<tr>
<td>SLP</td>
<td>Speech language pathologist</td>
</tr>
<tr>
<td>SP</td>
<td>Silent pause or unfilled pause (UP)</td>
</tr>
<tr>
<td>Speech Rate</td>
<td>Number of syllables or words per unit of time</td>
</tr>
</tbody>
</table>
spm: Syllables per minute
sps: Syllables per second
SS: Syllables stuttered
SSI-4 Stuttering Severity Instrument-4th Edition
STI: Spatiotemporal index
UP: Unfilled pause