Comparison of air pollution hotspots in the Highveld using airborne data

Xolile Gerald Ncipha

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Masters of Science.

Feb, 2011
ABSTRACT

The Highveld region is the economic heart of South Africa with a large number of different industries. As a result it has grown to be one of the most populated and developed regions in South Africa. It developed as an industrial region of South Africa because of its abundant mineral resources. The dense concentration of industrial, domestic and transport sources of air pollution have led to degraded air quality over the region. In this study the air pollution hotspots over the Highveld are compared by utilizing the airborne data of SO$_2$, NO$_x$, O$_3$ and aerosols. The South African Weather Service (SAWS) Aerocommander 690A (ZS-JRA) research aircraft was used as an airborne platform to monitor air pollution hotspots over the Highveld. The aircraft is equipped with trace gas analysers and aerosols spectrometer probes. The flight patterns involved vertical profiles that reached approximately 3000 masl. Plume penetrations were conducted to characterize emission from specific sources and mapping to determine the extent of the spatial distribution of pollutants. The seasonal variations of air pollution in these hotspots are also compared. The airborne data is also compared to data from ground based monitoring stations. O$_3$ concentrations were found to be fairly comparable over the Highveld air pollution hotspots in each season monitored. The inconsistency in the time and the meteorological conditions prevailing when the sites were monitored complicated the comparison of the relative loading of the other air pollutants over the hotspots. However the Vaal Triangle area was found to have high SO$_2$ and PM$_{2.5}$ aerosols concentrations in comparison to the other sites in all the seasonal case studies. Witbank was an exception to this, it was found to have high PM$_{2.5}$ aerosols loading in comparison to the Vaal Triangle during the spring case study. The airborne and ground based data were found to be reasonably comparable especially O$_3$ data.
I declare that this thesis is my own unaided work. It is being submitted for the degree of Masters of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

..

Xolile Gerald Ncipha

 day of 2011
This thesis is dedicated to my Entire Family

especially my daughter

Xoliswa Tshiamo Ncipha
The Highveld region of South Africa is the economic power-house of the country. The region is rich in natural resources and over the years it has developed to be an important agricultural and industrial region. Abundance of mineral resources over the Highveld led to diverse industrial activities to be concentrated over this region. About 75% of industrial infrastructure of South Africa is based in the Highveld (Wells, 1996; Freiman and Piketh, 2003). This attracted scores of people from different areas of South Africa to this region, and led to the development of extensive urban areas with high population density (Gauteng Department of Agriculture, Conservation and Environment (GDACE), 2004).

Over the years the social and economic activities in this region have been increasingly exerting pressure on the environment, especially the atmosphere. Growth in industrial activity has been coupled with increased emissions of air pollutants, especially the oxides of nitrogen and sulphur. These oxides can be dry-deposited or wet-deposited to the surface as acid rain. Emissions from domestic fossil fuel burning from low income households have also increased with population. The rise in use of private and public transport (minibus taxis) has also contributed to the degrading air quality. The degraded air quality has a negative health impact on the population, vegetation and it also influences the climate of this region (North West Department of Agriculture, Conservation and Environment (NWDACE), 2002; Mpumalanga Department of Agriculture, Conservation and Environment (MDACE), 2003; GDACE, 2004).

There are limited ambient air quality data available despite air quality problems over this region. The geographical coverage of air quality data is poor. This is caused by a lack of coordination of air quality monitoring activities and cooperation between stakeholders. Air quality monitoring is performed by several separate organisations. In addition, the existing data is not readily shared amongst organisations involved in the monitoring. This makes it difficult to obtain a complete spatial picture of ambient air quality in this region.
and to compare air pollution levels between different sites over the Highveld region (MDACE, 2003).

This study was part of a national project which aimed at establishing baseline ambient conditions for greenhouse gases and criteria and hazardous air pollutants over air pollution hotspots in South Africa using a research aircraft. The advantage of aircraft measurements is that they offer accurate 3-D data over a large area in fine spatial resolution (National Aeronautics and Space Administration (NASA), 1994. Because this type of measurement platform is mobile, it enables the monitoring of many sites, making it possible to compare them. The aim of this study is to compare air pollution hotspots over the Highveld, utilizing the airborne data of sulphur dioxide (SO$_2$), nitrogen oxides (NO$_X$ = NO + NO$_2$), ozone (O$_3$) and aerosols with a diameter less than or equal to 2.5 µm (PM$_{2.5}$). The air pollution hotspots regions investigated are Witbank, Secunda, Rustenburg and the Vaal Triangle. They consist of industrialised sites surrounded by urban and rural settlements. The specific objectives of this study are to:

1. Compare the air pollution hotspots over the Highveld by identifying the differences and or similarities in O$_3$, NO$_X$, SO$_2$, and PM$_{2.5}$ concentrations.
2. Compare the seasonal variations of O$_3$, NO$_X$, SO$_2$, and PM$_{2.5}$ concentrations over the air pollution hotspots.
3. Investigate the relationship between airborne and ground based air pollution data.

This dissertation is divided into five chapters. Chapter 1 provides the background information related to land use and land cover of the study sites, as well as the air quality problems over the Highveld. In addition the characteristics of monitored air pollutants and their effect on health, the environment and the impact of meteorology on air quality levels are described. Chapter 2 describes data collection and analysis methodologies. Chapter 3 presents the results and interpretation of the quartile analysis of air pollution data over the study sites, taking meteorological conditions into account. Chapter 4 presents the results of direct comparisons between airborne and ground based air quality data. Chapter 5 presents the summary and conclusions of the study.
This research is a part of a national project entitled: ‘Airborne Monitoring of Greenhouse Gases and other Air Pollutants over South Africa’. The project was funded by the Department of Environmental Affairs and Tourism (DEAT). Components of this project were presented to DEAT during a series of meetings and the final report of the project was presented to DEAT and other South African air quality stakeholders at the project feedback workshop. The South African Weather Service (SAWS) provided its research aircraft, personnel and scientific instrumentation to the project. The Climatology Research Group (CRG) from Wits University supported the project by providing its personnel and scientific instrumentation. The meteorological data used in this study was provided by SAWS. I would like to express my gratitude to SAWS for funding my studies, Mrs. Wendy Job from the Department of Geography, Archaeology and Environmental Studies, Cartography Unit, Wits University for redrawing the synoptic charts, Prof. Stuart Piketh and Dr. Deon Terblanche are thanked for supervising this study.
List of abbreviations

μm - micrometre
ACE - Atmosphere, Climate and Environment
AFIS - Advanced Fire Information System
AQA - National Environment: Air Quality Act
BPDM - Bojanala Platinum District Municipality
CCN - Cloud Condensation Nuclei
VOC - Volatile organic compounds
COL - Cut off low
CRG - Climatology Research Group
DCEPA - Department of the California Environmental Protection Agency
DEAT - Department of Environmental Affairs and Tourism
DMS - Dimethylsulphide
FSSP - Forward Scattering Spectrometer Probe
GDACE - Gauteng Department of Agriculture, Conservation and Environment
GPS - Global Positioning System
IPCC - Intergovernmental Panel on Climate Change
magl - Meters Above Ground Level
masl – Meters above Sea Level
MATCH - Model of Atmospheric Transport and Chemistry
Max - Maximum
MDACE - Mpumalanga Department of Agriculture, Conservation and Environment
MDALA - Mpumalanga Department of Agriculture and Land Administration
Min - Minimum
NASA - National Aeronautics and Space Administration
NWDACE - North West Department of Agriculture, Conservation and Environment
NWPTB - North West Parks and Tourism Board
PCASP - Passive Cavity Aerosol Spectrometer Probe
PMS - Particle Measuring Systems
PM$_{2.5}$ - Particulate Matter with a diameter less than or equal to 2.5 microns
ppb - parts per billion
PPT - Pro – Poor Tourism
QEPA - Queensland Environmental Protection Agency
RAPCA - Regional Air Pollution Control Agency
SAFARI - Fire-Atmosphere Research Initiative
SAFARI - South African Air Quality Information System
SAAQIS – South African Air Quality Information System
SAST - South African Standard Time
SASOL - South African Coal and Oil
SAVE – Save the Vaal Environment
SAWS - South African Weather Service
SHADOZ - Southern Hemisphere Additional Ozonesondes
StdDev% - Relative Standard Deviation
USEPA - United States Environmental Protection Agency
USNLM - United States National Library of Medicine
UV - Ultraviolet
VAEE - Victorian Association for Environmental Education
VTI - Vaal Triangle Info
WDNR - Wisconsin Department of Natural Resources
WMO - World Meteorological Organisation
WWF - World Wildlife Fund
Table of Contents

Abstract...ii
Preface...v
List of Abbreviations...viii
Table of Contents..x
List of Figures...xiii
List of Tables..xv

Chapter 1: Overview...1
Introduction...1
Literature Review...4
 Study areas...4
 Witbank..4
 Secunda..5
 Rustenburg...6
 The Vaal Triangle...7
Air pollution sources and their emission constituents over the Highveld region...........9
Characteristics of the monitored air pollutants..10
 Ozone...10
 Sulphur dioxide..14
 Nitrogen oxides..17
 Aerosols..20
Impact of meteorology on air quality levels..26
Transportation of air pollutants...27
Aims of this study..31

Chapter 2: Data and Methodology...32
Project Background..32
Characteristics of the Highveld air pollution hotspots...33
Location of the major air pollution sources over the Highveld air pollution hotspots ... 33
Research Aircraft and instruments onboard .. 40
Trace gases and PM$_{2.5}$ aerosols measurement instruments .. 42
 Sulphur dioxide monitor ... 42
 Nitrogen oxides monitor .. 44
 Tropospheric ozone monitor ... 47
 PM$_{2.5}$ Aerosols monitor .. 49
Data Collection .. 51
Airborne air pollution monitoring ... 51
Highveld air pollution hotspots monitoring programme ... 52
 Autumn campaign ... 52
 Winter campaign .. 58
 Spring campaign .. 59
 Air pollution flux provincial cross boundary campaign .. 59
Data analysis ... 59

Chapter 3: Comparison of air pollutants levels over the Highveld air pollution hotspots .. 68
Autumn campaign .. 68
 Autumn campaign meteorological overview .. 68
 Comparison of air pollutants levels over the Highveld air pollution hotspots during the autumn campaign ... 72
Winter campaign .. 78
 Winter campaign meteorological overview .. 78
 Comparison of air pollutants levels over the Highveld air pollution hotspots during the winter campaign ... 83
Spring campaign ... 92
 Spring campaign meteorological overview .. 92
 Comparison of air pollutants levels over the Highveld air pollution hotspots during the spring campaign ... 96
Comparison of seasonal variation of air pollutants levels over the Highveld air pollution hotspots..102

Chapter 4: Direct comparison of airborne and ground based air quality data...........109
Challenges of comparing airborne and surface monitored air quality data.............109
 Influence of the diurnal evolution of the
 mixing layer on air dispersion...109
 Spatial variation of air pollutants...112
 Air pollution source height levels..115
Direct comparison of airborne against ground based air quality data..................117

Chapter 5: Summary and Conclusions..121
Comparison of the Highveld air pollution hotspots..121
 Ozone..121
 Nitrogen monoxide...122
 Nitrogen dioxide...124
 Sulphur dioxide...125
 PM$_{2.5}$ aerosols...127
Challenges in comparing airborne and surface air quality data.........................128
Direct comparison of airborne and ground based data......................................129

References...131
List of Figures

Figure 1.1. Land use over Witbank area...5
Figure 1.2. Land use over Secunda area...6
Figure 1.3. Land use over Rustenburg area..7
Figure 1.4. Land use over the Vaal Triangle area..8
Figure 1.5. The measured and modelled aerosol number size distribution
over the Highveld region. The three modes have been defined as
nucleation mode aerosols (mode A), accumulation mode aerosols
(mode B) and Coarse mode aerosols (mode C)..21
Figure 1.6. Major circulation types affecting southern Africa and their monthly
frequency of occurrence over the 5-year period 1988-1992..............................28
Figure 1.7. Schematic representation of major low-level transport trajectory modes
likely to result in easterly or westerly exiting of material from southern
Africa or in recirculation over the subcontinent..30
Figure 2.1. The spatial distribution of SO\textsubscript{2} over Witbank and surrounding
towns as measured by the aircraft. The top figure shows the maximum
values and the bottom figure the median values gridded on a
0.05 by 0.05 degree resolution...36
Figure 2.2. The spatial distribution of SO\textsubscript{2} over Secunda and surrounding
towns as measured by the aircraft. The top figure shows the maximum
values and the bottom figure the median values gridded on
a 0.05 by 0.05 degree resolution...37
Figure 2.3. The spatial distribution of SO\textsubscript{2} over Rustenburg and surrounding
towns as measured by the aircraft. The top figure shows the maximum
values and the bottom figure the median values gridded on a
0.05 by 0.05 degree resolution...38
Figure 2.4. The spatial distribution of SO\textsubscript{2} over the Vaal Triangle area and
surrounding towns as measured by the aircraft. The top figure
shows the maximum values and the bottom figure the median values
gridded on a 0.05 by 0.05 degree resolution..39
Figure 2.5. SAWS research aircraft and the research equipment onboard..............41
Figure 2.6. Model 43C flow diagram, Sulphur dioxide monitor

Figure 2.7. Model 42C flow diagram, Nitrogen oxides monitor

Figure 2.8. Model 49C Flow diagram, Tropospheric ozone monitor

Figure 2.9. Schematic diagram of the optical path of the PCASP, PM$_{2.5}$ Aerosols instrument

Figure 2.10. Summary of flight patterns conducted over the Highveld

Figure 2.11. A mapping flight track representative of all the flights flown over the Secunda area at 167 magl

Figure 2.12. A mapping flight track representative of all the flights flown over the Witbank area at 167 magl

Figure 2.13. A mapping flight track representative of all the flights flown over the Rustenburg area at 167 magl

Figure 2.14. A mapping flight track representative of all the flights flown over the Vaal Triangle area at 167 magl

Figure 2.15. An example of a mapping flight conducted over the South African Highveld. A regular pattern with 0.5 degree longitudinal spacings were flown over the region of interest. In this example the deviation on the flight pattern was due to OR Tambo International Airport controlled airspace

Figure 2.16. An example of a source flight conducted over the Witbank area of South Africa. The flights were conducted in the downwind direction starting and ending at the stack

Figure 2.17. An example of profile flights conducted at the edges of the South African Highveld. The vertical extent of the flight is best viewed in the box on top of the map

Figure 2.18. Mapping flight pattern over Sasol and Mittal Steel ground stations during the Vaal Triangle monitoring on 17/03/2005 and 03/08/2005

Figure 2.19. Flight over Sasol ground stations during Secunda monitoring on 18/03/2005
Figure 2.20. Mapping flight pattern over Sasol monitoring sites during the Western Highveld monitoring conducted on 21/07/2005 and 25/07/2005........66

Figure 3.1. Autumn campaign surface synoptic charts 3.1(a)-3.1(c); 16/03/2005, 17/03/2005, 18/03/2005 respectively...70

Figure 3.2. Temperature vertical profiles measurements over Irene weather observation station during the autumn campaign. Figure 3.2(a) is a midnight profile and figure 3.2(b) is an afternoon profile.................................71

Figure 3.3. Wind speed measurements at the study sites during the autumn campaign...72

Figure 3.4. Winter campaign surface synoptic charts 3.4(a)-3.4(d); 27/07/2005, 03/08/2005, 05/08/2005 and 08/08/2005 respectively............79

Figure 3.5. Temperature vertical profiles measurements over Irene weather observation station during the winter campaign. Figure 3.5(a) is a midnight profile and figure 3.5(b) is an afternoon profile.........................82

Figure 3.6. Wind speed measurements at the study sites during the winter campaign..83

Figure 3.7. Spring campaign surface synoptic charts. Figure 3.7(a) and Figure 3.7(b) represents the charts on 20/09/2005 and 23/09/2005 respectively..93

Figure 3.8. Wind speed measurements at the study sites during the spring campaign..94

Figure 3.9. Temperature vertical profiles measurements over Irene weather observation station during the spring campaign. Figure 3.9(a) is a midnight profile and Figure 3.9(b) is an afternoon profile.................................95

Figure 3.10. Monthly fires and their location detected by satellite over the region shown by red spots, the blue spots represents towns. Figure 3.10(a) shows the fires detected during the month of August 2005. Figure 3.10(b) show the fires detected during the month of September 2005..103

Figure 4.1. SO$_2$ concentration frequency distribution over Secunda approximately at 167 magl during the autumn campaign.......................113
Figure 4.2. NO$_x$ concentration frequency distribution over Secunda approximately at 167 magl during the autumn campaign..........................114

Figure 4.3. O$_3$ concentration frequency distribution over Secunda approximately at 167 magl during the autumn campaign..........................115

Figure 4.4. SO$_2$ and temperature vertical profiles. The dotted lines on both Figures 4.4(a) and 4.4(b) are temperature profiles measured over Irene weather station and the SO$_2$ and the other temperature profiles are measured from the aircraft. Figure 4.4(a) is a vertical profile over Vanderbijlpark, figure 4.4(b) is a vertical profile over Denesyville..116

Figure 4.5. Direct comparison of airborne and ground based measured SO$_2$ data...118

Figure 4.6. Direct comparison of airborne and ground based measured O$_3$ data........119
List of Tables

Table 2.1. The instrumentation on board the aircraft for all the campaigns..............40
Table 2.2. Highveld flight campaigns programme..56
Table 2.3. nth quartile values and their explanations..61
Table 3.1. Hourly averaged surface temperature at Irene weather station:
from the morning up to the afternoon during the autumn campaign..............70
Table 3.2. Autumn campaign Highveld hotspots comparison: O$_3$ concentration
distribution at approximately 167 m above ground level..........................74
Table 3.3. Autumn campaign Highveld hotspots comparison: NO concentration
distribution at approximately 167 m above ground level..........................75
Table 3.4. Autumn campaign Highveld hotspots comparison: NO$_2$ concentration
distribution at approximately 167 m above ground level..........................76
Table 3.5. Autumn campaign Highveld hotspots comparison: SO$_2$ concentration
distribution at approximately 167 m above ground level..........................77
Table 3.6. Autumn campaign Highveld hotspots comparison: PM$_{2.5}$ aerosols
concentration distribution at approximately 167 m above ground level........78
Table 3.7. Hourly averaged surface temperature at Irene weather station:
from the morning up to the afternoon during the winter campaign..............81
Table 3.8. Winter campaign Highveld hotspots comparison: O$_3$ concentration
distribution at approximately 167 m above ground level..........................85
Table 3.9. Winter campaign Highveld hotspots comparison: NO concentration
distribution at approximately 167 m above ground level..........................87
Table 3.10. Winter campaign Highveld hotspots comparison: NO$_2$ concentration
distribution at approximately 167 m above ground level..........................89
Table 3.11. Winter campaign Highveld hotspots comparison: SO$_2$ concentration
distribution at approximately 167 m above ground level..........................90
Table 3.12. Winter campaign Highveld hotspots comparison: PM$_{2.5}$ aerosols
concentration distribution at approximately 167 m above ground level.........92
Table 3.13. Hourly averaged surface temperature at Irene weather station: from the
morning up to the afternoon during the spring campaign.........................93
Table 3.14. Spring campaign Highveld hotspots comparison: O$_3$ concentration distribution at approximately 167 m above ground level

Table 3.15. Spring campaign Highveld hotspots comparison: NO concentration distribution at approximately 167 m above ground level

Table 3.16. Spring campaign Highveld hotspots comparison: NO$_2$ concentration distribution at approximately 167 m above ground level

Table 3.17. Spring campaign Highveld hotspots comparison: SO$_2$ concentration distribution at approximately 167 m above ground level

Table 3.18. Spring campaign Highveld hotspots comparison: PM$_{2.5}$ aerosols concentration distribution at approximately 167 m above ground level

Table 3.19. Highveld hotspots seasonal spatial O$_3$ average concentrations comparison

Table 3.20. Highveld hotspots seasonal spatial NO average concentrations comparison

Table 3.21. Highveld hotspots seasonal spatial NO$_2$ average concentrations comparison

Table 3.22. Highveld hotspots seasonal spatial SO$_2$ average concentrations comparison

Table 3.23. Highveld hotspots seasonal spatial PM$_{2.5}$ aerosols average concentrations comparison

Table 4.1. Air pollutants levels over Secunda at different heights in the morning

Table 4.2. Air pollutants levels over the Vaal Triangle at different heights in the afternoon

Table 4.3. The times and altitudes at which SO$_2$, and O$_3$ were monitored by the aircraft and ground air quality monitoring stations