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Abstract

Approximately one in six South African adults is infected with HIV, making it the

country with the largest population of HIV positive individuals in the world. Strate-

gies for monitoring this epidemic are an important area of research. In particular,

estimation of incidence, the rate at which individuals are being infected, is a key indi-

cator of the scale of the epidemic. Since it is cheaper, quicker, easier and potentially

less biased than prospective follow-up, incidence estimation from the cross-sectional

application of a biomarker that tests for recent infection has gained much atten-

tion. There is, however, controversy over how best to account for individuals that

present anomalous biomarker responses. The central contribution of the thesis is

to derive a consistent incidence estimation approach that accounts for anomalous

responses. This approach is compared with other cross-sectional incidence estima-

tors found in the literature and shown to be less biased. Implications of the new

approach to survey design and the development of new biomarkers are explored.

Application to survey data gathered by the Africa Center for Health and Population

Studies showed consistent results when compared with incidence estimates derived

from follow-up. Aside from other theoretical contributions, the thesis also provides

a systematic review of the application of the BED assay in incidence estimation with

recommendations on best current practice.
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Chapter 1

Introduction

Prevalence and incidence are the two most important indicators of the state of an

epidemic. Prevalence is the proportion of a population that has contracted an infec-

tion, while incidence is a measure of the risk of uninfected individuals contracting

the disease and is usually expressed as a rate, i.e. the proportion of the at-risk (un-

infected) population that become infected per unit time. Prevalence is the easier of

the two indicators to measure, requiring only that the proportion of infected indi-

viduals be estimated by direct sampling in the population of interest. By contrast,

considerable effort must be expended to estimate incidence.

In South Africa it is particularly important to have information on the state of the

HIV epidemic since it has the largest population of HIV infected individuals of any

country in the world (one in six South Africans aged 15-49 is infected [91]). Large-

scale intervention is required to reduce the rate of new infections. The South African

National Strategic Plan for HIV AIDS [95] has stated that one of its primary aims is

to “Reduce the rate of new HIV infections by 50% by 2011.” It is therefore necessary

to have good estimates of incidence to ensure effective targeting and evaluation of

interventions.

The most common way in which incidence is measured is by follow-up of an

initially uninfected cohort. Over the duration of surveillance, individuals in the co-

hort are regularly tested, and incidence is estimated as the number of new infection

events observed divided by the number of person-years of observation. The incidence

estimated in this way is effectively an average incidence over the duration of the sur-

vey. Unfortunately, such longitudinal surveillance is expensive, logistically complex

and prone to biases. These biases include the fact that certain individuals may be-

come unavailable for follow-up, which may be correlated with risky behaviour, and

that risk-reduction counselling, which must be extended to participants on ethical

grounds, may affect behaviour during participation.

For infections with a relatively short duration (e.g. less than a year), another

method for estimating incidence is available. By performing a cross-sectional survey

of the population of interest, one can identify the number of individuals infected.
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Incidence may then be calculated by inverting the well-known epidemiological rela-

tionship that prevalence is equal to incidence multiplied by the duration of infection.

So, incidence can be calculated by dividing prevalence by the average duration of

infection (given that an accurate estimate of the mean duration is available). Sim-

plistically, this means that the difficult incidence measurement problem has been

replaced by an easier problem of measuring infection prevalence. The incidence

measured in this manner is effectively an average of the incidence over an historical

period with length approximately equal to the duration of the infection.

Unfortunately, HIV has a long asymptomatic phase before the onset of immune

failure and AIDS. This means that HIV infections last for many years and may not

be diagnosed until long after the infection event. Furthermore, with the advent of

antiretroviral therapy (ART), individuals who are enrolled on treatment programs

may now survive for many decades. As a result, if one implemented the cross-

sectional approach described above for HIV, the incidence estimate would be an

average of incidence over decades of epidemic history. Such an incidence estimate

would not be very useful. In the mid 1990s, however, a novel way of using cross-

sectional surveys to estimate HIV incidence was proposed. The idea is to observe a

biological marker (also known as a biomarker) indicating an immune system response

to early infection and classify individuals as either recently infected or non-recently

infected. Since individuals remain classified as recent infections by the biomarker for

a much shorter period than they remain infected with HIV, the biomarker results

can be used to estimate incidence in the same way that a short duration infection

facilitates incidence estimation. An incidence estimate is computed in the same way

as before, with one slight difference—the prevalence of recently infected individuals

must be determined in the sub-population of the cross-section that excludes those

that are non-recently infected.

Prior to conducting cross-sectional surveys to estimate incidence using a bio-

marker, it is necessary to estimate the mean duration that individuals spend in the

recently-infected state. Since being classified as recent by the biomarker is sometimes

referred to as “being in the window period”, this mean duration is usually called

the mean window period. Estimating (or calibrating) the mean window period

requires longitudinal follow-up of individuals with approximately known infection

dates. This requires considerable effort and cost, but need only be conducted once.

Unless there is good reason to suspect that the mean window period is different in

different contexts (e.g. as a result of sub-type diversity), all subsequent incidence

surveys use the same value of the mean window period.

Brookmeyer and Quinn were the first to propose the biomarker-based approach

in HIV monitoring [17]. They used the presence of p24 antigen (present in the
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HIV protein shell) in a blood sample prior to HIV antibody production by the im-

mune system (seroconversion) as an indication of recent infection. Unfortunately,

the mean window period for this biomarker is very short (about three weeks), which

means that to get good statistics, unreasonably large sample sizes for the incidence

cross-section surveys are needed. Later, Janssen et al. [47] proposed a method

based on the increase of a serological response (in particular they used ‘detuned’

assays to detect recently infected individuals). Depending on how the assays are

applied, the mean window period for this approach is longer (between 100 and 200

days), facilitating better precision in the incidence estimates. This approach later

became known as the Serological Testing Algorithm for Recent HIV Seroconversion

(STARHS). Unfortunately, the use of detuned assays did not prove reliable due to

the variability in immune response due to subtype diversity. In order to improve

biomarker characteristics, a number of other assays that test for recent HIV infec-

tion have been developed, including the much used BED assay, which is a capture

enzyme immunoassay (CEIA) based on protein sequences from the B, E and D HIV

subtypes [79].

As the method of using biomarkers of recent infection in cross-sectional surveys

was more widely applied, it became apparent that the results obtained from surveys

invariably overestimated incidence. It was then realized that for the most useful

assays (i.e., those with the mean window periods long enough for good statistics) a

proportion of individuals remained perpetually classified as “recent” as a result of in-

sufficient immunological response to HIV infection. The reasons for these anomalous

responses are not completely understood, but it is well known that elite controllers

(those individuals that have an innate ability to control the progress of HIV thus

avoiding AIDS) fall into this category. It was also found that certain individuals on

ART or with end stage disease experience immune system changes that may result

in incorrect classification. These complications mean that the simple relationship

between incidence and the prevalence of recently infected individuals is no longer

obeyed. As a result alternative techniques for analysing data from such imperfect

biomarker based surveys were needed.

To account for these anomalous results, McDougal and colleagues [63] at the

Centers for Disease Control and Prevention (CDC), using statistical concepts from

diagnostic testing, introduced an ‘adjusted’ incidence estimator which required not

only the mean window period to be calibrated, but also a sensitivity and two speci-

ficity parameters (short- and long-term). This meant that, although imperfect tests

like the BED assay could not be used for individual diagnosis, incidence could be

estimated in surveys, provided that the calibration parameters were accurate for the

population being surveyed. While this approach provided a way forward in analysing
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data, it did so at the cost of requiring a complicated calibration exercise. To date,

this calibration has only been carried out once in the context of North America.

Since this innovation, it was realized that the most important parameter for

characterizing anomalous results is the long-term specificity parameter of the Mc-

Dougal estimator. John Hargrove and colleagues [40] from SACEMA were the first

to realize that the McDougal estimator is over-parameterised and provided a new

estimator that depends only on the mean window period and a false-recent rate.

The false-recent rate can be expressed as one minus the long-term specificity, and

is essentially the proportion of non-recently infected individuals, infected for more

than a certain time, that are incorrectly classified as recently infected. Later, Alex

Welte and I [71] showed that an incidence estimator (different from that of Hargrove

et al.), which also depends only on the mean window period and the false-recent rate,

could be directly derived using a survival analysis of the problem. This estimator

has been shown to be the least biased of the estimators available [69]. We were

also able to derive a theoretically consistent way of reducing the number of calibra-

tion parameters in the McDougal estimator, in effect conclusively showing why their

approach is over-parameterised [69].

An important consequence of the reduction of the number of calibration param-

eters in the McDougal estimator is that the complexity of the techniques required

to calibrate the parameters that remain is less than the complexity required for the

parameters that are eliminated. Another important fact that emerges from our anal-

ysis is that, under realistic conditions, the false-recent rate will vary with location

and time. Our new estimator has been validated in an incidence study conducted

in rural KwaZulu-Natal by the Africa Centre for Health & Population Studies [10].

This study showed that the local estimate for the false-recent rate was significantly

lower than the equivalent false-recent recent rate found by McDougal et al. in the

North American calibration exercise.

Recently, there has been some debate as to whether incidence estimates should

be adjusted for false-recent results or not. Brookmeyer [15] has suggested that rather

than using an estimator that accounts for false-recent results, one should consider

all recent classifications as valid (i.e., within the window period) and use the simple

estimator with a “better” estimate of the mean window period. While this approach

is theoretically correct, it has some serious practical problems, including the fact

that a calibration of such a mean window period must naturally happen over a

very long period, since it must include a small proportion of individuals who may

remain classified as recently infected for decades. Since such individuals are only

removed from the population as a result of death, the calibration must be locally

relevant. For example, it would be inappropriate to use a mean window period of
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this type calibrated in North America for a study conducted in Africa, since access

to basic healthcare, ART, nutrition and the mix of opportunistic infections in these

two locations will lead to very different survival profiles for HIV infected individuals.

Clearly, as these factors may change with time, the mean window period thus defined

would also vary as a function of time.

While we disagree with the approach of Brookmeyer, the debate has, however,

highlighted that there is a need for a more precise definition of the calibration

experiments that are needed to characterise the performance of biomarkers. Further

work in this direction is ongoing [65].

While there has been some controversy on how best to interpret data derived

from cross-sectional surveys using biomarkers that test for recent HIV infection, the

work undertaken has shown that there is a consistent, tractable and reliable method

for producing incidence estimates using biomarker-based cross-sectional surveys. We

continue to contribute to ongoing research in this area, and are also active in ensuring

that these results are publicised to a wider audience of researchers and public health

officials through various journal publications and contributions to the World Health

Organization Working Group on HIV Incidence Assays. For example, we have pro-

vided a suite of spreadsheet tools for assay based incidence estimation (ABIE) avail-

able at http://www.sacema.com/page/assay-based-incidence-estimation/.

1.1 Contributions and Structure of the Ph.D.

In tackling this area of research, the primary goal has been to disseminate ideas as

quickly as possible through peer-reviewed research articles. This has been achieved

through the publication of five journal articles [71, 69, 118, 10, 8], two correspondence

articles [117, 116] and a number of conference presentations (including [65, 70, 66, 54,

11]). These publications form a coherent body of work with a natural progression

of ideas, and the chapters of the thesis reproduce the work roughly in the order

that the material was conceived. The only modifications to the original papers have

been some minor corrections, slight reformatting of the material and a unified set

of references. At the beginning of each chapter a list of coauthors with whom the

work was originally written and a reference to the original publication is provided.

The structure of the rest of the Thesis now follows.

In Chapter 2 the original work on a consistent incidence estimator is presented.

Here we derive a weighted incidence estimator that directly accounts for the phe-

nomenon of assay non-progression (one source of anomalous results mentioned previ-

ously). We also explore the biases introduced due to simplifications made and derive

an uncertainty relationship for the estimator that includes the effect of counting error
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and parameter uncertainty.

Chapter 3 provides a rigorous comparison between the estimator derived in Chap-

ter 2 and the estimators of McDougal et al. [63] and Hargrove et al. [40]. Initially,

we prove a result that shows that, under their own assumptions, there is a redun-

dancy inherent in the parameters required for the McDougal estimator. This result

shows that the sensitivity and short-term specificity parameters are not needed for

incidence estimation, and that a description of biomarker performance based only

on the window period and long-term specificity (alternatively false-recent rate) pro-

vides an equally precise description of biomarker performance. The three paradigms

are then compared under a model steady-state epidemic, with our estimator being

shown to be the least biased of the three. This is consistent with the findings of

Wang & Lagakos [112] who showed that this estimator is also the maximum likeli-

hood estimator.

One of the consequences of the analysis in Chapter 3 is that the McDougal

estimator can be simplified. In Chapter 4 we provide a short note that advertises

this.

In chapter 5 we explore the consequences of the new framework for study sample

size requirements, uncertainty and bias, under a variety of different scenarios. Given

statistical requirements, we also provide an indication of the practical challenges

that developers of tests for recent infection face. In an appendix to this chapter

we show briefly how a general false-recent rate (as opposed to the probability of

not progressing used in Chapter 2) can be used in conjunction with the incidence

estimator. This means that, with a good estimate of the associated false-recent

rate, it is possible to account for all the sources of anomalous results (i.e. assay

non-progressors and regressors).

Work in this area would not be complete without at least one application of

the statistical techniques to real data. In conjunction with our collaborators at the

Africa Center for Health and Population Studies [2], we were able to show that the

estimator performed well when compared to incidence derived from follow-up. One

important finding in this work was that the false-recent rate for the population being

studied was significantly different from other estimates of this parameter. This work

is presented in Chapter 6.

There has been a progression in the sophistication of techniques used to analyse

data from surveys that use biomarkers. Again, in conjunction with collaborators

from the Africa Center, we performed a systematic literature review of the use and

analysis of the BED assay in incidence estimation. Produced here as Chapter 7, there

are a number of interesting findings that arose from the thirty nine studies reviewed.

In particular, it was found that no less than ten distinct incidence estimators have
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been used to analyse data from cross-sectional incidence surveys. Unfortunately, a

large number of studies did not account for the presence of anomalous results, which

may undermine the validity of their findings. Based on the findings in this work we

provide recommendations on best current practice.

Recently Brookmeyer [15] has contested the need to “adjust” incidence estimates

for anomalous results. In particular he suggests that the McDougal and Hargrove

estimators do not increase the accuracy of incidence estimates, but that improved

estimates of the mean window period are required. Chapter 8 reproduces corre-

spondence in response to this work, in which we argue for the use of “adjusted”

estimators.

In responding to Brookmeyer, a number of issues were raised—in particular,

the need for a precise definition of the false-recent rate. Chapter 9 explores this

in detail. By providing a precise characterisation of the calibration parameters

(window period and false-recent rate) in terms of a predetermined cutoff time, a

new estimator is derived. We provide an analysis of bias introduced as a result of

simplifying assumptions, and compare the new estimator with previous estimators.

All of the graphs included in the Thesis were produced using MATLAB. In

Appendix A, some examples of MATLAB code used are presented. Appendix B

reproduces one of the conference posters presented at the International AIDS Soci-

ety Conference held at Cape Town in 2009—it serves as an executive summary of

Chapters 2-6.



Chapter 2

Relating Recent Infection Prevalence to

Incidence with a Sub-population of Assay

Non-progressors

∗ This chapter was coauthored with A. Welte [71], and is reproduced with permission

from Springer Science+Business Media: Journal of Mathematical Biology (2010)

60:687-710 DOI: 10.1007/s00285-009-0282-7.

Abstract

We present a new analysis of relationships between disease incidence and the

prevalence of an experimentally defined state of ‘recent infection’. This leads to

a clean separation between biological parameters (properties of disease progres-

sion as reflected in a test for recent infection), which need to be calibrated, and

epidemiological state variables, which are estimated in a cross-sectional survey.

The framework takes into account the possibility that details of the assay and

host/pathogen chemistry leave a (knowable) fraction of the population in the

recent category for all times. This systematically addresses an issue which is

the source of some controversy about the appropriate use of the BED assay for

defining recent HIV infection. The analysis is, however, applicable to any assay

that forms the basis of a test for recent infection. Analysis of relative contri-

butions of error arising variously from statistical considerations and simplifi-

cations of general expressions indicate that statistical error dominates heavily

over methodological bias for realistic epidemiological and biological scenarios.

2.1 Introduction

Reliable estimation of disease incidence (rate of occurrence of new infections) and

prevalence (the fraction of a population in an infected state) are central to the de-

termination of epidemiological trends, especially for the allocation of resources and

evaluation of interventions. Prevalence estimation is relatively straightforward, for

example by cross-sectional survey. Incidence estimates are notoriously problematic,
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though potentially of crucial importance. An approximate measure of incidence in a

population is required for the proper planning of sample sizes and costing for clinical

trials and other population based studies. Repeated follow-up of a representative co-

hort is often referred to as the ‘gold standard’ for estimating incidence, but is costly,

time intensive and still prone to some intrinsic problems. For example, there may be

bias in the factors determining which subjects are lost to follow-up. Furthermore,

ethical considerations demand that a cohort study involve substantial support for

subjects to avoid becoming infected, which may make the cohort unrepresentative

of the population of interest.

Numerous methods [17, 26, 40, 47, 63, 79, 80, 83, 122] have been proposed

for inferring incidence from single or multiple cross-sectional surveys rather than

following up a cohort. A central idea in most of these [17, 26, 40, 47, 63, 79, 80]

is to count the prevalence of a state of ‘recent infection’, which naturally depends

on the recent incidence. The relationship between the two is in general not simple

and depends in detail on the recent population dynamics as well as distributions

which capture the inter-subject variability of progression through stages of infection,

as they are observed by the specific laboratory assays used in the test for recent

infection (TRI). For this approach to be sensible, a working definition of ‘recent

infection’ must be calibrated, for example by repeatedly following up subjects over

a period during which they become infected. This is effectively as much effort as

one measurement of incidence by follow-up. The calibration can then be used to

infer incidence from subsequent independent cross-sectional surveys.

Owing to the devastating impact of the HIV epidemic, and the many challenges

of research and intervention design, the problem of estimating HIV incidence has

attracted considerable interest in recent years. The prospect of using a TRI is in

principle very attractive. Given the range of values of incidence likely to be observed

in populations with a major epidemic (say 1-10% per annum) a mean definition of

‘recent’ of approximately half a year is desirable to yield reasonable statistical con-

fidence for sample sizes of a few thousand. The BED assay1 is currently the leading

candidate for such a test, but controversy has arisen about the possibility of con-

ducting a reliable calibration. This stems from the fact that a subset of individuals

(approximately 5% [63, 40], potentially variable between viral and host popula-

tions) fail to progress above any statistically useful threshold set on the assay in the

definition of ‘recent’ infection. This subset of individuals who remain persistently

classified as ‘recently infected’, the so called assay non-progressors, poses a problem

to which there is currently no consensus remedy. We emphasize that the analysis

1 The BED assay is a capture enzyme immunoassay which uses protein sequences from HIV-1

subtypes B, E, and D [79].
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performed in this paper is not only applicable to the BED assay, but applies to any

assay that forms the basis of a TRI.

Of the references cited above, only McDougal et al. [63] and Hargrove et al. [40]

have proposed approaches for addressing the issue of assay non-progression. In the

former work four calibration parameters are used, being the window period (ω), the

sensitivity (σ), the short-term specificity (ρ1) and the long-term specificity (ρ2) of

the TRI. Some of these parameters are difficult to calibrate, requiring frequent and

long-term follow-up. In an attempt to reduce the number of parameters, Hargrove

et al. [40] provide a simplified formula under the assumption that σ ≈ ρ1.
We present a new analysis of the interaction between epidemiological trends and

a model of inter-subject variability of progression through an experimental category

of ‘recent infection’. Our model yields simple formulae for inference even when

a fraction of the population fails to progress out of the recent category. The only

physiological assumption required to deal with the assay non-progressors is that

their survival after infection is the same as the progressors. This assumption is also

implicit in previous work on using TRIs to estimate incidence, as shown in [117,

67]. Our analysis shows that only two calibration parameters are required for the

specification of the model, namely the proportion of seroconverters who do not

progress above the threshold and the mean time it takes for progressing individuals

to cross the threshold set by the TRI.

A key conceptual point about our analysis, which distinguishes it from all others

of which we are aware, is that we confront the fundamental limitation of what can

be inferred from a cross-sectional survey. In particular, even perfect knowledge of

an instantaneous population state does not uniquely determine the instantaneous

incidence. At best, a weighted average of recent incidence can be inferred. Although

the discrepancies between this weighted average and instantaneous incidence can

be shown to be small compared to statistical errors (for our application), it can

in principle be systematically incorporated into estimation of trends from multiple

cross-sectional surveys.

The article is organized as follows. In Section 2.2 we develop a basic continuous

time model defined by a time dependent incidence and susceptible population, a

distribution of times after infection spent under the threshold on a TRI and a distri-

bution of post-infection survival times. We note that there is in principle no specific

relationship between the instantaneous incidence and the prevalence of individuals

who are infected and under the threshold. At best, one obtains a relationship be-

tween the prevalence of under-threshold individuals and a convolution of the recent

incidence with a specific weighting function which is implied by the use of a TRI.

This relationship in principle includes all moments of the distribution of the waiting
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times that individuals spend under the threshold. We show that, for realistic rates

of variation in the susceptible population, only the mean of the waiting time distri-

bution is needed, and a simple expression for a weighted average of the incidence is

obtained. The basic model is extended to allow some fraction of individuals (speci-

fied by a new parameter) to be assigned infinite waiting times under the threshold

of the TRI. This leads to only very minor modifications of the previous expression

for weighted incidence, namely a systematic ‘subtraction’ of over-counted ‘not re-

cently infected’ individuals which are included in the experimental category ‘under

threshold’.

Section 2.3 explores the consequences of designing a cross-sectional survey with

a sample size N based on the relations derived in Section 2.2. Using a delta method

expansion of the incidence estimator, we derive an approximate expression for its

coefficient of variation. These expressions facilitate error estimation both for study

design and data analysis. On calibration, we note that trends, as opposed to absolute

values, for incidence can be obtained without any information about the distribution

of finite waiting times under the threshold. However, an estimate of the fraction of

assay non-progressors is essential. A key observation is that, for realistic population

dynamics and sample sizes, statistical error is much larger than bias.

Numerical simulations are presented in Section 2.4. These demonstrate the ap-

plication of the incidence estimator to a simulated population with epidemiological

and demographic dynamics. This demonstrates reproducibility as well as bias intro-

duced by imperfect calibration.

In the conclusion, we note that the framework presented here is quite general and

is applicable to any TRI, as long as any non-zero probability of assay non-progression

can be calibrated, survival is the same for assay progressors and non-progressors,

and there is no regression below the recency threshold. It may be possible to modify

the analysis to relax these requirements.

2.2 Relating the Prevalence of ‘Recent Infection’ to

Incidence

We now outline a quite general approach to relating the key demographic, epidemi-

ological and biological processes which are relevant to the estimation of incidence

from cross-sectional surveys of the prevalence of ‘recent infection’. This refines the

näıve intuition that a high prevalence of ‘recently infected’ individuals means a high

incidence.
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2.2.1 The Basic Model

A test for recent infection, such as the CDC STARHS algorithm (Serological Testing

Algorithm for Recent HIV Seroconversion [47]), is typically obtained through the

administration of two assays of different sensitivity. The more sensitive test distin-

guishes infected from healthy individuals and the less sensitive test, applied to the

infected individuals, distinguishes ‘recent’ from ‘long’ established infection.

Consider an assay which yields a quantitative result, the value of which typically

increases with time from infection. The BED assay is of this type, the quantitative

result being a normalized optical density (ODn), which is an increasing function

of the proportion of HIV-1 specific IgG. Such an assay becomes the less sensitive

component of a test for recent infection when we declare a threshold value and define

‘observed to be recently infected’ to be a test value under the threshold.

As there is inevitably inter-individual variation in the threshold crossing times,

the category ‘observed to be recently infected’ is not sharply defined by a time

boundary. We now adopt the more precise labels under threshold (U) and over

threshold (O). The variability of times spent in the under-threshold category, condi-

tional on being alive long enough to reach the threshold, is captured by a distribution

of waiting times fU|A.

It is now possible to construct the basic epidemiological model shown in Fig-

ure 2.1A. Since our analysis will focus on a variety of survival functions S(t), we

shall refer to the susceptible population as the healthy population H(t). Upon infec-

tion, individuals move from the healthy population to the under-threshold infected

population U(t). Those that live long enough reach the threshold after a waiting

time, distributed according to fU|A, and enter the over-threshold population O(t).

We denote by τU|A a waiting time generated by the density fU|A. The corresponding

cumulative probability function is given by

FU|A(t) =

∫ t

0
fU|A(s) ds, (2.1)

while the probability of ‘survival’ (persistence) in the population U, conditional on

being alive, is

SU|A(t) = P(τU|A > t) = 1− FU|A(t), (2.2)

and the mean waiting time is

E [τU|A] =

∫ ∞
0

τfU|A(τ) dτ =

∫ ∞
0

SU|A(t) dt. (2.3)

Analogously, we define fA, τA, FA, SA and E [τA] to describe how long individuals

remain alive after the moment of infection, and fU, τU, FU, SU and E [τU] to describe

how long individuals remain simultaneously alive and under the threshold on the
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Fig. 2.1:

A) The basic epidemiological/TRI progression model. Members of the

healthy population H are subject to a per unit time hazard (incidence) I

of infection. After infection, individuals enter the under-threshold popula-

tion U. Those that survive to progress into the over-threshold population

O do so after delays distributed according to fU|A.

B) The basic model modified to accommodate non-progressors on the

TRI. Now, upon infection, a proportion PNP of individuals remain under

the threshold of the TRI for the rest of their lives, i.e., they enter the

NP category. The remaining proportion, 1 − PNP, the progressors, enter

the progressing, under-threshold population PU. Those that survive long

enough enter the progressing, over-threshold population PO with waiting

times from fPU|A.

C) Modified model with separation of non-progressors into recent and

long infected categories. This model contains the same epidemiology and

biology as the model in B), with the introduction of a bookkeeping device

which facilitates the definition of a calibratable category of recently in-

fected individuals. The non-progressors are assigned waiting times drawn

from the distribution observed in the progressing population, and spend

this waiting time in the non-progressing recently infected (NPR) category,

before moving to the non-progressing long infected (NPL) category.
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assay. We assume that survival time and waiting time to threshold are independent

in this model. Hence, the probability, at a time delay ∆t after infection, of being

simultaneously alive and under the threshold on the assay is

P(τA > ∆t AND τU|A > ∆t) = SA(∆t)SU|A(∆t) = SU(∆t). (2.4)

Similarly, the probability of being simultaneously alive and over the threshold is

P(τA > ∆t AND τU|A ≤ ∆t) = SA(∆t)(1− SU|A(∆t)). (2.5)

Hence, the mean time spent in the category U, accounting for both assay progression

and mortality, is E [τU].

New infections are generated by a non-homogeneous Poisson process with an

intensity (probability per unit time of new arrivals) λ(t). Let the instantaneous

incidence be given by I(t). Then, in a period dt around time t, the expected number

of new cases dC is given by

dC = λ(t) dt = I(t)H(t) dt. (2.6)

We can now write down numerous expressions resulting from the model. For ex-

ample, the expected number of historically accumulated cases, at time t, is given

by

C(t) =

∫ t

−∞
λ(s) ds =

∫ t

−∞
I(s)H(s) ds. (2.7)

The expected populations of infected persons under and over the threshold at time

t are

U(t) =

∫ t

−∞
I(s)H(s)P(τA > t− s AND τU|A > t− s) ds

=

∫ t

−∞
I(s)H(s)SU(t− s) ds (2.8)

and

O(t) =

∫ t

−∞
I(s)H(s)P(τA > t− s AND τU|A ≤ t− s) ds

=

∫ t

−∞
I(s)H(s)SA(t− s)(1− SU|A(t− s)) ds. (2.9)

Our goal is to relate I for recent times to instantaneous values of H, U and O.

Note that there is fundamentally a loss of information when one tries to characterize

the history of a population based on observations made at a single time point. The

recent historical course of a population, and even instantaneous values of state vari-

ables which are rates, like incidence, are in general not inferable from counting data
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obtained in a single survey. This is due to the fact that instantaneous population

states are, unavoidably, convolutions of historical epidemiological variables, as in

(2.8) and (2.9) above. Any attempt to derive incidence estimates from the counting

of infections accumulated in the recent past faces this problem, and at best some

sort of weighted average of the recent values of incidence can be inferred without

additional assumptions.

In general, a well defined construction of an estimate for incidence, based on

data obtained in a survey conducted at time t, will be some sort of weighted average

of past values

IW(t) =

∫ t
−∞ I(s)W (s, t) ds∫ t
−∞W (s, t) ds

, (2.10)

where W (s, t) is a statistical weight arising from a convolution of population history

and biology. Since our goal is to estimate incidence from a count of recently infected

individuals, a natural weighting function is one that reflects the relative contributions

to this count made by infections from different times in the recent past. Hence, we

consider

W (s, t) = H(s)SU(t− s) (2.11)

since W (s, t) is proportional to the probability that individuals are

1. available for being infected at time s < t, and

2. still alive and classified as under the threshold at time t, if infected at time s.

Using (2.11) as the weighting function leads to an expression for the weighted inci-

dence given by

IW(t) =

∫ t
−∞ I(s)H(s)SU(t− s) ds∫ t
−∞H(s)SU(t− s) ds

=
U(t)∫ t

−∞H(s)SU(t− s) ds
. (2.12)

The numerator in this expression is an instantaneous state variable, while the de-

nominator in principle involves data from the entire history of the system as well as

full knowledge of the survival function SU.

A few remarks about the practical meaning of this weighted average are in order.

In the case of constant incidence, the weighted average is the instantaneous value.

In the case of a narrowly peaked distribution fU|A, a constant rate of change of I

and a constant healthy population, the weighted average is approximately equal to

the instantaneous incidence at a time E [τU] /2 prior to the cross-sectional survey.

If trends are fitted to the results of multiple cross-sectional surveys, this time lag

could be more systematically accounted for.
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2.2.2 A Simple Expression for Incidence

A simplified expression for weighted incidence in terms of sample and calibration

data is now derived. We express the healthy population using the expansion

H(t+ s) = H(t) +H1s+H2s
2 + . . . (2.13)

and use the identity ∫ 0

−∞
snSU(−s) ds = (−1)n

n+1 E
[
τn+1
U

]
, (2.14)

which follows directly from integration by parts. It then follows that the weighted

incidence (2.12) can be expressed as

IW(t) =
U(t)∫ t

−∞H(s)SU(t− s) ds
(2.15)

=
U(t)∫ 0

−∞H(t+ s)SU(−s) ds

=
U(t)

H(t)E [τU]− H1
2 E [τ2U] + . . .

.

If the healthy population is approximately constant for the times where the

weight W is non-vanishing, we obtain the simple relation

IW ≈
U(t)

H(t)E [τU]
, (2.16)

which gives a weighted recent incidence in terms of instantaneous state variables

(H and U) and the expected waiting time in the under-threshold category and is

formally equivalent to the well known steady state result (for example [17]).

Expectation values of the form E [τnU ] are not state variables and should in prin-

ciple be measured independently of a particular cross-sectional survey. Usually this

would be accomplished in a calibration cohort follow-up study. Thus, after calibrat-

ing some of these expectation values, we can deal with a truncated expansion for H

without further assumptions about the behavior of I.

It will be difficult to obtain accurate estimates of terms of higher order than

just E [τU] for any assay forming the basis for a TRI. Finding the non-leading terms

Hi (for i ≥ 1) in the expansion of H will also require considerable demographic

research. This means that one will most likely be constrained to use the simple

expression (2.16), even if the healthy population is not approximately constant over

the times where W is non-vanishing. The key question then is: how severe is the

bias introduced by using the simple formula under realistic non-constancy of the

healthy population?
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Consider a non-constant healthy population given by H(t) = H0e
αt. This has

a conveniently tunable degree of failure to conform with the constancy assumption

required for (2.16). When α = 0 we have a constant number of healthy individuals,

while a value of α = ln(x) means the population grows by a factor of x in one

year. We can provide a survival function SU(t) for time measured in years, roughly

inspired by the ODn progression on the BED assay, by specifying fU to be a Weibull

distribution with scale parameter l = 0.44 and shape parameter k = 7, corresponding

to a mean of 150 days and a standard deviation of 25 days. We now numerically

evaluate the denominator of (2.15) and compare it to the denominator of the simple

formula (2.16). Note that this bias calculation is independent of the actual time

dependence in I.
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Fig. 2.2: Fractional error in the simple incidence relation (2.16) versus the full

relation (2.15), as a function of growth rate of the healthy population,

quoted as a percentage annual growth. The scenario is defined by: H(t) =

H(0)eαt and fU is a Weibull distribution with scale parameter l = 0.44 and

shape parameter k = 7. The parameter α is varied to produce deviation

from a constant healthy population (α = 0) in which limit equation (2.16)

is exact.

In Figure 2.2, the bias in the simple formula (reported as a fraction of the

unbiased value) is shown as a function of α, reported as the annual percentage

growth. Note that, under the distributional assumptions made above, the bias is
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about 2% for a population growing at an impressive rate of 10% per annum. As a rule

of thumb, for a distribution of times spent under threshold which is not too diffuse

around its mean, the bias, expressed as a percentage of the estimate, is approximately

the annual percentage growth in the susceptible population multiplied by half the

mean window period, measure in years. As we shall see later when analyzing a

slightly more complex model of a TRI, this is a very minor source of error compared

with the statistical error that arises as a result of using realistic sample sizes, not

to mention imperfect calibration. Thus, in this example, bias arising from the non-

constancy of the healthy population is not a key concern unless there is very dramatic

variation in H, such as in a population of refugees. This analysis should in principle

be carried out using the distributions applicable for any other assay intended for

use as a TRI. The bias calculation demonstrated here is also applicable to the more

complex model that now follows.

2.2.3 Modeling Assay Non-progressors

A known complicating factor for the BED assay (and likely also of any other TRI,

such as an antibody avidity test) is that a small number of individuals utterly fail to

progress beyond any practical threshold used to define recency. This is due to indi-

vidual variation in biochemical details such as immune response, for example. The

assay non-progression phenomenon leads to a long-term accumulation of apparently

recently infected individuals, as classified by the TRI. The analysis in the previous

section is perfectly valid even when assay non-progressors are present. However,

if some individuals leave U only through death, possibly after long waiting times,

then the calibration parameter E [τU] arises from a distribution with a long, difficult

to characterize, tail. Moreover, the evolving context of real populations (eg. roll

out of ART.) will presumably lead to these survival functions changing over time.

Also, when the weighting (2.11) of the incidence estimator has support over longer

periods, the estimator is less representative of recent incidence. We now extend the

previous analysis in order to provide a better estimate of incidence accounting for

the presence of assay non-progressors. Henceforth, we will use ‘progression’ to mean

assay progression, not disease progression.

Consider the model captured in Figure 2.1B. At the moment of infection, indi-

viduals transition from the healthy population to either a non-progressing popula-

tion (NP) or to a progressing under-threshold population (PU). The probability of

non-progression is PNP, and hence the probability of progression is 1 − PNP. Those

individuals in PU wait for a stochastic delay after which they move into the pro-

gressing over-threshold category PO or die. In the previous model, fU|A was the

distribution of waiting times governing the transition, but since the waiting times
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for non-progressing individuals are infinite, fU|A can now not be normalized. There-

fore, in order to specify the transition times from PU to PO in terms of a normalized

density, we introduce the density of waiting times in the state of being a progres-

sor and under the threshold, conditional on being a alive, denoted by fPU|A. Then

SU|A(t), SPU|A(t) and PNP are related by

SU|A(t) = (1− PNP)SPU|A(t) + PNP. (2.17)

The difficulty is that the TRI will classify as ‘recently infected’ all the individuals

in the NP and PU categories even though some potentially large number in NP are

long infected. This can systematically be addressed by the following two key steps.

Firstly, we assume that the same survival function SA is applicable to both

progressing and non-progressing individuals. This is true if the differences between

individuals which account for progression versus non-progression do not translate

into significant differences in post-infection survival. This assumption has also been

made, at least implicitly, in previous work on use of the BED assay for estimating

HIV incidence (for example, see [117, 67] for analysis of [63]). Its applicability should

in principle be tested for any assay used as a TRI.

Secondly, we introduce two artificial categories by separating the non-progressing

population into ‘recently infected’ (NPR) and ‘long infected’ (NPL) sub-populations.

Individuals entering the NPR sub-population are assigned a waiting time drawn

from fPU|A after which they transition to the NPL category. Note that this is a

book-keeping device used for convenience and, unlike the assumption about survival,

does not rely on any property of disease progression. It is now possible to provide

a sensible definition for the class of recently infected individuals (R) which has a

population given by

R(t) = PU(t) + NPR(t). (2.18)

Note that, since both PU and NPR now have the same exit waiting times, the distri-

bution of waiting times for R is given by fR|A = fPU|A, with corresponding survival

function SR|A.

These two steps lead to the model in Figure 2.1C. It is now possible to recycle our

preceding analysis and write down expected counts in these new classes. Survival

in the state of being simultaneously alive and recently infected, is given by SR(t) =

SA(t)SR|A(t), and hence for the progressing populations we obtain

PU(t) = (1− PNP)

∫ t

−∞
I(s)H(s)SR(t− s) ds (2.19)

and

PO(t) = (1− PNP)

∫ t

−∞
I(s)H(s)SA(t− s)(1− SR|A(t− s)) ds. (2.20)
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Note the similarity with expressions for U(t) and O(t) in the basic model. For the

non-progressing populations we obtain

NPR(t) = PNP

∫ t

−∞
I(s)H(s)SR(t− s) ds (2.21)

and

NPL(t) = PNP

∫ t

−∞
I(s)H(s)SA(t− s)(1− SR|A(t− s)) ds. (2.22)

For convenience we define

ϕ =
PNP

1− PNP

, (2.23)

and note that

NPR(t) = ϕPU(t) (2.24)

and, more importantly,

NPL(t) = ϕPO(t). (2.25)

These equations express the symmetry between the progressing and non-progressing

sub-populations of Figure 2.1C. Substituting (2.19) and (2.21) into (2.18), we can

write

R(t) =

∫ t

−∞
I(s)H(s)SR(t− s) ds. (2.26)

It is appropriate to use a weighting scheme analogous to the one used in the basic

model

W (s, t) = H(s)SR(t− s), (2.27)

since W (s, t) is now proportional to the probability that individuals are alive and

classified as recently infected at time t if they become infected at time s, regardless

of whether they are progressors or non-progressors. Then the weighted incidence,

denoted IW, is given by

IW(t) =

∫ t
−∞ I(s)H(s)SR(t− s) ds∫ t
−∞H(s)SR(t− s) ds

=
R(t)∫ t

−∞H(s)SR(t− s) ds
. (2.28)

The populations of under-threshold and over-threshold individuals are related to the

populations defined in Figure 2.1C by

U(t) = PU(t) + NPR(t) + NPL(t) (2.29)
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and

O(t) = PO(t). (2.30)

Using the above two equations and (2.18) and (2.25), the population of recent in-

fections is related to the under-threshold and over-threshold populations by

R(t) = U(t)− ϕO(t). (2.31)

Performing the same expansion as before and assuming a slowly varying healthy

population gives

IW(t) ≈ U(t)− ϕO(t)

H(t)E [τR]
. (2.32)

This expresses the incidence in terms of the calibration parameters E [τR] and ϕ

(equivalently PNP), and the state variables H, U and O.

All that has changed, as a result of allowing non-progressors into the model, is

the shift in the numerator from U to R = U − ϕO. The same bias calculations as

before apply immediately, but there is an increase in statistical sensitivity.

2.3 Statistics and Calibration

The population models of the preceding section are expected to be in ever closer

correspondence to a real population as the population size increases. To model the

sampling process of a cross-sectional survey with a sample size N , we rescale the sub-

populations of the continuous time model, at any time t, by the total population

size T = H + U + O, to obtain the population proportions PH = H/T , PU =

U/T and PO = O/T . The result of a survey employing the TRI is the set of

three counts NH + NU + NO = N . We do not address the difficulties relating to

study design and selection bias which would need to be confronted in the field, but

proceed on the assumption that sampling is unbiased. For large populations, where

the assumption of sampling with replacement is benign, the counts are trinomially

distributed around their means. These observed counts turn equation (2.32) into an

estimator for the recently weighted incidence Iest given by

Iest =
1

E [τR]

NU − ϕNO

NH

. (2.33)

The quantities in this estimator can conveniently be regarded as being of two types:

1. population counts (NH, NU and NO) observed in a cross-sectional survey, and

2. calibration parameters (PNP and E [τR]) which are estimated from follow-up.
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In the simplest application, each of these five variables is estimated just once. A

delta method expansion (see, for example, Chapter 14 in [3]) leads to a coefficient

of variation (CV) denoted by cv:

c2v =
1

N

1

PO + PU

(
1

PH

+
POPU(1 + ϕ̄)2

(PU − ϕ̄PO)2

)
+
σ2ω
ω̄2

+
σ2PNP

P2
O

(1− P̄NP)4(PU − ϕ̄PO)2
. (2.34)

In the appendix we define the conventions which lead to this expression. We note

that the assumption of Gaussian uncertainty in the calibration parameters is a

heuristic at best.
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Fig. 2.3: Coefficient of variation (2.34) of the incidence estimator, under the as-

sumption of perfect calibration (i.e. σω = σPNP
= 0). A sample size of

5000 is drawn from a steady state scenario implicit in choices for I and

PNP, given a mean post-infection survival of 8 years and a mean window

period of 150 days. The bold lines are contours of constant CV.

Assuming perfect calibration and a sample size of 5000 individuals, Figure 2.3

shows how the counting error component of the CV depends on incidence and the

fraction of assay-non-progressors for a steady state epidemic. The appendix outlines
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Fig. 2.4: Coefficient of variation (2.34) of the incidence estimator. A sample size

of 5000 is drawn from a steady state scenario implicit in choices for I

and PNP, given a mean post-infection survival of 8 years and a mean

window period of 150 days. The parameters PNP and ω are now assumed

to be generated from normal distributions around their true values, with

coefficients of variation of 15%. The bold lines are contours of constant

CV.

how the steady state proportions were derived. Figure 2.4 shows the total CV for

the same sample size when one assumes both calibration parameters are drawn from

a normal distribution with a CV of 15%2.

Although it is difficult to verify the accuracy of all terms in equation (2.34), it

is straightforward to verify that it handles counting error with high precision. For

a specific set of population proportions, a coefficient of variation can be computed

using an enumeration of all possible trinomially distributed counts (excluding those

2 A PNP estimate of 5% obtained by following 850 seroconvertors would have a CV of 15%. The

uncertainty associated with estimates of the mean window period depends in detail on methodolog-

ical choices and is consequently more complicated to characterize.
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that lead to an infinite estimate, i.e. when NH = 0). Comparing the coefficient of

variation using the trinomial counts with the counting error component of (2.34), a

maximum relative discrepancy of 0.01% was found for the range of values shown in

Figure 2.3.

Depending on the study design, and the availability of locally relevant calibration

data, various scenarios can be envisaged which involve more or less ability to reuse

calibration parameters between cross-sectional surveys. For example, if one wishes

merely to estimate trends in incidence, as opposed to absolute incidence values, then

it is not necessary to have an estimate for E [τR] at all, since it is just an overall factor.

However, surveys conducted at different times will not yield comparable values of

Iest ∝ (U − ϕO)/H unless ϕ (equivalently PNP) is known with some accuracy, since

it appears in one of two terms in the numerator. Consider two surveys which use

the same point estimate

ϕ = ϕ̄+ δϕ, (2.35)

where ϕ̄ is the real value and δϕ is the error due to methodological and statistical

factors. The first survey obtains counts N
(1)
H , N

(1)
U and N

(1)
O and the second obtains

counts N
(2)
H , N

(2)
U and N

(2)
O . This leads to an estimate of the difference between the

two incidences of

∆Iest(ϕ) = I
(1)
est (ϕ)− I(2)est (ϕ) =

N
(1)
U − ϕN (1)

O

N
(1)
H E [τR]

− N
(2)
U − ϕN (2)

O

N
(2)
H E [τR]

. (2.36)

Knowledge of the exact value ϕ̄ leads to

∆Iest(ϕ̄) = I
(1)
est (ϕ̄)− I(2)est (ϕ̄) =

N
(1)
U − ϕ̄N (1)

O

N
(1)
H E [τR]

− N
(2)
U − ϕ̄N (2)

O

N
(2)
H E [τR]

, (2.37)

from which we see that the error in ∆Iest, due to the error in ϕ, is

∆Iest(ϕ)−∆Iest(ϕ̄) =
δϕ

E [τR]

(
N

(2)
O

N
(2)
H

− N
(1)
O

N
(1)
H

)
. (2.38)

The direction and magnitude of error depend in detail on many factors, such as

population renewal and long-term post-infection survival. While it is not possible

to summarize all the effects that may be produced by imperfect estimation of PNP,

in Section 2.4 we conduct a number of numerical simulations which demonstrate the

kind of bias that may arise.

2.4 Numerical Simulations

In this section we present results of numerical simulations that demonstrate the use of

the simple expression (2.33) for incidence estimation in a non-steady state epidemic.
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Arrival times of new infections were generated according to a non-homogeneous

Poisson process with intensity given by λ(t) = H(t)I(t). Uniform random numbers

(ri) between 0 and 1 were generated, and new infection arrival times ti computed

as solutions of

exp

(
−
∫ ti

ti−1

λ(t) dt

)
= ri. (2.39)

Newly infected individuals were initially classified as under the recency threshold of

a TRI and assigned survival times generated by fA. A fraction 1−PNP progressed to

the over-threshold category according to waiting times generated by fR|A. Weibull

distributions were used for fR|A and fA, i.e. post-infection waiting times ∆t solve

exp

(
−
(

∆t

l

)k)
= r, (2.40)

where k and l are the relevant shape and scale parameters and r is a uniformly

distributed random number between 0 and 1. Unique individuals were drawn from

the population at intervals, to produce counts NH, NU and NO, and hence estimates

for incidence.

To demonstrate the incidence estimation process, a 50 year population scenario

was produced. The Weibull shape and scale parameters for fA and fR|A were chosen

to give approximately realistic values for the mean and standard deviations for the

window period and infected life expectancy, as detailed in Table 2.1. The healthy

population was set to H(t) = 100, 000 + 5, 000t, with t measured in years. The

incidence was set at 0.01 (hazard per person per year) for the first ten years, climbing

linearly to 0.1 over the next ten years, then remaining at this high level for a further

ten years, followed by ten years of linear decline to 0.03 and maintained at this level

for the last ten years of the simulation.

Shape (k) Scale (l) Mean Standard Dev.

Life expectancy (fA) 4.5 8.83 8 years 2 years

Window period (fR|A) 7 0.44 150 days 25 days

Tab. 2.1: Weibull parameters for the Monte Carlo simulation (survival time mea-

sured in years).

Figure 2.5 shows output from this simulation. The input incidence parameter

is indicated as the dotted instantaneous incidence curve. A sample of 5, 000 indi-

viduals was surveyed every year, and an incidence estimate was produced using the

simple estimator (2.33) with exact values of E [τR] and PNP, i.e., assuming perfect

calibration. These point estimates are indicated as estimated incidence values, us-

ing ‘+’ symbols. The combined effects of the previously noted time convolution in
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Fig. 2.5: Full stochastic simulation of population with epidemic, individual survival

times, and annual sampling of 5, 000 individuals. The healthy population

was set to H(t) = 100, 000 + 5, 000t with time measured in years. The

instantaneous incidence parameter is the dotted curve. The target of

the estimates is the weighted incidence (solid line), which was calculated

explicitly as per (2.28) from all the known inputs. This is flanked by a

two standard deviation counting error envelope (dashed lines). Simulated

estimated incidence (+ symbols) were obtained by using sample counts

in the simple estimator (2.33). The calibration parameters E [τR] and PNP

were assumed to be known exactly.

IW, as well as stochastic departure from means in the simulated population, make

the input incidence parameter an unrealistic target for simulated incidence measure-

ments. Thus, the solid weighted incidence line has been displayed, which uses full

knowledge of all population members’ classification into H, U or O, inserted into

(2.28) with full knowledge of the denominator, (both the non-constant H(t) and the

exact SR). This is essentially all that the incidence estimation algorithm can be

asked to reproduce. A two standard deviation counting error envelope around the

weighted incidence line, calculated using the first term of (2.34) and knowledge of

the full population state and calibration parameters, is shown as two dashed lines.

In Section 2.3 it was shown that incidence trends can be extracted without

E [τR] calibration, while an estimate for PNP is vital. We now explore the extent to

which the accuracy of the estimate of PNP affects the ability to determine a trend in

incidence. Population fractions for H, U and O were extracted at six times from the

population simulation described above and are shown in Table 2.2. Four instances

of incidence trend estimation were simulated by selecting the time intervals (15, 20),



2.5 Discussion and Conclusion 27

(20, 30), (30, 35) and (40, 50). We considered the trends that would be observed if

incidence were measured at the beginning and end of each of these intervals. In

order to focus on the bias introduced by imperfect estimation of PNP, rather than

sample size effects, we assumed perfect knowledge of PH, PU and PO. For each of

these intervals, we calculated an incidence estimate at the beginning and end, as a

function of the estimated value of PNP (the true value being 0.05), assuming E [τR]

is known exactly. We also calculated the estimated fractional change in incidence,

which does not depend on E [τR]. The results are shown in Figure 2.6, where the

four intervals are referred to as scenarios A, B, C and D, respectively.

In each case, the effect of the error in the estimation of PNP is quite different, as

can be understood by considering how (2.38) is impacted by the system history. Note

that case B and case D both simulate intervals over which incidence is approximately

constant, but the impact (on the estimated incidence change) of incorrect estimation

of PNP does not even agree in sign. Negative incidence estimates are obtained in

panels C and D above critical overestimates of PNP. In panel D this breakdown of

the model results in the divergence of the fractional change in estimated incidence.

In short, incorrect estimates of PNP can lead to the fundamental breakdown of the

inference scheme. This makes sense, as PNP impacts the long-term accumulation of

individuals in the PO category.

Time (years)

15 20 30 35 40 50

PH 0.850 0.688 0.576 0.602 0.694 0.814

PU 0.024 0.041 0.044 0.036 0.024 0.019

PO 0.126 0.271 0.380 0.362 0.282 0.167

Tab. 2.2: Population fractions in H, U and O within a 50 year epidemic scenario.

2.5 Discussion and Conclusion

We have presented a detailed analysis of relations between recent incidence in a pop-

ulation and counts of ‘recently infected’ individuals. These are in principle complex

convolutions involving the epidemiological history as well as all information about

the distribution of waiting times in the recently infected category. When the healthy

population undergoes realistically modest variation on the time scale of the defini-

tion of recency implied by the TRI, we obtain simplified forms which incur very

little bias. The simplified relations yield estimators which are shown to have con-

siderably more variance than bias under realistic demographic and epidemiological
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Fig. 2.6: Absolute incidence estimates and estimated fractional incidence changes

for four pairs of successive times with population proportions from Ta-

ble 2.2.
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assumptions.

A key observation is that, for the purposes of estimating incidence from a TRI,

there is no fundamental obstacle posed by having a known fraction of individuals fail

to progress over the recency threshold. An accurate estimate of the non-progressing

fraction alone, is sufficient (and necessary) to infer trends in incidence from cross-

sectional surveys. However, as demonstrated in the calculations of Section 2.4, a

suitably large error in the estimate of PNP can render TRI based incidence estimates

meaningless. This fraction could possibly be estimated for the BED assay from

historical records, since there are many viable samples in storage with supporting

clinical information indicating long-infected status. A calibration of the mean finite

waiting time is required in order to estimate absolute values of incidence. Prospective

follow-up is probably the only practical way to estimate this parameter.

In contrast to our model, which has only two calibration parameters, the well

known model of McDougal et al. [63] appears to have four (window period, sensi-

tivity, short-term specificity and long-term specificity). Hargrove et al. [40] have

previously proposed a heuristic simplification of the McDougal approach, and we

have recently shown that a rigorous simplification is possible under the original as-

sumptions [117]. This allows a reduction of the parameters in the McDougal model

to the ones that naturally occur in our approach. This has two advantages—our

parameters are easier to calibrate, and assuming independence of correlated param-

eters leads to incorrect estimates of calibration error.

Noting that the assumptions of our model are the least restrictive of any TRI

based incidence estimation method of which we are aware, we now consider its

limitations. We have only modeled one direction of progression of individuals from

an experimentally defined state of ‘recent’ infection to ‘non-recent’ infection. The

reverse apparently occurs for BED optical density in some terminal stage AIDS

patients and patients on ART. This process constitutes a substantial complication,

and further work is required to investigate how it may be incorporated into an

analytical model of the kind developed here. It may be worth exploring previous

suggestions [63] to use additional information, from questionnaires or other assays,

to remove end-stage/ART patients from the observed recent count. In accounting for

assay non-progression we have assumed that the same post-infection survival applies

to assay progressors and assay non-progressors. Data on the similarity or difference

in mortality is preliminary at best, but we are aware of unpublished claims that the

HIV long-term non-progressors are somewhat over represented in the population

of BED assay non-progressors. We have also not considered the possibility that

calibration parameters vary regionally, for example as a result of environmental

impacts on immunity, or that they are functions of time, for example as a result
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of substantial vaccine uptake in a population. All these complications are under

investigation as part of ongoing work.

Besides the explicit assumptions noted, the analysis presented here is quite gen-

eral. Tests for recent infection continue to be of interest, and new assays are likely

to be developed both for HIV infection and other important diseases. In summary,

we have presented a simple incidence estimator, which can inform design of appro-

priate calibration studies and cross-sectional incidence estimation surveys, and can

also form the basis of systematic inference algorithms for processing the data ob-

tained from such surveys. Our analysis provides a broad framework for a consistent

approach to the estimation of non-constant hazard from instantaneous population

counts, including explicit attention to the limits of validity and/or utility of such

estimates in light of knowledge of the relevant survival functions.

2.6 Appendix

Given a sample of N subjects tested using the TRI, we use the delta method to

derive a systematic error estimate for the estimator

Iest =
NU − PNP

1−PNP
NO

ωNH

, (2.41)

where ω = E [τR]. The counts NX fluctuate trinomially around their means N̄X =

PXN . We assume the counts are sufficiently large so that binomial distributions

can be approximated by normal distributions—which will be the case if the survey

is to have any reasonable accuracy. In order to account for correlation, we express

the three counts as the result of two independent random draws. We also assume

that ω and PNP fluctuate normally with standard deviations σω and σPNP
. The error

estimate is derived using the delta method as follows:

• Let ~α = [α1, α2, α3, α4] be draws from a standard normal distribution.

• Set

NH = N̄H + σHα1, (2.42)

where

σH =
√
NPH(1− PH). (2.43)

• Set

NU = PUN − σUα1 + σUO(α1)α2 (2.44)

and

NO = PON − σOα1 − σUO(α1)α2 (2.45)
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where

σU =
PU

PO + PU

σH, σO =
PO

PO + PU

σH (2.46)

and

σUO(α1) =

√
(N − PHN − σHα1)POPU

PO + PU

. (2.47)

• Set

ω = ω̄ + σωα3. (2.48)

• Set

PNP = P̄NP + σPNP
α4. (2.49)

Substituting these expressions into the incidence estimator (2.41) and taking partial

derivatives with respect to each αi, we get

∂Iest
∂α1

∣∣∣∣
~α=0

= − Īest√
N(PO + PU)PH

(2.50)

∂Iest
∂α2

∣∣∣∣
~α=0

=

√
PUPO

N(PO + PU)

(1 + ϕ̄)Īest
PU − ϕ̄PO

(2.51)

∂Iest
∂α3

∣∣∣∣
~α=0

= −σω Īest
ω̄

(2.52)

∂Iest
∂α4

∣∣∣∣
~α=0

= − σPNP
POĪest

(1− P̄NP)2(PU − ϕ̄PO)
, (2.53)

where

Īest =
PU − ϕ̄PO

ω̄PH

and ϕ̄ =
P̄NP

1− P̄NP

. (2.54)

The coefficient of variation (cv = σ(Iest)/Īest) is thus given by

c2v =
1

N

1

PO + PU

(
1

PH

+
POPU(1 + ϕ̄)2

(PU − ϕ̄PO)2

)
+
σ2ω
ω̄2

+
σ2PNP

P2
O

(1− P̄NP)4(PU − ϕ̄PO)2
. (2.55)

To evaluate this formula for a suitable range of inputs, we construct a family of

steady state epidemics, tunable by varying I and PNP for fixed values of ω and the

mean post-infection survival time Ω. At equilibrium, the ratio of recent infections

to long infections is given by the ratio of times spent in these categories. Under the

assumption that there is no mortality in the recent category, this can be written as

PU − ϕPO

PO + ϕPO

=
ω

Ω− ω
. (2.56)

The equilibrium total prevalence is given by the product of the recruitment rate and

mean post-infection survival:

PO + PU = IPHΩ. (2.57)

The two equations above, together with PH + PU + PO = 1, uniquely define the

equilibrium proportions.



Chapter 3

A Comparison of Biomarker Based Incidence

Estimators

∗ This chapter was coauthored with A. Welte [69].

Abstract

Background: Cross-sectional surveys utilizing biomarkers that test for recent

infection provide a convenient and cost effective way to estimate HIV incidence.

In particular, the BED assay has been developed for this purpose. Controversy

surrounding the way in which false-positive results from the biomarker should be

handled has lead to a number of different estimators that account for imperfect

specificity. We compare the estimators proposed by McDougal et al., Hargrove

et al. and McWalter & Welte.

Methodology/Principal Findings: The three estimators are analyzed and

compared. An identity showing a relationship between the calibration param-

eters in the McDougal methodology is shown. When the three estimators are

tested under a steady state epidemic, which includes individuals who fail to

progress on the biomarker, only the McWalter/Welte method recovers an unbi-

ased result.

Conclusions/Significance: Our analysis shows that the McDougal estimator

can be reduced to a formula that only requires calibration of a mean window

period and a long-term specificity. This allows simpler calibration techniques

to be used and shows that all three estimators can be expressed using the same

set of parameters. The McWalter/Welte method is applicable under the least

restrictive assumptions and is the least prone to bias of the methods reviewed.

3.1 Introduction

Although prospective follow-up of an initially HIV-negative cohort is widely regarded

as the “gold-standard” for estimating incidence, the idea of utilizing a biomarker

to define a suitable class of “recently infected” individuals, and then to use the

prevalence of this class as the basis for estimating HIV incidence, is attractive for a
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number of reasons. Since this can be implemented using a cross-sectional survey, it is

logistically simpler, cheaper and less prone to the biases that result from intervention

and loss to follow-up.

The BED capture enzyme immunoassay (BED assay) has been developed for this

purpose [79, 28] and widely used [8]. It measures the proportion of IgG that is HIV-

1 specific as a normalized optical density (ODn). Since this proportion increases

over time after the infection event, specifying an ODn threshold allows seropositive

individuals to be classified as recently infected, if they are below threshold, and as

non-recently infected, if they are above threshold. Initially, an incidence formula

was proposed [79] that did not explicitly account for the possibility of assay non-

progressors (i.e. individuals who never develop enough of an immunological response

to cross the threshold). This method was similar to the earlier approaches of Brook-

meyer and Quinn [17]], and Janssen et al. [47]. Later, the methodology proposed by

McDougal et al. [63] was the first to deal with assay non-progressors. They derived

an incidence formula which can be expressed in terms of the prevalence of below-

threshold seropositive, above-threshold seropositive and seronegative individuals,

and four assay calibration parameters, being the mean window period (ω), sensitiv-

ity (σ), short-term specificity (ρ1) and long-term specificity (ρ2). Introducing the

long-term specificity parameter provided a way to quantify assay non-progression.

Two other incidence paradigms that explicitly account for assay non-progressors

have since been formulated. Hargrove et al. [40] proposed a simpler incidence estima-

tor which is equivalent to the McDougal estimator when one sets σ = ρ1 . Recently,

we have also proposed a formally rigorous incidence paradigm [8], which accounts for

assay non-progression using fewer assumptions than are made by McDougal et al.

The parameters that emerge naturally in our estimator are a mean window period

and a probability of not progressing on the assay (which can also be expressed as a

long-term specificity).

A large portion of this paper is dedicated to an analysis of the assay parameters

of the McDougal methodology, showing how they are related. By using a survival

analysis formulation of the problem, we are able to write down precise expressions

for the parameters. This allows us to derive a relationship between three of the

parameters, which simplifies the McDougal estimator by showing that only ω and

ρ2, which are considerably easier to calibrate than σ and ρ1, are required in the final

formula. The reduction of the McDougal approach is important in that it shows that

all three incidence estimators are, in effect, based on the same underlying parameters

characterising the performance of the assay, and are therefore amenable to direct

comparison.

We then compare the performance of the three incidence estimators by substi-
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tuting analytic expressions for population counts, derived from a model steady state

epidemic, into the various formulae. This analysis shows that only our formula [71]

produces a bias-free result. Although the biases are typically small, we demonstrate,

using numerical examples, that there are regimes where bias may be significant.

The paper is structured as follows: We start by describing the McDougal method-

ology and, in doing so, write down mathematical expressions for the assay calibration

parameters. In the next section we restate the assumptions made by McDougal et

al. in a mathematically precise manner. This allows us to derive the identity that

shows the relationship between the parameters. We then present the three incidence

formulae and compare them by inserting the population counts from a model steady

state epidemic. We conclude the paper with a discussion of the implications of the

identity and the steady state analysis.

3.2 The McDougal Methodology

Denote the number of individuals in a cross-sectional sample who are respectively

under-threshold, over-threshold and healthy (susceptible) by NU, NO and NH. Then

the McDougal estimator [63] can be written as

Ī =
fNU

fNU + ωNH

, (3.1)

where ω is specified in years and the “correction factor”,

f :=
Pt

Po

=
Po + ρ2 − 1

Po(σ − ρ1 + 2ρ2 − 1)
, (3.2)

is the ratio of the “true” proportion Pt of recent infections and the proportion

Po = NU/(NU + NO) of the HIV positive individuals that are under the threshold.

This correction factor, which depends on subtle definitions for the sensitivity and

specificity parameters, explicitly accounts for the fact that the BED assay imper-

fectly classifies individuals as “recently infected”.

McDougal et al. calibrate these parameters using seroconversion panels which

show BED optical density as a function of time since infection (some of these are

published [79, 28]). The calibration occurs in two stages. A window period is

estimated, and then estimates of the sensitivity, short-term specificity and long-

term specificity are determined with respect to the window period.

The window period is estimated as “the mean period of time from initial sero-

conversion to reaching an ODn of 0.8” [63]. Although it is not explicitly stated, we

presume that those individuals that never reach the threshold, either because they

do not progress above the threshold or because they die before reaching the thresh-

old, are not included in the calculation of the mean. More specifically this implies
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that the window period is the mean observable threshold crossing time, conditional

on assay progression (i.e. actually reaching the threshold).

In order to calibrate the sensitivity, short-term specificity and long-term speci-

ficity, “a plot of the proportion of specimens positive in the assay versus time since

seroconversion” is generated (also later referred to as “the curve”). This is the sam-

pled survival function (essentially a Kaplan-Meier curve) in the state of being under

the threshold, conditional on being alive, which we denote SU|A(t).

The sensitivity of the test is estimated for an interval corresponding to the win-

dow period by “integrating the curve within the window”. Short-term specificity is

calculated for “the interval immediately after, and equal in duration to, the win-

dow period”. Long-term specificity is for “the period thereafter (where the curve is

flat)”. McDougal et al. explicitly make the following assumptions, with the justifi-

cation that they “are reasonable as very little attrition (from death) during the first

two time intervals after infection would be expected”:

1. “Recent infections are randomly distributed within the first window period”.

2. “The number of persons in the interval of equal duration immediately after

the mean window period equals the number in the first window period”.

3. “The remainder of the population is more than two window periods since

seroconversion”.

While it may be true in the situation being explored here, we note that it is not

a priori obvious that the choice of equal window periods ensures that SU|A(t) is flat

after twice the window period. With this in mind, we propose a generalization in

which there are two window periods with arbitrary values ω1 and ω2, chosen so that

all individuals that progress do so in a time less than ω1 + ω2 after seroconversion

(i.e. SU|A(t) is flat for t > ω1 + ω2, see the bottom graph of Figure 3.1). It should

be noted that this is a special survival curve in that it never reaches a zero value,

capturing the fact that a certain proportion of individuals will never progress above

the threshold. This is what differentiates this approach from other approaches that

do not account for assay non-progression (Such as Brookmeyer and Quinn [17],

Janssen et al. [47], and Parekh et al. [79]).

For analytical convenience, we introduce SPU|A(t), the survival of assay progres-

sors in the state of being under-threshold. We also introduce PNP, the probability of

individuals not progressing on the assay. Then SU|A(t), SPU|A(t) and PNP are related

by

SU|A(t) = (1− PNP)SPU|A(t) + PNP.

The introduction of SPU|A(t) allows us to provide a precise definition of the

window period used by McDougal et al. It is the mean time between seroconversion
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Fig. 3.1: The six sector model of McDougal et al. The top graph shows counts ni

and the bottom graph shows the survival functions SU|A(t) versus time

since infection.

and reaching threshold, for individuals who progress:

ω =

∫ ∞
0

SPU|A(t) dt. (3.3)

Assumption 1 above can only mean that infection times in the first window

period are uniformly distributed. Although Assumption 2 merely states that the

number of infections in the second window period is equal to the number in the

first, we shall see later that for ρ1 to be a property of the assay, independent of the

epidemic state, we require the stronger assumption that the infection events in the

second window period are also uniformly distributed with the same intensity as in

the first window period. We see below that this assumption is implicit in the work

of McDougal et al. To make this more explicit, we define f(t) to be the density of

times since infection realized in the sample. The number of seropositive individuals

is then given by

Nsp =
6∑
i=1

ni =

∫ ∞
0

f(t) dt,

where ni are the counts of individuals in the various categories depicted in the top

graph in Figure 3.1.

Setting f(t) = f0 over the first two window periods means that the ratio of the
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number of infected individuals in the second window period to those in the first

period is ω2/ω1. Assumption 2 is recovered when the length of the window periods

is equal. It should be noted that depends on incidence, susceptible population and

life expectancies over the history of the epidemic. With reference to Figure 3.1, we

are now in a position to write expressions for the number of seropositive individuals

in each sector:

n1 =

∫ ω1

0
f(t)(1− SU|A(t)) dt = f0(1− PNP)

∫ ω1

0
(1− SPU|A(t)) dt

n2 =

∫ ω1

0
f(t)SU|A(t) dt = f0ω1PNP + f0(1− PNP)

∫ ω1

0
SPU|A(t) dt

n3 =

∫ ω1+ω2

ω1

f(t)(1− SU|A(t)) dt = f0(1− PNP)

∫ ω1+ω2

ω1

(1− SPU|A(t)) dt

n4 =

∫ ω1+ω2

ω1

f(t)SU|A(t) dt = f0ω2PNP + f0(1− PNP)

∫ ω1+ω2

ω1

SPU|A(t) dt

n5 =

∫ ∞
ω1+ω2

f(t)(1− SU|A(t)) dt = (1− PNP)

∫ ∞
ω1+ω2

f(t) dt

n6 =

∫ ∞
ω1+ω2

f(t)SU|A(t) dt = PNP

∫ ∞
ω1+ω2

f(t) dt.

Using the above expressions, the sensitivity, the short-term specificity and the long-

term specificity are given by

σ =
n2

n1 + n2
=

(1− PNP)
∫ ω1

0 SPU|A(t) dt+ ω1PNP

ω1

ρ1 =
n3

n3 + n4
=

(1− PNP)
∫ ω1+ω2

ω1
(1− SPU|A(t)) dt

ω2

ρ2 =
n5

n5 + n6
= 1− PNP.

We can now see why the assumption of uniformly distributed infection events for

the first and second window periods is required—it is the only way in which a

cancelation of f(t) in the expressions for σ and ρ1 is possible. Note that under

bias-free recruitment into a survey, at time t = 0, we have

f(t) =
Nsp

Tsp

I(−t)H(−t)SA(t), (3.4)

where I(t) is the instantaneous incidence,H(t) is the number of healthy (susceptible)

individuals, SA(t)is the life-expectancy survival function measured from the time

since infection and

Tsp =

∫ ∞
0

I(−t)H(−t)SA(t) dt

is the total number of seropositive individuals alive in the population at the time of

the survey. The ratio Nsp/Tsp is just the fraction of the total population that has
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been recruited. Thus, the only sensible way to ensure that f(t) = f0, for t < ω1+ω2,

is to assume that the incidence and the susceptible population are constant, and the

survival function SA(t) = SA(0) = 1.

We also see why SU|A(t) must be flat after both window periods—this ensures

that SU|A(t) is constant and can be pulled out of the integrals in the expressions for

n5 and n6 as the factor PNP. This is necessary for ρ2 to be independent of f(t).

Furthermore, in order to specify ρ2 so that it is independent of the state of the

epidemic, an implicit assumption is being made that survival is the same for assay

progressors and assay non-progressors. Note that f(t) appears in the expressions for

both n5 and n6. If different life expectancies were used in these formulae, reflecting

a difference in survival for assay progressors and assay non-progressors, the f ’s in

these formulae would need to be different, and would not cancel in the expression

for ρ2. This assumption is not explicitly stated by McDougal et al. but is implicit

in their assumption that ρ2 is independent of epidemic state.

With the calibration parameters specified in the more general setting of unequal

window periods ω1 and ω2, we now generalize the expression for the correction factor

f =
Pt

Po

,

where Pt = (n1 +n2)/Nsp is the proportion of seropositive individuals who are truly

infected at a time less than ω1. Recalling that Po = (n2 + n4 + n6)/Nsp and using

the definitions of the parameters, it is easy to verify that

Po = Ptσ + Pt

ω2

ω1
(1− ρ1) +

(
1− Pt − Pt

ω2

ω1

)
(1− ρ2).

This means that the correction factor can be expressed as

f =
Po + ρ1 − 1

Po

[
σ − ω2

ω1
ρ1 +

(
1 + ω2

ω1

)
ρ2 − 1

] . (3.5)

Note that this equation simplifies to the previous expression (3.2) when one sets

ω1 = ω2.

3.3 Elimination of Parameters

For completeness, we now provide a precise specification of the assumptions that

are required in order to facilitate the analysis in the rest of this paper. We note

that with the exception of arbitrary sized window periods, these assumptions are

equivalent to the assumptions—either explicit or implicit—that are being made by

McDougal et al. [63].
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Model Assumptions. Specify window periods ω1 and ω2. We assume that:

1. The window periods are chosen so that the survival function SU|A(t) is flat

(and equal to PNP) for t > ω1 +ω2. This means that SPU|A(t) only has support

on the time interval t ∈ [0, ω1 + ω2].

2. Arrival times of infection events are uniformly distributed on the interval

[0, ω1 + ω2]. An equivalent way of stating this assumption is that over the

interval t ∈ [0, ω1 + ω2], H(t) and I(t) are constant and SA(t) = 1.

3. Survival is the same for assay progressors and assay non-progressors.

We are now able to provide the identity relating the parameters in the McDougal

approach.

Proposition 3.1. Under the model assumptions stated above, the following identity

holds:

σ − ω2

ω1
ρ1 +

(
1 +

ω2

ω1
− ω

ω1

)
ρ2 = 1. (3.6)

Proof. Since we assume that SPU|A(t) only has support on t ∈ [0, ω1 + ω2], we have∫ ω1+ω2

0
SPU|A(t) dt =

∫ ∞
0

SPU|A(t) dt = ω.

Then, simply evaluating

σ − ω2

ω1
ρ1 =

(1− PNP)
∫ ω1

0 SPU|A(t) dt+ ω1PNP

ω1

− ω2

ω1

(1− PNP)
∫ ω1+ω2

ω1
(1− SPU|A(t)) dt

ω2

=
(1− PNP)

∫ ω1+ω2

0 SPU|A(t) dt−
∫ ω1+ω2

ω1
(1− PNP) dt+ ω1PNP

ω1

=
(1− PNP)(ω − ω2 − ω1) + ω1

ω1

= 1−
(

1 +
ω2

ω1
− ω

ω1

)
ρ2,

yields the result directly. �

Using the proposition, the correction factor (3.5) simplifies to

f =
ω1

ω

Po + ρ2 − 1

Poρ2
.

This expression no longer relies on estimates for σ and ρ1. It is also interesting

to note that it does not depend explicitly on ω2. Calibrating ρ2, however, requires
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identifying individuals who have been infected for at least ω1 + ω2. Thus, ω2 need

not be precisely known, but a safe upper bound for ω1 + ω2 is required.

Furthermore, if we set ω1 = ω as in McDougal et al. then we recover

f =
Po + ρ2 − 1

Poρ2
. (3.7)

Note that (3.2) as stated in McDougal et al. contains three calibration parameters

(σ, ρ1 and ρ2), while (3.7) contains only one calibration parameter (ρ2). Incidence

estimates using (3.1) and (3.7), however, still require the estimation of ω. The

method of McDougal et al. can in principle be applied to an arbitrarily declared (as

opposed to measured) window period, as long as σ, ρ1 and ρ2 are calibrated for that

value. We have therefore reduced the number of calibration parameters by one.

Estimation of extra parameters may unnecessarily dilute the statistical power

of the calibration data at hand. Moreover, estimates of the uncertainty due to

calibration, based on the assumption of the independence of σ, ρ1 and ρ2, will be

incorrect. Note that when one sets ω1 = ω2 = ω, the identity is reduced to

σ − ρ1 + ρ2 = 1.

Substituting the estimates of the parameters found by McDougal et al., namely

σ = 0.768, ρ1 = 0.723 and ρ2 = 0.944, into this equation gives a value of 0.989 ≈ 1

for the left hand side. The slight discrepancy is a manifestation of the combined

fluctuations in the estimates of σ, ρ1, ρ2 and ω. Although ω is superficially absent

in the identity, it enters as the period over which the other parameters are defined.

When one assumes that ρ2 = 1 (corresponding to the situation where there are

no assay non-progressors) and ω1 = ω, the identity reduces to

ω(1− σ) = ω2(1− ρ1). (3.8)

and the ratio of counts over this period is given by

n1 + n2
n3 + n4

=
ω

ω2
.

Using this ratio and substituting the definitions for σ and ρ1 into (3.8), yields

n1 = n4. Therefore, for tests with perfect long-term specificity, the observed count

of individuals who are under-threshold is an unbiased estimate of the number of

infections in the last period ω. This was noted in a less general analysis of Brook-

meyer [15] where assay non-progressors were a priori excluded.

It should be noted that there is a subtlety in the definition of the window period

that emerges in the above analysis. If, instead of (3.3), the window period is defined

by

ω :=

∫ ∞
0

SPU|A(t)SA(t) dt. (3.9)



3.4 Comparison of Estimators Under Steady State Conditions 41

then the two definitions are equivalent under the model assumptions leading to

the proposition. This follows from the fact that SPU|A(t) only has support on

t ∈ [0, ω1 +ω2] and that SA(t) = 1 over that interval. We have suggested an alterna-

tive incidence estimation paradigm [71] which requires fewer assumptions than the

method of McDougal et al. In this approach PNP and ω, as defined in (3.9), emerge

as the natural calibration parameters.

3.4 Comparison of Estimators Under Steady State

Conditions

We now provide a simplified form for the McDougal incidence estimator based on

the proposition. Substituting the new correction factor (3.7) into their estimator

(3.1) and expressing the result in terms NU, NO and NH gives

Īa =
NU − PNP(NU +NO)

NU − PNP(NU +NO) + ω(1− PNP)NH

. (3.10)

where ω is specified in years. Here the subscript a indicates that the estimator is

quoted as an “annualized incidence”. Note that in writing down this expression,

we have chosen to use PNP rather than the long-term specificity as this is a biologi-

cally more intuitive parameter. In addition, the other two estimators to which this

estimator will be compared were originally specified in terms of PNP.

In a previous attempt to simplify the McDougal formula, Hargrove et al. [40]

proposed the following incidence formula

Ĩa =
NU − PNP(NU +NO)

NU − PNP(NU +NO +NH) + ωNH

. (3.11)

where ω is specified in years. Note that they use the symbol ε where we use PNP.

We have recently rigorously derived a weighted incidence estimator under less

restrictive assumptions than those that are required for the McDougal or Hargrove

approach [71]. Unlike the other two estimators, our estimator is expressed as a rate

(indicated by a subscript r) and is given by

Îr =
NU − PNP

1−PNP
NO

ωNH

=
NU − PNP(NU +NO)

ω(1− PNP)NH

. (3.12)

To convert between an annualized incidence and an incidence expressed as a rate,

one can use the standard conversion formula

Ia = 1− e−IrT ⇔ Ir =
− ln(1− Ia)

T
,
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where T = 1 year.

In Appendix 3.6 we show that, under steady state conditions, NU and NO are

specified in terms of NH and an incidence rate I as

NO = INH(1− PNP)(α− ω) (3.13)

(3.14)

and

NU = INH(1− PNP)ω + INHPNPα (3.15)

where α is the post-infection life expectancy. Using these population counts, it is

now possible to compare the performance of the incidence estimators. Substituting

(3.14) and (3.15) into the McDougal formula (3.10) yields

Īa =
I

I + 1
.

Converting this to a rate, we have

Īr = ln(I + 1) = I +O(I2),

where the last step results from a Taylor series expansion. Thus the estimator is

accurate for small values of I , but yields a discrepancy at O(I2). The reason

for this discrepancy is subtle. In deriving the correction factor, McDougal et al.

assume uniform infection events over the window periods. We have shown that

this is consistent with assuming that the incidence and susceptible population are

constant. In using this factor to estimate an incidence with (3.1) they have, however,

inconsistently assumed that these infection events are generated in a susceptible

population which is being depleted by the infection events over a period of a year.

This is implied by their choice of denominator in that formula, which adds back

an annualized number of recent infections into the susceptible population. This

is at odds with the assumption of a constant susceptible population, and leads to

dimensionally inconsistent incidence estimators, (3.1) and (3.10).

To illustrate the magnitude of the bias, Figure 3.2 shows the difference between

the McDougal incidence estimate and the equilibrium incidence, expressed as a per-

centage. Note that the range of incidence values used is large (up to 50% per annum).

Although incidence for HIV is not likely to be larger than about 15% in the highest

risk groups (e.g. injection drug users [44]), if this methodology were used to monitor

other rapidly spreading epidemics, where incidence is large when stated in units of

years, it would certainly produce unacceptable bias.
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Fig. 3.2: Bias in the McDougal estimator. Relative difference between the Mc-

Dougal estimate and the equilibrium incidence plotted as a function of

equilibrium incidence.

Substituting the counts into the Hargrove formula (3.11) yields

Ĩa =
I

I + ω−PNP
(1−PNP)ω

,

which, when converted to a rate, gives

Ĩr = ln

(
I(1− PNP)ω

ω − PNP

+ 1

)
= I +

PNP(1− ω)

ω − PNP

I +O(I2).

The Hargrove estimator incorporates the same form of denominator which leads

to the second order discrepancy and dimensional inconsistency in the McDougal

formula, and, in addition, it includes a linear bias term. Figure 3.3 demonstrates

the bias introduced as a function of ω and PNP for an equilibrium incidence of 5%

per annum. Although the bias is worst in the regimes where all the estimators have

little statistical power and are unlikely to be used, there are nevertheless intermediate

regimes where the bias is significant. Note that the estimator produces the same

result (and bias) as the McDougal estimator when PNP or ω = 1.

Finally, substituting the counts into our formula (3.12), which is already specified

as a rate, yields

Îr = I.
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Fig. 3.3: Bias in the Hargrove estimator. Relative difference between the Hargrove

estimate and the equilibrium incidence plotted as a function of ω and

PNP for an equilibrium incidence of 5% per annum. Black lines indicate

contours of equal bias.

Thus, under the assumption of a steady state epidemic, our weighted incidence

estimator recovers the steady state incidence exactly. It is also the maximum likeli-

hood estimator. This can be seen by writing the estimator in terms of the population

proportions

Îr =
PU − PNP

1−PNP
PO

ωPH

, where PX =
NX

Nsp

,

and noting that, since the counts are trinomially distributed, the sample propor-

tions are the maximum likelihood estimates of the population proportions. We have

already seen that the estimator solves for the equilibrium incidence. Thus, by the

invariance property of maximum likelihood estimators (see e.g. p. 105 of van den

Bos [106]), it is the maximum likelihood estimator for the incidence. This has also

recently been demonstrated by Wang and Lagakos [112] by explicit maximization of
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the log likelihood function.

A weighted incidence will in general not be equal to the instantaneous incidence

under non-steady state conditions. We should, however, demand that any incidence

formula exactly recover the incidence under this rather idealized situation.

3.5 Discussion

We have shown that under a precise restatement of the McDougal et al. assumptions,

there exists a redundancy in the parameters they chose to characterise the assay.

This allows the elimination of σ and ρ1 from their estimator, with the important

advantage that the remaining parameters are easier to calibrate. The calibration

of σ and ρ1 requires obtaining specimens from individuals with confidence about

their time since infection (i.e. using frequent follow-up). On the other hand both ω

and PNP (or equivalently ρ2) can be estimated through long follow-up intervals. The

estimate for PNP is the proportion of under-threshold samples known to be obtained

more than ω1+ω2 post-infection. Given an estimate for PNP, an estimate of ω can be

obtained from data with follow-up intervals greater than ω1 +ω2 using an extended

version [54] of the Bayesian approach previously described by Welte [115].

We have also shown that under steady state conditions the only estimator that is

dimensionally consistent and produces an unbiased result is the one we have previ-

ously derived [71]. It is also the maximum likelihood estimator. The new approach

makes fewer assumptions than the other methods. In particular, it consistently ac-

counts for a dynamic epidemic by adopting a weighted definition of incidence. This

overcomes a drawback of the other two methods which assume epidemic equilibrium

for at least a period equal to the maximum progression time (ω1 + ω2). It should

be noted that this methodology is applicable to any biomarker, not only the BED

assay—all that is needed is a suitable calibration of the assay parameters. It also

follows that cross-sectional incidence estimates using this approach are applicable to

infections other than HIV, as long as suitably calibrated assays that test for recent

infection are available.

A shortcoming of all the methods explored here is that they make the assump-

tion, either implicitly or explicitly, that survival for assay non-progressors and assay

progressors is the same. As we have shown, relaxing this assumption means that

the long-term specificity becomes epidemic state dependent and hence is time de-

pendent. We are involved in ongoing work to address this issue.
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3.6 Appendix

We derive the population level counts associated with a steady state epidemic. As-

sume that the number of susceptible individuals and the incidence are constant, and

that the sample for our incidence calculation consists of the entire population. Let

the susceptible population be H(t) = NH and the incidence, expressed as a rate, be

I(t) = I. Since our sample is the whole population we have Nsp = Tsp. Then, from

(3.4) we obtain

f(t) = INHSA(t),

and the number of over-threshold and under-threshold individuals in the total pop-

ulation are given by

NO = n1 + n2 + n3

=

∫ ∞
0

f(t)(1− SU|A(t)) dt

= INH(1− PNP)

∫ ∞
0

SA(t)− SPU|A(t)SA(t) dt

= INH(1− PNP)(α− ω)

and

NU = n2 + n4 + n6

=

∫ ∞
0

f(t)SU|A(t) dt

= INH

∫ ∞
0

(1− PNP)SPU|A(t)SA(t) + PNPSA(t) dt

= INH(1− PNP)ω + INHPNPα,

where α is the post infection life expectancy. It must be stressed that the survival

functions SA(t) and SPU|A(t) are arbitrary. Thus, apart from assuming constant

incidence and susceptible population, this is a quite general model.



Chapter 4

A Simplified Formula for Inferring HIV

Incidence from Cross-Sectional Surveys Using

a Test for Recent Infection

∗ This chapter was coauthored with A. Welte and T. Bärnighausen [117], and is

reproduced with permission from Mary Ann Liebert, Inc: Aids Research and Human

Retroviruses (2009) 25:125-6 DOI: 10.1089/aid.2008.0150.

4.1 Correspondence

The paper of McDougal et al. [63] is becoming a standard reference used for the

estimation of HIV incidence from applications of the BED IgG-Capture Enzyme

Immunoassay (BED assay) to cross-sectional blood samples [48, 86]. Their approach

provides an estimate for an annual risk of infection in a hypothetical cohort, using an

estimate for the true proportion, Pt, of ‘recent infections’ amongst HIV-seropositive

individuals. The estimate Pt is in turn derived from the proportion, Po, of seropos-

itive individuals in a survey who test below a threshold value for normalized BED

optical density (OD-n) [79]. The condition of being below the OD-n threshold is

declared to be an imperfect test for recent infection.

True ‘recent infection’ is defined as having been infected for less than a period

ω, where ω is the mean time individuals spend below the OD-n threshold. Since

it is well known that not all individuals progress to a given threshold, even after

arbitrarily long times, ω needs to be carefully defined as the mean threshold crossing

time amongst those who do progress. It is also known that during late stage illness,

or under the influence of antiretroviral therapy, individuals may regress to OD-n

values below the recency threshold. It is further plausible, and indeed appears to

be the case [10, 52], that the parameters characterising progression through the

BED-defined states of infection vary regionally. These complications have caused

doubt about the prospects for using the BED assay as a robustly characterisable

test for recent infection for the purposes of estimating HIV incidence, as reflected in
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a UNAIDS statement in 2006 [105] recommending it not be used for this purpose.

Hence, new assays, or combinations of assays (such as a BED and an antibody

avidity test) are being developed, to provide more robust tests for recent infection.

The fraction of individuals who progress atypically through an assay-defined class

of ‘recently infected’ may thus be reduced, but is unlikely to be zero. Therefore,

the methodology developed to deal with this problem for the BED assay appears,

at face value, to be immediately transferable, requiring only minor modification

(namely in the values of its parameters) to be applicable to other imperfect tests

for recent infection. We argue that several subtle points need to be addressed to

ensure that incidence inferences based on imperfect tests for recent infection are not

unnecessarily limited, or even in error, and we do this by a critique of the original

application.

The inter-individual variability of BED OD-n progression is captured in the

McDougal model by three parameters:

• The sensitivity (σ) of the BED assay as a test for the condition of being

‘recently infected’, as defined above.

• The short term specificity (ρ1) of the BED assay as a test for the condition

of being ‘recently infected’, when restricted to persons who have been infected

for a time between ω and 2ω.

• The long term specificity (ρ2) of the BED assay as a test for the condition of

being ‘recently infected’, when restricted to persons who have been infected

for a time longer than 2ω.

Using data from a major epidemiological and demographic surveillance study

in South Africa [99, 9], we and our collaborators are currently comparing various

approaches to HIV incidence estimation using the BED assay [10, 12]. Given the long

intervals between follow-up visits in this study (about a year), it was not possible

to calibrate the McDougal formula in its published form. Calibration of σ and ρ1

requires a follow-up interval of at most ω (which is of the order of half a year [63]).

While trying to address this issue, we discovered that a simplification of the

McDougal formula is possible. In their paper, the key result relating Pt to the

calibration parameters is given by

Pt =
Po + ρ2 − 1

σ − ρ1 + 2ρ2 − 1
. (4.1)

As is shown by McWalter and Welte in a separate short note [67], the above equation

can be simplified using the following identity:

σ − ρ1 + ρ2 = 1. (4.2)
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This identity is derived using no more assumptions than are used by McDougal

et al. to derive their formula—these assumptions are, however, stated with greater

precision in [67]. The idea that these parameters might be related was inspired by

the analysis of the incidence estimation problem undertaken in [68]. Inserting the

identity into (4.1) gives

Pt =
Po + ρ2 − 1

ρ2
. (4.3)

This means that, in order to estimate incidence, one needs only to calibrate the

long term specificity ρ2 (to estimate Pt) and the window period ω (to convert Pt

to an annual risk of infection). Unlike σ and ρ1, these can both be inferred from

infrequent follow-up. Incidentally, using the values of σ, ρ1, and ρ2 reported in [63],

we find that

σ − ρ1 + ρ2 = 0.989 ≈ 1, (4.4)

which manifests the combined fluctuations in the estimates of σ, ρ1, ρ2 and ω.

Although ω is superficially absent in the identity, it enters as the period over which

the other parameters are defined.

The appropriately simplified form (4.3) is amenable to calibration using data

obtained with long intervals of follow-up [12]. This seems to us to be an important

point, as many demographic and epidemiological surveillance studies we are aware of,

or expect to see implemented, are characterized by follow-up intervals of the order of

a year—almost ideal for calibrating the reduced formula, and clearly inadequate for

calibrating the previously published form. There is likely to be substantial data of

this sort available. On the other hand, the cost of obtaining short interval follow-up

data is high, and the opportunities for doing so are rare.

Note that even given an appropriate data set for estimating σ, ρ1, and ρ2, the

use of the naive formula, for the purpose of systematically quantifying uncertainty

due to imperfect calibration, would require additional specification of non-trivial

covariances implied by the identity (4.2).

The attraction of using a test for recent infection for HIV surveillance, pro-

gramme evaluation and policy making, lies in the fact that it allows HIV incidence

estimation from cross-sectional blood samples. Cross-sectional HIV status informa-

tion alone, however, does not allow estimation of the calibration parameters. These

must be estimated in separate studies, involving follow-up of an intensity compara-

ble to a prospective observation of incidence. Only once this has been done can the

more efficient cross sectional survey be employed on a suitably similar population.

The more robust and locally validated the calibration parameters are, the more

informative cross sectional surveys can be. Therefore it is important that the neces-

sary parameters be calibrated as widely and thoroughly as possible, using such data



4.1 Correspondence 50

as is available. The parameters of the simplified formula are independent and can

be estimated from comparatively long interval follow-up data, while the parameters

used by McDougal et al. have non-trivial correlation and require short intervals of

follow-up.



Chapter 5

Using Tests for Recent Infection to Estimate

Incidence: Problems and Prospects for HIV

∗ This chapter was coauthored with A. Welte, O. Laeyendecker and T.B. Hallet [118].

Abstract

Tests for recent infection (TRIs), such as the BED assay, provide a convenient

way to estimate HIV incidence rates from cross-sectional survey data. Contro-

versy has arisen over how the imperfect performance of a TRI should be char-

acterised and taken into account. Recent theoretical work is providing a unified

framework within which to work with a variety of TRI- and epidemic-specific

assumptions in order to estimate incidence using imperfect TRIs, but suggests

that larger survey sample sizes will be required than previously thought. This

paper reviews the framework qualitatively and provides examples of estima-

tor performance, identifying the characteristics required by a TRI to estimate

incidence reliably that should guide the future development of TRIs.

5.1 Introduction

When monitoring HIV epidemics it is vital to estimate incidence in order to plan

and evaluate HIV programs [60]. Prospective cohort studies are the most direct way

to achieve this. They are, however, expensive, prone to recruitment and retention

bias, and potentially rendered unrepresentative by ethical obligations. The use of

prevalence data in conjunction with mathematical modelling is an alternative ap-

proach [38, 97], but is indirect and requires accurate knowledge of mortality and

migration. The disadvantages of these methods have focused attention on estimat-

ing incidence from cross-sectional surveys [17, 47, 80, 63, 40], with the result that

a number of assays and algorithms that test for recent infection have been devel-

oped [64, 74]. In the context of HIV, such an assay or algorithm has sometimes

been termed a STARHS (Serologic Testing Algorithm for Recent HIV Seroconver-

sion) [64, 74], but we prefer to use the generic term ‘test for recent infection’ (TRI),

because it does not specify a particular disease and method of testing. Recently,
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the World Health Organization (WHO) Technical Working Group on Statistical

Approaches for Development, Validation and Use of HIV Incidence Assays has pro-

posed using the term ‘recent infection testing algorithm’ (RITA). The term has not,

however, gained universal acceptance.

TRIs identify HIV-positive individuals who have been infected recently. By using

a TRI in a serosurvey, incidence (I) can be estimated by applying the epidemiological

relationship1:

I =
R

SD
,

whereR and S are the counts of ‘recently infected’ and ‘susceptible’ (HIV-uninfected)

individuals observed in the cross-sectional survey and D is the mean duration spent

in the ’recently infected’ state, often called the (mean) window period. This inci-

dence estimate is an average of the instantaneous incidence over a period of approx-

imately D prior to the survey. The problem of incidence estimation then reduces to

measuring the prevalence of ‘recent infection’, given knowledge of its duration.

TRIs usually discriminate recent from established infections by measuring spe-

cific aspects of the immune system which evolve during the course of initial infection.

For HIV, this is typically the antibody response, with the titre, proportion of HIV-

specific IgG, or antibody avidity (or a combination of these) providing quantitative

output [74]. Laboratory defined thresholds are chosen to convert these outputs into

categorical results. These results may be augmented with other clinical informa-

tion, such as CD4 lymphocyte counts and antiretroviral therapy (ART) status, to

classify individuals as either TRI-positive (P i.e. recent) or TRI-negative (N i.e.

non-recent). Positive and negative in this context should not be confused with

HIV-positive and HIV-negative.

The interaction between the virus and the immune system is complex, and indi-

viduals vary in their response to infection as assessed by a particular TRI. Modest

variation is not intrinsically problematic, but serious complications arise if, in some

individuals, the immune response is such that they remain indefinitely classified as

TRI-positive or if individuals revert back to a TRI-positive classification as a result

of advanced disease or in the presence of antiretroviral therapy. Unfortunately, both

these complications arise for TRIs currently in use. This not only limits the appli-

cability of the simple incidence estimator above, but also makes it difficult to define

and estimate the mean duration spent in the recently infected state (i.e. to evaluate

D). Methods for ‘adjusting’ estimates of incidence have been proposed [63, 40] and

adopted by the United States Centers for Disease Control and Prevention [24] but

are currently under debate [15, 39, 62, 116]. Recently, a formally rigorous framework

1 This follows directly from the classical “Prevalence = Incidence × Duration” relationship.
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has been developed [71, 69]. We provide a summary of the framework and explore

its implications for the analysis of surveys and development of new TRIs.

5.2 Theoretical Framework

We now briefly describe the theoretical framework and how it can be generalised.

The key results that emerge from the analysis are:

• A TRI is ideal if all individuals eventually progress permanently out of the

TRI-positive state before there is any disease-related mortality. In this case,

the TRI-positive category directly corresponds to a useful definition of ‘recently

infected’ [51, 71], which means that an estimate for the number of recent

infections is:

R = P.

• For a non-ideal TRI (i.e. when some individuals never progress out of the

TRI-positive state), it is in principle still possible to estimate the number of

individuals in a well-defined ‘recently infected’ state, even though this state

is not directly observable in all individuals. If PNP is the proportion of the

HIV-positive individuals who never progress on the TRI under consideration,

then an estimate for the number of recent infections is [71]:

R = P − PNP

1− PNP

N. (5.1)

When the TRI is ideal, then PNP = 0, and this formula reduces to the previous

expression.

• For all applications (including determination of a trend without regard to the

absolute level of incidence), an estimate of PNP is required.

• To determine the absolute level of incidence, it is also necessary to estimate

the mean time spent TRI-positive in the subset of individuals who eventually

do progress to become TRI-negative. This quantity, which we denote by ω, is

analogous to the duration D in the simple estimator, but differs in the require-

ment that it should be estimated in the subset of individuals that progress on

the TRI.

• As PNP increases (i.e. a larger fraction of individuals fail to progress on the

TRI) and as ω decreases (i.e. individuals spend less time in the TRI-positive

state) statistical power is lost. This means that estimates of incidence will have

more uncertainty (i.e. wider confidence intervals), and it is less likely that a

true change in incidence will be detected.
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Previous work by McDougal and colleagues [63], used terminology usually em-

ployed to characterise the performance of diagnostic tests, such as sensitivity and

specificity, to characterise TRI performance. ‘Recent infection’ was defined as being

infected for less than a particular time (chosen to be the mean window period). A

sensitivity and two specificity parameters were introduced to characterise imperfect

classification. No procedure incorporating the effect of parameter uncertainty has

thus far been proposed to estimate statistical error or power for the McDougal ap-

proach. It has recently been shown that use of sensitivity and specificity parameters

is a redundant description of the TRI characteristics [69, 117]. In contrast, the new

framework defines the condition of being ‘recently infected’ directly in terms of the

TRI result. This approach is applicable under less restrictive assumptions, is less

prone to bias, and admits an equally informative description of TRI performance

using only ω and PNP [69].

In deriving the results outlined above, two assumptions were made. Firstly, it

was assumed that individuals who do not progress on the TRI have the same sur-

vival outcomes as TRI progressors. There is, however, evidence for some TRIs that

individuals that fail to progress on the test have a survival advantage2. Secondly, it

was assumed that TRI progressors never regress back to the TRI-positive state, but

there are indications that this is not true for some TRIs3. When these assumptions

are true, PNP is always equal to the proportion of non-recently infected individuals

who are classified TRI-positive. When the assumptions are violated, this propor-

tion, or false-recent rate, denoted by ε, varies according to the historic trajectory

of the epidemic4 [69, 36]. It is, however, still possible to estimate the number of

recent infections by replacing PNP, in the expression (5.1) above, with an estimate

of ε applicable to the time and place of an incidence survey [10] (See Appendix 5.6

for justification). The incidence estimator can then be written as:

I =
P − ε

1−εN

ωS
. (5.2)

The inputs to this estimator are of two types: survey counts (P , N and S), which

need to be estimated in every incidence survey, and parameters that describe the

characteristics of the TRI (ω and ε), which ideally are estimated in a smaller number

of parameter estimation studies.

2 For example, in Baltimore, USA, 60% of elite suppressors (individuals with naturally suppressed

virus below 50 copies per ml) failed to progress on the BED assay [57], and elite suppressors have

been observed to survive for longer than others [45].
3 For example, the rate of misclassification by the BED assay is observed to be higher in individ-

uals with advanced infection [61] and individuals on ART [61, 41, 43].
4 This would be consistent with the apparently higher BED assay false recent rate in Uganda [52]

(an older, declining epidemic) than in South Africa [10] (a younger, growing epidemic) [36].
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When ε and ω are known with sufficient accuracy, there are no theoretical rea-

sons why an imperfect TRI should not allow the accurate estimation of incidence.

However, two distinct types of practical problems arise—counting error and TRI

parameter error. An important component of recent developments is the first con-

sistent analysis of incidence uncertainty accounting for both counting and parameter

error (see Appendix 5.6 for a description of the uncertainty expression). We now

illustrate this uncertainty with a somewhat idealised model of the BED assay, which

has received much attention and application [8].

5.3 Counting Error

Even in the largest HIV epidemics, infection events are relatively rare (about 2% of

the population per year) and ’recent’ infections (infections in the last 155 days or so,

for the BED assay [63, 20]) are even less common (about 0.85% in a cross-section

of the population). Thus, estimates of incidence are associated with substantial

uncertainty since there are few recent infections to be counted. Figure 5.1 shows

the coefficient of variation (CV)5 for the estimator (5.2) calculated under various

survey sample sizes and steady-state HIV incidence rates (See Appendix 5.6 for a

description of the uncertainty and steady-state calculations). The TRI parameters

(ω and ε) are assumed to be known with absolute certainty. Low values of CV

are desirable and indicate that estimates of incidence have small confidence bounds,

while high values indicate that incidence estimates will be less certain. For example,

in a cross-sectional survey of 5000 individuals from a population with a steady-state

incidence of 2.0 per 100 person years at risk (pyar) the CV is 25.8%, i.e. the 95%

likelihood interval for an incidence estimate is 1.0–3.0 per 100 pyar.

To explore the ability to detect a change in incidence, a substantial reduction

(halving) in incidence is simulated (initially in a steady-state epidemic, with preva-

lence remaining constant between the two surveys), and a two-tailed test of the null

hypothesis that incidence is the same in the two surveys is performed. The possible

outcomes are: sustaining the null hypothesis, or concluding that incidence has ei-

ther increased or decreased. Figure 5.2 shows the probability of correctly inferring

a reduction in incidence, when testing the null hypothesis at a significance level of

α = 5%. A probability close to 100% indicates that reductions in incidence will

be reliably detected, with a probability of less than 90% indicating that results will

be unreliable. The South African National Strategic plan for HIV AIDS [95] has

ambitiously set a target of halving incidence between 2007 and 2012. Our calcula-

tions suggest that the sample size of each of two surveys (in 2007 and 2012) required

5 A coefficient of variation is the ratio of the standard deviation to the estimate.
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Fig. 5.1: The coefficient of variation of estimates of incidence using a TRI depends

on the sample size of the survey and the true incidence rate. Note that

a sample size of 10,000 approximates to the typical size of household-

based surveys in sub-Saharan Africa, and that incidence in South Africa

(where there is one of the largest epidemics) is estimated to be about 2

per 100 pyar. (Assumptions: ω = 155 days; ε = 0.05; no TRI parameter

uncertainty; steady-state epidemic conditions; mean survival with HIV:

11 years [31, 100].)

to reliably conclude that incidence has decreased, at the 5% significance level, is

approximately 25,000.

5.4 TRI Parameter Error

In the previous section, it was assumed that the correct TRI parameters were known

with certainty. The incidence estimates are very sensitive to changes in the values of

ω and ε, however, and small differences between the values used in the calculation

and the true values can lead to large errors. These parameters have to be estimated
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Fig. 5.2: The probability of detecting a reduction in incidence between two sur-

veys, when incidence has actually been reduced by half, as a function of

the sample size of the surveys (both assumed to be the same) and the

baseline incidence rate. (Assumptions: ω = 155 days; ε = 0.05;=0.05; no

TRI parameter uncertainty; significance α = 5%; steady-state epidemic

conditions at first survey, with equal prevalence at second survey; mean

survival with HIV: 11 years [31, 100].)

in separate studies, usually using cohorts of individuals whose infection time is known

approximately. Such cohorts are rare, however, and the numbers of individuals in

them are typically small, resulting in substantial uncertainty for the values of ω and

ε. In Figure 5.3 we explore the uncertainty of the estimator (expressed as a CV)6,

as a function of the uncertainty in the TRI parameters. For example, when the

BED-like parameters are known with a CV of 15.0%, at a sample size of 5000 and a

steady-state incidence of 2.0 per 100 pyar the CV, as a result of both counting error

6 Reference to a CV for ω relates to the uncertainty of the estimate of ω, not the variation

associated with progression times.
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and parameter uncertainty, is 35.7%, i.e. the 95% likelihood interval for an incidence

estimate is 0.6–3.4 per 100 pyar.
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Fig. 5.3: Coefficient of variation of incidence estimator, using a BED-like assay on

a sample size of 5,000, in a population exposed to an incidence of 2 per 100

pyar, as a function of the uncertainty in the TRI parameters, assumed to

be normally distributed. (Assumptions: ω = 155 days; ε = 0.05; steady-

state epidemic conditions; mean survival with HIV: 11 years [31, 100].)

Since the TRI parameter estimation study may be conducted in a separate pop-

ulation, it is possible to introduce systematic bias if the true values of the TRI

parameters vary between populations or over time. The few estimates of ε that

have been published vary widely7 presumably due to population differences in the

historic courses of the epidemics, viral subtypes, host immune-profiles, and uptake

of antiretroviral therapy. This undermines confidence in the ability to use an es-

timate for ε obtained in a different population to the one in which incidence is to

7 For example, the false recent rate is estimated at 1.7% in a South African survey [10] and 26.7%

in Rwanda and Zambia [52].
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be estimated, and could contribute to the apparently inflated estimates of incidence

reported recently [73, 75]. There is also currently no general theoretically unbiased

procedure for estimating ε—work on this problem is in progress [65]. In Figure 5.4

we explore the systematic error in the incidence estimate, expressed as a percent-

age of the correct value, introduced by systematic errors in the TRI parameters,

also expressed as percentages. There is a region in which bias may be small due to

cancellation of systematic errors(see the zero error contour).
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Fig. 5.4: Systematic error expressed as a percentage of the correct estimate, exclud-

ing counting error, observed in the incidence estimator, using a BED-like

assay, as a function of a precisely known systematic error in the TRI pa-

rameters. (Assumptions: ω = 155 days; ε = 0.05; steady-state epidemic

conditions; mean survival with HIV: 11 years [31, 100].)

5.5 Conclusion

In the short-term, reports from early studies using BED should be interpreted with

caution [8], given the substantial uncertainties identified above. Analysis of TRI data
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should be performed within a more general theoretical framework [71, 69], rather

than earlier methods. Most importantly, incidence surveillance should not currently

rely on any single methodology, but make use of multiple methods for estimating

incidence [30], such as interpretation of prevalence trends and epidemiological and

demographic modelling [97, 37].
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Fig. 5.5: Coefficient of variation of incidence estimator, on a sample size of 5,000, in

a population exposed to an incidence of 2 per 100 pyar, as a function of the

TRI parameters. (Assumptions: no TRI parameter uncertainty; steady-

state epidemic conditions; mean survival with HIV: 11 years [31, 100].)

The search for robust means of estimating incidence from cross-sectional surveys

is at a crucial juncture. Although an imperfect TRI can be used to estimate HIV

incidence reliably, the reliance on having accurate and precise values of two key

aspects of TRI performance (ω and ε) can undermine the use of this technology.

The effect of ω and ε on statistical power is shown in Figure 5.5. While larger val-

ues of ω provide sufficient numbers of TRI-positive individuals to ensure statistical

power, ω should not be so large that the estimated incidence is not representative
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of the recent past. On this basis, a value of approximately six months to a year

is desirable. It is also essential that ε be small8. Ideally, to ensure that the frac-

tion of misclassifications is independent of time and epidemic state, inter-individual

variability in TRI progression should be unrelated to survival outcomes, and there

should be no regression to the TRI-positive state. These form the core requirements

for the development of new TRI assays and algorithms used to estimate incidence.

In the next phase of TRI development, it will be essential to be guided by these

insights into the key determinants of test performance, and to focus on characterising

the performance of the test within a systematic framework.

5.6 Appendix

5.6.1 Justification for Replacing PNP with ε

Denote the number of non-recently infected individuals that are incorrectly classified

TRI-positive by F . The false recent rate ε is defined to be the fraction of all

non-recently infected individuals that are classified as TRI-positive, which may be

expressed in terms of F and the number of TRI-negative individuals, N , as:

ε =
F

N + F
.

This may be rearranged to provide an expression for the number of false recent

results:

F =
ε

1− ε
N.

An estimate of the number of individuals that are truly recent, R, is the difference

between the number of individuals that are TRI-positive, P , and the number of false

recent results, i.e.

R = P − ε

1− ε
N.

This is the same expression as before (5.1) with PNP replaced by ε.

5.6.2 Uncertainty Expression

An expression for the uncertainty of the incidence estimator (5.2) may be derived

using the Delta method [71]. Given the three survey counts (P , N and S), which

are trinomially distributed, and the TRI parameters (ω and ε), which are assumed

to be normally distributed (with coefficients of variation Cω and Cε), the expression

for the coefficient of variation (CV) of the incidence estimator (CI) is given by:

CI =

√
1

N + P

(
N + P + S

S
+
NP [1 + ε/(1− ε)]2
[P −Nε/(1− ε)]2

)
+ C2

ω +
C2

ε ε
2N2

(1− ε)4[P −Nε/(1− ε)]2
.

8 Progress in this regard is being made, for instance using TRIs consisting of an assay in combi-

nation with clinical information [56].
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This expression is used to compute 95% confidence intervals (I±1.96×CII) and

to generate the plots for Figures 5.1, 5.3 and 5.5 under the applicable assumptions.

When no TRI parameter uncertainty is assumed (Figures 5.1 and 5.5) then Cω and

Cε are set to zero. The hypothesis test simulation of Figure 5.2 consists of the

following steps:

• The counts from two surveys are pooled to generate an estimate for the inci-

dence implicit in the Null hypothesis;

• The above expression for CI is used to generate a CV for the observed difference

in the disaggregated incidence point estimates from the two surveys;

• The p value for the observed difference is computed and the Null hypothesis

sustained/rejected according to a chosen level of significance.

The plot shows the probability of obtaining incidence differences consistent with

inferring a reduction in incidence.

5.6.3 Steady-state Incidence

At equilibrium, the ratio of recent infections to non-recent infections is equal to the

ratio of mean times spent in these categories. Under the assumption that there is

no mortality in the recent category, this can be written as:

P −Nε/(1− ε)
N +Nε/(1− ε)

=
ω

Ω− ω
,

where ω is the mean post-infection survival time [71].

The equilibrium prevalence is given by the product of the recruitment rate and

the mean post-infection survival:

N + P = ISΩ.

The above two equations together with the fact that the sum of P , N and S is equal

to the total number of individuals recruited in the cross-section survey uniquely

define the equilibrium counts.



Chapter 6

HIV Incidence in Rural South Africa:

Comparison of Estimates from Longitudinal

Surveillance and Cross-sectional cBED Assay

Testing

∗ This chapter was coauthored with T. Bärnighausen, C. Wallrauch, A. Welte,

N. Mbizana, J. Viljoen, N. Graham, F. Tanser, A. Puren and M.-L. Newell [10].

Abstract

Background: The BED IgG-Capture Enzyme Immunoassay (cBED assay),

a test of recent HIV infection, has been used to estimate HIV incidence in

cross-sectional HIV surveys. However, there has been concern that the assay

overestimates HIV incidence to an unknown extent because it falsely classifies

some individuals with non-recent HIV infections as recently infected. We used

data from a longitudinal HIV surveillance in rural South Africa to measure

the fraction of people with non-recent HIV infection who are falsely classified

as recently HIV-infected by the cBED assay (the long-term false-positive ratio

(FPR)) and compared cBED assay-based HIV incidence estimates to longitu-

dinally measured HIV incidence.

Methodology/Principal Findings: We measured the long-term FPR in in-

dividuals with two positive HIV tests (in the HIV surveillance, 2003–2006) more

than 306 days apart (sample size n = 1, 065). We implemented four different

formulae to calculate HIV incidence using cBED assay testing (n = 11, 755)

and obtained confidence intervals (CIs) by directly calculating the central 95th

percentile of incidence values. We observed 4,869 individuals over 7,685 person-

years for longitudinal HIV incidence estimation. The long-term FPR was 0.0169

(95% CI 0.0100–0.0266). Using this FPR, the cross-sectional cBED-based HIV

incidence estimates (per 100 people per year) varied between 3.03 (95% CI 2.44–

3.63) and 3.19 (95% CI 2.57–3.82), depending on the incidence formula. Using

a long-term FPR of 0.0560 based on previous studies, HIV incidence estimates

varied between 0.65 (95% CI 0.00–1.32) and 0.71 (95% CI 0.00–1.43). The lon-

gitudinally measured HIV incidence was 3.09 per 100 people per year (95% CI
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2.69–3.52), after adjustment to the sex-age distribution of the sample used in

cBED assay-based estimation.

Conclusions/Significance: In a rural community in South Africa with high

HIV prevalence, the long-term FPR of the cBED assay is substantially lower

than previous estimates. The cBED assay performs well in HIV incidence esti-

mation if the locally measured long-term FPR is used, but significantly under-

estimates incidence when a FPR estimate based on previous studies in other

settings is used.

6.1 Introduction

To understand the dynamics of the HIV epidemic and to target and evaluate inter-

ventions to prevent HIV infection, estimates of HIV incidence at the population level

are of prime importance. HIV incidence estimates can be obtained through repeated

HIV testing of individuals in longitudinal surveillances. Such surveillances, however,

are difficult to establish and expensive to maintain. Longitudinal data on HIV sta-

tus are thus rarely available [64]. Alternatively, HIV incidence can be estimated

from changes in HIV prevalence over time. The validity of these estimates, however,

depends on assumptions about survival time distributions among HIV-positive and

-negative individuals, which are commonly quite uncertain [33, 120]. Finally, HIV

incidence can be measured in a single cross-sectional survey using laboratory tests

which distinguish recent from non-recent HIV infections, reducing the need for both

longitudinal and repeated cross-sectional measurement in order to estimate HIV

incidence [64].

In recent years, a number of large-scale cross-sectional HIV serosurveys have been

conducted. For instance, between 2001 and 2008, 20 demographic health surveys

(DHS) in developing countries have included nationally representative HIV serosur-

veys [27]. A valid and affordable laboratory procedure to distinguish between recent

and non-recent infections would allow estimation of HIV incidence in these cross-

sectional surveys. One serological method to differentiate recent from non-recent

HIV infections uses the BED IgG-Capture Enzyme Immunoassay (cBED assay),

which measures the proportion of HIV-1-specific IgG out of total IgG. This propor-

tion should increase with time after HIV seroconversion [79]. Seropositive individuals

who test below a certain threshold of this proportion (the BED threshold) are clas-

sified as recently infected, while those testing above the BED threshold are classified

as non-recently infected [79]. The time period following seroconversion after which

infections are no longer considered to be recent (the so-called window period of the

cBED assay) is usually estimated at approximately half a year [79, 63, 40].

The cBED assay has been used to estimate HIV incidence in many countries,
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including in Ethiopia [121], Rwanda [52], South Africa [86, 92], Uganda [73], Zam-

bia [52], Zimbabwe [40], China [48, 58], and the United States [78, 35]. However,

there has been concern that the cBED assay-based methods overestimate HIV in-

cidence to an unknown extent because some non-recent infections are classified as

recent [105]. In some individuals (so-called non-progressors) the proportion of HIV-

1-specific IgG never rises above the recency threshold, and in other individuals (so-

called regressors) who have been HIV-infected for a long time, the proportion may

fall below the threshold after having previously progressed above it. Regression to

levels below threshold can occur for a number of biological reasons that decrease

HIV-1-specific IgG relative to total IgG, including viral suppression and immune

reconstitution on antiretroviral treatment (ART), concurrent infections, and late-

stage HIV disease [105]. It is in principle possible to account for non-recently

HIV infected individuals who are misclassified as recently infected, but the HIV

incidence estimates will depend on the estimate of a long-term false-positive ratio

(FPR) [63, 40, 71]. All current methods for this correction effectively assume that

by some finite time after HIV infection (the maximum BED progression time) all

individuals, with the exception of non-progressors, will have progressed to the BED

threshold [71]. From previous empirical observations, it is known that the maxi-

mum BED progression time is of the order of one year [63, 40]. Thus, the fraction

of all people who have been HIV-infected at least as long as the maximum BED

progression time who are below the BED threshold is the long-term FPR.

We use data from a large population-based longitudinal HIV surveillance to

measure the long-term FPR in a rural African community with high HIV preva-

lence [119] and HIV incidence [9], and then compare HIV incidence estimates based

on the cBED assay to estimates based on longitudinal HIV surveillance.

6.2 Methods

6.2.1 Setting

We used dried blood spot (DBS) specimens which were collected in the longitudinal

population-based HIV surveillance conducted by the Africa Centre for Health and

Population Studies (Africa Centre), University of KwaZulu-Natal [2]. The HIV

surveillance area is located near the market town of Mtubatuba in the Umkhanya-

kude district of KwaZulu-Natal. The area is 438 square kilometers in size; it has

a population of approximately 85,000 almost exclusively Zulu-speaking people who

are members of about 11,000 households [99]. In 2004, the overall HIV prevalence

among residents in the surveillance area was 27% in women (15 to 49 years of age)

and 14% in men (15 to 54 years of age) [119]. The surveillance methods have
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been described elsewhere [9, 7]. Ethics permission for the HIV surveillance at the

Africa Centre was obtained from the Research Ethics Committee at the College

of Health Sciences, University of KwaZulu-Natal. All participants in the study

provided written informed consent for the analysis of their samples.

6.2.2 Samples

All women aged 15–49 years and all men aged 15–54 years who were resident in the

surveillance area at the time of visit of an HIV surveillance fieldworker were eligible

for HIV testing. Different samples were used for the different analyses conducted

for this article. The samples for estimation of the long-term FPR consisted of cBED

assay results for blood specimens contributed by individuals who tested HIV posi-

tive in the surveillance in the time period from June 2003 through June 2006. In

order to be included in the sample, the specimens had to meet the following criteria.

First, they were follow-up specimens from individuals who had previously tested

HIV-positive in the surveillance. Second, the time period between the first posi-

tive HIV test and the follow-up specimen exceeded the maximum BED progression

time. Third, the specimen was the earliest follow-up specimen that met the second

criterion. Our count of long-term false-positive individuals included all individu-

als who were classified as recently HIV-infected and had been infected for longer

than the maximum BED progression time, i.e. it included both non-progressors and

regressors.

For the further cBED assay analyses we used a maximum BED progression time

of 306 days (sample size n = 1, 065) as baseline assumption. In order to assess

the sensitivity of the long-term FPR to the assumed maximum BED progression

time, we varied progression time length from 250 to 400 days in daily intervals.

Table 6.1 shows sample size and the number of individuals who were falsely identified

as recently HIV-infected for the BED progression times when the long-term FPR

reaches its maximum and minimum and for all progression times in ten-day intervals

from 250 to 400 days.

For the HIV incidence estimation based on longitudinal HIV status information,

we included all individuals who tested at least twice for HIV in the period from June

2003 through June 2006 and whose first HIV test in this period was negative (4,869

individuals observed over 7,685 person-years). As in previous studies of HIV inci-

dence based on data from longitudinal HIV surveillances [90, 32, 50, 22, 77], for the

purpose of estimating exposure time, we used the mid-date between the last available

negative HIV test and the first available positive HIV test as an estimate of the date

of seroconversion. In addition, in order to test the robustness of the longitudinally

measured HIV incidence estimates to changes in the assumption about serocon-
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version dates, we re-estimated HIV incidence using the most extreme assumptions

about the seroconversion date that are possible given the interval-censored informa-

tion on seroconversion dates. At the one extreme, we assumed that all individuals

in the longitudinal sample who seroconverted did so on the day immediately after

the day of their last HIV-negative test. At the other extreme, we assumed that

all individuals who seroconverted did so on the day of their first HIV-positive test.

Under changes in the assumption of date of seroconversion, these two extremes yield

maximum and minimum estimates of longitudinally measured incidence.

For the cross-sectional cBED-based HIV incidence estimation, we used the first

available HIV test for all individuals tested in the time period January 2005 through

June 2006 (n = 11, 755), i.e. the period in which all second HIV tests of the people

included in the longitudinal HIV incidence analysis took place. Thus, all 4,869

individuals in the longitudinal sample are also included in the sample for the cBED

assay-based analysis.

6.2.3 Laboratory procedures

HIV status was determined by antibody testing with a broad-based HIV-1/HIV-2

enzyme-linked immunosorbent assay (ELISA; Vironostika, Organon Teknika, Boxtel,

the Netherlands) followed by a confirmatory ELISA (GAC-ELISA; Abbott, Abbott

Park, Illinois, USA) [7]. If HIV-positive status was confirmed, we used another

spot from the same filter paper as used for the initial test in order to conduct

the cBED assay (cEIA; CalypteH HIV-1 BED Incidence EIA, Calypte Biomedical

Corporation, Maryland, USA). HIV-specific IgG were detected by the BED-biotin

peptide, followed by a colour reaction with streptavidin-peroxidase. The optical

density values were normalized in every run using a calibrator (normalized OD

(ODn)=mean specimen OD/mean calibrator OD). Specimens with ODn less than

or equal to 1.2 during an initial cBED screening test were confirmed by further

cBED testing of the sample in triplicate. We took the median value of the three

confirmatory test results as the final ODn value. As specified by the manufacturer,

an HIV-1-positive specimen for which the cBED assay gave a final ODn of less than

or equal to 0.8 was considered to be a specimen of recent HIV-1 infection. Otherwise,

the specimen was classified as a non-recent infection [79].

6.2.4 Statistical analysis

Different formulae that use information obtained from the cBED assay have been

proposed to estimate HIV incidence from cross-sectional surveys. These formulae

provide incidence estimates expressed either as a rate, Îr, (expressed, for instance, in
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Maximum BED Sample size No. of false- Long-term

progression time positive results FPR (ε2)

(days) (individuals) (individuals) Mean 95% CI

250 1100 18 0.0164 0.0097–0.0257

260 1094 18 0.0165 0.0098–0.0259

270 1090 18 0.0165 0.0098–0.0260

280 1083 18 0.0166 0.0099–0.0261

290 1081 18 0.0167 0.0099–0.0262

300 1070 18 0.0168 0.0100–0.0265

306 1065 18 0.0169 0.0100–0.0266

310 1056 18 0.0170 0.0101–0.0268

320 1043 18 0.0173 0.0103–0.0271

330 1035 18 0.0174 0.0103–0.0273

340 1017 18 0.0177 0.0105–0.0278

350 991 17 0.0172 0.0100–0.0273

360 936 17 0.0182 0.0106–0.0289

370 818 14 0.0171 0.0094–0.0285

374 789 14 0.0177 0.0097–0.0296

380 773 14 0.0181 0.0099–0.0302

390 755 14 0.0185 0.0102–0.0309

400 737 14 0.0190 0.0104–0.0317

Tab. 6.1: Long-term FPR. (FPR = false-positive ratio, CI = confidence interval.

Row in bold font shows FPR at twice the window period of 153, 180, and

187 days, respectively.)

number of new HIV infections per 100 person-years) [71] or as the probability that in

a given year a person will acquire HIV, i.e. an incidence proportion, Îp, (expressed,

for instance, in number of new HIV infections per 100 people per year) [63, 40].

Some of us have previously derived a formula from first principles to estimate HIV

incidence based on the cBED assay [71], and have commented on the assumptions

made in different formulae [69, 117]. Here, we implemented four different formulae

found in the literature. The formula for HIV incidence derived by McDougal and

colleagues (McDougal formula) [63] is

Îp =
fR

fR+ ωN
,

where R is the number of people who were classified as recently HIV-infected by

the cBED assay and N is the number of individuals who tested HIV-negative. The

mean window period of the cBED assay, ω, is the mean period of time from initial
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seroconversion to reaching an ODn of 0.800 expressed in years in people who progress

above the BED threshold [63]. The adjustment factor

f = [(R/P )ε2]/[(R/P )(σ + ε1 − 2ε2)]

takes into account that the cBED assay does not have perfect specificity or sensi-

tivity, P is the total number of people who tested HIV-positive, σ is the sensitivity

of the cBED assay, ε1 is the short-term FPR (i.e. over the period [ω, 2ω]), and ε2 is

the long-term FPR (i.e. over all times > 2ω). Note that the short- and long-term

specificities, ρ1 and ρ2, are related to the FPRs by ρ1 = 1 − ε1 and ρ2 = 1 − ε2,
respectively. The formula of Hargrove and colleagues (Hargrove formula) [40] is

Îp =
R− ε2P

R+ ωN − ε2(P +N)
,

while the formula derived by McWalter and Welte (McWalter/Welte formula) [71]

is

Îr =
R−

(
ε2

1−ε2

)
(P −R)

ωN
.

In addition, we implemented a simplified version of the McDougal formula. The

adjustment factor used in the formula can be simplified to

f = [(R/P )ε2]/[(R/P )(1− ε2)]

using the identity

σ + ε1 − ε2 = 1

which requires no more assumptions than are used by McDougal and colleagues [69,

117].

Note that in order to implement any of the above four formulae, estimates of

the long-term FPR ε2 and the window period ω are required. For our baseline

estimation, we use an ω of 153 days, i.e. the window period that is recommended by

the manufacturer of the commercially available cBED assay. Most previous studies

reporting HIV incidence based on the cBED assay have used window periods between

150 and 160 days [63, 52, 73, 48, 58, 78, 35, 18, 34, 44, 59, 87]. A few studies have

used a window period of 180 days [121, 86, 92], and a recent study from Zimbabwe

calibrated a window period of 187 days in postpartum mothers enrolled in a Vitamin-

A intervention trial [40]. In order to test whether our results are robust to changes

in the window period estimate, we repeated our analyses with window periods of

180 and 187 days. The Hargrove and McDougal formulae require that the maximum

BED progression time is twice the window period. The estimate of the long-term

FPR thus depends on the choice of the window period (see Table 6.1).
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Note also that the Hargrove, McWalter/Welte and simplified McDougal formulae

do not require estimates of σ and ε1, which—unlike ε2—cannot be calibrated from

longitudinal data if the intervals between the last negative and the first positive

HIV test in seroconverters are of the order of one year [117]. The mean period of

follow-up among seroconverters in our study was 1.4 years; we thus used estimates of

σ (0.7680) and ε1 (0.2770) from another study in order to implement the McDougal

formula [63] (compare also [86]).

The McWalter/Welte formula expresses HIV incidence as a rate, i.e. as the num-

ber of HIV seroconversions per person-time at risk, while all other formulae express

HIV incidence as an incidence proportion, i.e. the number of HIV seroconversions

within a specified time period divided by the size of the population initially at risk.

In order to directly compare all HIV incidence estimates in our study, we expressed

the estimates based on the McWalter/Welte formula and the longitudinally measured

HIV incidence both as rates (per 100 person-years) and as incidence proportions (per

100 people per year). We translated the rate estimates into proportions, assuming

that the incidence rate, Îr, is constant over time T , by using the relationship

Îp = 1− exp(−ÎrT ).

The authors of the four different formulae do not use equivalent methods for

the calculation of confidence intervals (CIs). Thus, uncertainty analysis on the inci-

dence estimates was performed as follows. Any observed proportion of HIV-negative,

cBED-recent and cBED-non-recent individuals is an unbiased estimate of the un-

derlying population proportions. Given an observed occurrence of the population

proportions and the sample size, all attainable draws of the three counts can be

enumerated and assigned their respective trinomial probability. Hence an exact cu-

mulative probability distribution of attainable values of the incidence estimator can

be computed. For each incidence estimate, we quote the estimator evaluated at

the observed counts (the maximum likelihood estimate) and a confidence interval

expressed as the central 95th percentile.

To control for differences in the sex-age composition between the sample used in

the longitudinal HIV incidence estimation and the sample used in the cBED assay-

based estimation, we weighted the sex- and five-year age group-specific longitudinal

mean incidence rates by the proportions of individuals in each of the sex-age groups

in the sample used for the cBED assay-based estimation

Îrs =
∑
i

wsiÎri,

where Îrs is the sex-age adjusted mean incidence rate, wsi are the proportions of

individuals in each sex-age group in the cBED assay sample, and Îri are the sex-age
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specific mean incidence rates. We estimated the variance of Îrs, var(Îrs), as

var(Îrs) =
∑
i

w2
si

Î2ri
Ĉi

assuming that the number of HIV incident cases, Ĉi, is Poisson distributed [29].

We calculated the 95% confidence limits for Îrs using the method based on gamma

distributions described in Anderson and Rosenberg [4].

6.3 Results

Long-term FPR Counting the number of DBS specimens classified as recently HIV-

infected by the cBED assay in the sample of all individuals who had a previous

positive HIV test more than 306 days before the date of the cBED assay-tested

specimen, we obtained a long-term FPR of 0.0169 (95% CI 0.0100–0.0266). When

we varied the length of the maximum BED progression time from 250 to 400 days

(in daily intervals), we found that the estimate of the long-term FPR did not change

significantly over the time interval, with minimum and maximum long-term FPRs

of 0.0164 (95% CI 0.0097–0.0257) and 0.0190 (95% CI 0.0104–0.0317), respectively

(Table 6.1).

6.3.1 Incidence comparison

Of the 4,869 individuals included in the sample for longitudinal HIV incidence mea-

surement, 224 people seroconverted in 7,685 person-years. Assuming that serocon-

version occurred at the mid-date between the last available negative HIV test and

the first available positive HIV test, longitudinally measured crude HIV incidence

was 2.87 per 100 people per year (95% CI 2.53–3.27) (Table 6.2). Longitudinally

measured HIV incidence increased to 3.09 per 100 people per year (95% CI 2.69–

3.52), when we adjusted it to the age-sex distribution of the sample for the cBED

assay-based incidence estimate.

Of the 11,755 individuals included in the sample for the cBED assay-based HIV

incidence measurement, 9,236 tested HIV-negative and 2,519 HIV-positive. Of the

individuals who tested HIV-positive, 165 were classified in cBED assay testing as

recently HIV-infected and the remainder as non-recently infected. For given ε2

and ω, the four different formulae to calculate HIV incidence from cBED assay

measurement produced very similar results. Using the baseline estimate for ω of

153 days and the locally measured ε2 of 0.0169, HIV incidence point estimates (per

100 people per year) varied between 3.03 (95% CI 2.44–3.63; McDougal formula)

and 3.19 (95% CI 2.57–3.82; Hargrove formula) (Table 6.2). The cBED assay-based
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HIV incidence estimates were thus very similar in magnitude and did not differ

significantly from the estimates based on longitudinal measurement (crude and sex-

age adjusted) (Table 6.2). Furthermore, when we implemented the cBED assay

formulae using the lower bound or upper bound of the 95% CI of the locally measured

long-term FPR (0.0100–0.0266), the cBED assay-based HIV incidence estimates

did not differ significantly from the estimates based on longitudinal measurement.

By contrast, when we implemented the cBED assay formulae using the externally

measured long-term FPR of 0.0560 [63], all four cBED assay-based HIV incidence

estimates were significantly lower than the longitudinal estimates (Table 6.2).

Our finding that the cBED assay-based HIV incidence estimate was not sig-

nificantly different from the longitudinal HIV incidence estimate did not change

when we applied the window periods of 180 and 187 days (and their corresponding

long-term FPRs of 0.0182 and 0.0177 (see Table 6.1)). Using the McWalter/Welte

formula, the cBED assay-based HIV incidence was estimated at 2.63 per 100 peo-

ple per year (95% CI 2.10–3.18) with a 180-day window period and at 2.56 per

100 people per year (95% CI 2.04–3.08) with a 187-day window period. Neither

of these estimates was significantly different from the longitudinally measured HIV

incidence estimates or from the cBED assay-based incidence estimates based on a

153-day window period (see Table 6.2).

As described above, we conducted sensitivity analysis of the longitudinally mea-

sured HIV incidence estimate by changing the assumption about seroconversion

dates. Assuming that all seroconverters became HIV-seropositive on the day follow-

ing the last negative HIV test, crude HIV incidence was estimated at 2.97 per 100

person-years (95% CI 2.61–3.39). Assuming, on the other hand, that all serocon-

verters became HIV-seropositive on the day of their first positive HIV test, crude

HIV incidence was estimated at 2.85 per 100 person-years (95% CI 2.51–3.25). The

longitudinal HIV incidence estimates were thus highly robust to changes in the ap-

proach to computing the seroconversion date. Even under the most extreme possible

assumptions, the mean HIV incidence changed by only 2% of the estimate based on

the mid-date assumption, as reported in Table 6.2.

When we stratified HIV incidence by sex and five-year age group (starting at

15 years of age), we found that none of the cBED assay-based sex and age-specific

estimates differed significantly from the corresponding longitudinally measured sex

and age-specific estimates. However, our samples in each of the sex-age groups were

too small to detect significant differences with reasonable confidence. The coefficients

of variation (CVs) of the sex-age specific cBED assay-based HIV incidence estimates

ranged from 18% to 203%; in 13 of the 15 sex-age groups the CVs were larger than

25%; in 10 sex-age groups the CVs were larger than 50%; and in 4 sex-age groups
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Estimation type Units HIV incidence

Mean 95% CI

Longitudinal measurement (7,685 person-years, 224 seroconversions)

Crude (per 100 person-years) 2.91 2.56–3.32

Sex-age adjusted (per 100 person-years) 3.14 2.73–3.58

Crude (per 100 people per year) 2.87 2.53–3.27

Sex-age adjusted (per 100 people per year) 3.09 2.69–3.52

cBED assay measurement (n = 11,755)

Mean of locally measured long-term FPR (ε2 = 0.0169)

McWalter/Welte (per 100 person-years) 3.22 2.57–3.87

McWalter/Welte (per 100 people per year) 3.17 2.54–3.80

McDougal (per 100 people per year) 3.03 2.44–3.63

Hargrove (per 100 people per year) 3.19 2.57–3.82

McDougal, simplified (per 100 people per year) 3.12 2.51–3.73

Lower bound of 95% CI of locally measured long-term FPR (ε2 = 0.0100)

McWalter/Welte (100 person-years) 3.65 3.00–4.32

McWalter/Welte (per 100 people per year) 3.58 2.95–4.22

McDougal (per 100 people per year) 3.40 2.82–4.00

Hargrove (per 100 people per year) 3.57 2.95–4.19

McDougal, simplified (per 100 people per year) 3.52 2.91–4.14

Upper bound of 95% CI of locally measured long-term FPR (ε2 = 0.0266)

McWalter/Welte (100 person-years) 2.60 1.96–3.27

McWalter/Welte (per 100 people per year) 2.57 1.94–3.22

McDougal (per 100 people per year) 2.49 1.89–3.11

Hargrove (per 100 people per year) 2.63 1.99–3.29

McDougal, simplified (per 100 people per year) 2.53 1.92–3.17

Externally measured long-term FPR (ε2 = 0.0560)

McWalter/Welte (100 person-years) 0.65 0.00–1.33

McWalter/Welte (per 100 people per year) 0.65 0.00–1.32

McDougal (per 100 people per year) 0.66 0.00–1.33

Hargrove (per 100 people per year) 0.71 0.00–1.43

McDougal, simplified (per 100 people per year) 0.65 0.00–1.32

Tab. 6.2: HIV incidence estimates. (CI = confidence interval, FPR = false-positive

ratio.)

they were larger than 100%.
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6.4 Discussion

In a rural community in South Africa, we found a long-term FPR of the cBED

assay of 0.0169. This value is substantially lower than the two previous estimates

of the ratio. The first estimate (0.0560) was based on analysis of specimens from

longer-term-infected individuals not known to have clinical AIDS, opportunistic in-

fections, or to be on treatment in the USA [63]. The article, in which this value

was published, provides neither the sample size for the measurement nor the con-

fidence limits around the estimate [63]. Thus we cannot test whether the estimate

is significantly different from the value that we measure in rural South Africa. The

second estimate (0.0520) was based on specimens from 2,749 postpartum mothers

enrolled in a Vitamin-A intervention trial in Zimbabwe [40]. This second estimate

was significantly higher than the value measured in our study (p < 0.0001).

Many previous studies have used the first estimate of the long-term FPR in their

estimations of HIV incidence based on cross-sectional cBED assay surveys (e.g. [52,

86, 73, 58]). In comparing cBED-based HIV incidence estimates to HIV incidence

measured longitudinally in the same population, we have demonstrated that, had

we used the long-term FPR of 0.0560, we would have significantly underestimated

HIV incidence in this community. By contrast, using the locally measured ratio of

0.0169, we estimated an HIV incidence that does not differ significantly from the

longitudinally measured incidence.

Our findings thus confirm the previous results by McDougal et al. [63] and Har-

grove et al. [40] that cBED assay-based HIV incidence estimates are not significantly

different from longitudinally measured HIV incidence, when a locally calibrated long-

term FPR ratio is used to adjust for the imperfect long-term specificity of the cBED

assay. At the same time, we have shown for the first time that the long-term FPR

differs significantly across settings. Hence, results from studies that use a long-term

FPR measured in another setting should be viewed with skepticism.

We further found that the different formulae to estimate HIV incidence based on

the cBED assay results, did not produce significantly different values even though

they differ in their underlying assumptions, suggesting that the choice of formula

may not be very important for most practical purposes. Finally, we showed that the

estimates of the long-term FPR based on data from a longitudinal HIV surveillance

are very robust to changes in the definition of long-term (i.e. the choice of the

maximum BED progression time).

Our longitudinal HIV incidence estimates in this article are slightly lower than

previously published estimates from the same community [9], because the current

study uses a sample that is different from the one used previously. In particular,

unlike in the previous study, we excluded from the sample people who were identified
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as members of a household in the study area, but who did not themselves live in the

area. We excluded this population group (which faces a significantly higher risk of

HIV acquisition than household members who live in the study area [7]), because

cross-sectional cBED assay surveys usually do not trace such nonresident household

members.

HIV incidence estimates by sex and age group are important for validating the

cBED assay method as an approach to measure HIV incidence [40], and are an

important disaggregation for health policy and planning, e.g. in order to inform the

targeting of HIV prevention interventions. Our current sample lacked the statistical

power to meaningfully stratify the HIV incidence estimates. As more data becomes

available from our site, we will in the future analyze HIV incidence across population

subgroups.

The promise of the cBED assay for HIV surveillance, program evaluation and

policy making, lies in the fact that it allows HIV incidence estimation from cross-

sectional samples. Cross-sectional HIV status information, however, does not permit

estimation of the long-term FPR, requiring researchers to obtain this parameter

independently. It is thus important that the parameters necessary for HIV incidence

estimation are calibrated using data from those settings where longitudinal follow-

up is available. A meta-analysis of the long-term FPR of the cBED assay may help

explain why the parameter estimates differ and allow the determination of valid

regional parameter estimates.

It may further be necessary to measure the long-term FPR repeatedly over time.

For instance, one of the reasons why people with non-recent HIV infections are

falsely classified as recently infected by the cBED assay is viral suppression due to

ART [25]. In October 2004, ART started to become available through the public

health services in the community in which this study took place. However, only a

very small number of patients received ART during the study period. By the end of

December 2005, i.e. half a year before the end of the study period, approximately

500 patients received ART through the public ART programme in the district in

which this study took place. Because the HIV surveillance covers less than half of

the district population, we estimate that in December 2005 less than 250 people

in the surveillance area were receiving ART out of a total resident population of

approximately 65,000 [42]. Future studies will need to investigate whether our locally

estimated cBED long-term FPR changes with increasing ART coverage.

An alternative to using the long-term FPR in order to adjust cBED assay-based

HIV incidence estimates for the presence of people who are falsely classified as

recently HIV-infected is to use additional information on time since seroconversion

to identify these individuals and correct the misclassification. Information on time
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since seroconversion, which can be obtained in cross-sectional surveys, could be

based on biological parameters that change with time since infection (such as CD4

count, total lymphocyte count, or viral load), clinical assessment (such as screening

for HIV-related diseases that indicate late-stage HIV disease [123]), and screening

for ART (through a question or laboratory test).

In conclusion, our study demonstrates that without a locally measured long-term

FPR HIV incidence estimates based on the cBED assay may be severely biased,

but that the cBED assay performs well in HIV incidence estimation, if a locally

appropriate long-term FPR is used.
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Abstract

Background: HIV incidence estimates are essential for understanding the evo-

lution of the HIV epidemic and the impact of interventions. Tests for recent

HIV infection allow incidence estimation based on a single cross-sectional survey.

The BED IgG-Capture Enzyme Immunoassay (BED assay) is a commercially

available and widely used test for recent HIV infection.

Methods: In a systematic literature search for BED assay studies, we identified

1,181 unique studies, 1,138 of which were excluded based on titles or abstracts.

We conducted reviews of the 43 remaining publications and a further 23 studies

identified on conference web sites or by colleagues. Thirty-nine articles were

included in the final review. We investigated the sensitivity of incidence values

to various estimation methods and parameter choices.

Results: BED assay surveys have been conducted on five continents in general

populations and high-risk groups, using one or more of ten distinct incidence

formulae. Most studies used estimators that do not account for assay imper-

fection. Those studies that correct for assay imperfection commonly do not

use locally-valid assay parameters. Incidence estimates were very sensitive to

methodological and parameter choices. Most confidence intervals provided good

assessment of uncertainty due to counting error, but only a few incorporated

parameter uncertainty.

Conclusions: BED assay surveys can produce valid HIV incidence estimates,

but many studies have not sufficiently accounted for assay imperfection. Fu-

ture studies should (1) report all information necessary for incidence point and
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uncertainty estimation, (2) use an unbiased estimator with locally-valid assay

calibration parameters, and (3) compute confidence intervals that take into ac-

count parameter uncertainty.

7.1 Introduction

Estimates of HIV incidence—the rate of new infections in a population—are essen-

tial for monitoring the progress of HIV epidemics and for targeting and evaluating

interventions that prevent HIV acquisition and transmission. Incidence estimates

can be obtained through repeated testing of individuals in longitudinal surveillance.

Such surveillances are, however, difficult to establish and costly to maintain; they

may suffer from bias due to loss to follow-up [13] and they lack generalizability

because participant behavior may change following risk-reduction counselling. An

operationally-less-demanding approach to the estimation of incidence relies on tests

that distinguish recent from non-recent infection in cross-sectional data.

While several tests for recent HIV infection have been developed [81, 64, 74, 98,

6], the BED IgG-Capture Enzyme Immunoassay (BED assay) has been frequently

applied, especially in developing countries [92, 73, 48, 44]. From the time of the

development of the BED assay in 2002 [79], there has been debate over how to

correctly analyze the data generated by use of this assay. Recently, a number of

authors have examined biases in the application of the BED assay using population

models of HIV infection [15, 36, 116, 69]. Others have estimated the bias in large

population-based surveys [11, 10].

We undertook a systematic review of the literature to survey the current practice

in BED-assay application and to identify how the concerns regarding the accuracy

of the test are being addressed. We present an overview of the current literature and

collect information on methodological choices that are made in applying the assay.

We show how sensitive the BED assay-based incidence estimates are to changes in

methodology, including the incidence formula and calibration parameter values.

7.1.1 Basic Description of the BED Assay

The BED assay was developed by researchers at the US Centers for Disease Con-

trol and Prevention (CDC) for the purpose of identifying recently acquired HIV-1

infections regardless of viral subtype [79]. This was accomplished by producing a

class-specific IgG antibody capture enzyme immunoassay (EIA) based on a trimeric

branched peptide that includes gp41 immunodominant sequences from HIV-1 sub-

types B, E and D—hence the name. The BED assay reports the proportion of HIV-

1-specific immunoglobulin G (IgG) in total IgG as an optical density (OD) from
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spectrophotometer measurements. To minimize the variations that occur in differ-

ent runs, a normalized OD (OD-n) is determined using a calibrator specimen [79].

The proportion of HIV-1-specific IgG (and thus OD-n) increases with time after HIV

infection.

Two major health organizations, the CDC and the United Nations Program on

AIDS (UNAIDS), have issued statements regarding the use of the capture BED as-

say. While endorsing the assay for use in the US, the CDC recommendation [25]

lists several situations in which the assay can produce false-recent results (i.e. non-

recently infected individuals that are falsely classified as recently infected), including

advanced HIV disease, chronic co-infection, and antiretroviral therapy. The state-

ment concludes that “the BED HIV-1 Capture EIA was developed for and is solely

used in the US in the context of HIV surveillance” and that the assay “may be

less successful in a specimen-based system where [...] critical data cannot be as-

certained.” The most recent UNAIDS recommendation [105] concluded that “the

BED-assay captures not only recent infections, but also late stage HIV infection

(with or without antiretroviral therapy)” and that “[t]here is evidence that assay

characteristics vary by HIV-1 subtype”. UNAIDS thus called for “more research on

the validity of the BED assay for estimating incidence” [105]. Neither the CDC nor

UNAIDS have commented on the use of the assay since 2007.

7.1.2 Development of Incidence Estimators

To discriminate recent from non-recent infections, an OD-n threshold value (or cut-

off) is chosen below which a specimen is classified as recently infected-specimens

with an optical density above this value are classified non-recent. To estimate HIV

incidence it is necessary to determine the mean length of time individuals remain

classified as “recently infected” by the assay. This duration is usually called the

“mean window period”; we denote it by ω. Estimating ω requires a calibration co-

hort study with frequent follow-up of individuals whose date of infection is approxi-

mately known. Using the well-known relationship between prevalence, incidence and

duration, incidence is then estimated as the ratio of the sample count of recently

infected individuals to the product of the count of susceptible individuals and the

mean window period.

Following initial applications, it was discovered that the BED assay is an im-

perfect test, misclassifying some proportion of non-recently-infected individuals as

recent. Two strategies have been used to correct for this shortcoming. The first

corrects for assay imperfection on the level of the individual by using additional

information (e.g. antiretroviral therapy [ART] utilization, AIDS diagnosis and pre-

vious HIV testing) to either re-classify or exclude individuals who are classified as
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recent by the BED assay but are obviously non-recently infected (false-recent in-

dividuals). The second strategy corrects for assay imperfection at the population

level, using incidence estimators that account for imperfect specificity of the BED

assay.

A number of estimators have been proposed. In order to structure our review, we

categorize the estimators into three “generations” (Figure 7.1). First-generation ap-

proaches include all simple applications of the prevalence-incidence relationship de-

scribed above, making no attempt to account for false-recent individuals [79, 17, 47].

This approach results in overestimates of incidence if a substantial number of people

are incorrectly classified as recent. The second-generation approach was initiated

by McDougal and colleagues [63]. To account for BED assay imperfection, they

introduced three additional assay-calibration parameters, i.e. sensitivity (σ), short-

term specificity (ρ1) and long-term specificity (ρ2). The third-generation approach

builds on the second-generation approach by simplifying the expressions. Whereas

the second generation formulae depend on four parameters (ω, σ, ρ1 and ρ2), the

third-generation approaches require only the window period and a false-recent rate

(ε), which can be expressed in terms of the long-term specificity, ε = 1−ρ2. Alterna-

tive names for the false-recent rate include false-positive rate [63], and false-positive

ratio [10]. Note that while most authors refer to this parameter as a “rate”, it is

in fact the ratio of two counts (the number of persons with long-standing infec-

tion classified incorrectly as recent, and the total number of individuals with long-

standing infection). Hargrove et al. [40] provided a new estimator that is equivalent

to the McDougal estimator under the assumption that the sensitivity is equal to

the short-term specificity. Later, Welte et al. [117] showed a formal mathematical

relationship, different from Hargrove’s assumption, between sensitivity, short-term

specificity, and long-term specificity. This insight allows a consistent reduction of

the McDougal estimator, and highlights the fact that the calibration parameters of

the McDougal approach are not independent—ω and ε provide an equally-precise

characterization of the performance of the assay when compared with the four pa-

rameters of the McDougal estimator. This over-parameterization in the McDougal

approach may introduce unnecessary statistical uncertainty if the parameters are

estimated independently, and makes it difficult to characterize the uncertainty in

a consistent manner. McWalter and Welte [71] have derived a formally-consistent

incidence relation that depends on fewer assumptions than either the McDougal or

Hargrove approaches. More recently it has been shown that the approach of McWal-

ter and Welte, when compared with the other third-generation approaches, is the

only one that produces an unbiased estimate of incidence under the assumption of

a steady state epidemic [69].
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Fig. 7.1: Overview of approaches, required parameters and formulae used to esti-

mate HIV incidence from cross-sectional surveys using the BED assay.

7.2 Methods

7.2.1 Literature Search Strategy

We carried out a systematic literature search in the PubMed electronic database [85].

To identify articles, we combined search themes using the Boolean operators “and”

and “or”: HIV “and” (BED assay “or” recent infection). Wherever possible, we

drew search terms for each theme from the Medical Subject Headings (MeSH) [72],

the controlled vocabulary used for subject indexing in PubMed:

("HIV"[MeSH] OR "HIV-1"[MeSH] OR "HIV-2"[MeSH] OR

"HIV Seroprevalence"[MeSH] OR "HIV Seropositivity"[MeSH])

AND

("IgG capture"[All Fields] OR "BED"[All Fields] OR

"CEIA"[All Fields] OR "EIA"[All Fields] OR

"IgG immunoassay"[All Fields] OR "immunoglobulin G"[MeSH] OR

"recency"[All Fields] OR "recent infection"[All Fields] OR

"incidence"[MeSH]).

We used all MeSH terms in their “exploded” versions so that all narrower terms

categorized below each selected term in the vocabulary hierarchies were also included

in the searches. In addition, we searched for terms that did not exist in MeSH using

the “All Fields” category of the PubMed electronic database.

The development of the BED assay was first described by Parekh et al. [79] in a

publication dated March of 2002. To ensure that we included all articles describing
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studies using the assay, we searched for articles published on or after the 1st of March

2000, i.e. two years prior to the publication describing the development. Our search

period ended on the 4th of March 2009. In addition to PubMed, we searched the

websites of the Conference on Retroviruses and Opportunistic Infections (CROI)

(covering all CROI from January 1997 to March 2009) [1] and the International

AIDS Society (IAS) (covering all Conferences on HIV Pathogenesis and Treatment,

and all International AIDS Conferences (AIDS) from 2001 through 2008) [46] for

abstracts containing the terms “BED”, “cBED”, “CEIA”, “EIA”, “immunoglobulin

G”, “IgG immunoassay”, “recency” and “recent infection”. These terms were also

used to search the National Library of Medicine Gateway (NLM Gateway) [76],

which includes abstracts from twenty-nine HIV-related conferences [76]. We further

searched the reference lists of reviews, editorials, commentaries and all publications

included in the final review. Finally, we asked colleagues with a research interest

in HIV epidemiology or prevention to identify studies that report findings based on

BED assay surveys.

Our initial PubMed search identified a total of 1181 unique studies, 1138 of which

were excluded based on titles or abstracts. Studies were excluded at this stage if

they did not report HIV incidence estimates, reported only HIV incidence estimates

that were not based on BED assay surveys, or did not specify the populations in

which a BED assay-based HIV incidence estimates were obtained. Studies were

further excluded if they were not written in English, or were reviews, letters, edito-

rials or commentaries. We conducted full-text reviews of the forty-three remaining

publications and twenty-three studies identified in conference abstract databases, in

NLM Gateway, or by colleagues. The only reason for exclusion after full-text review

was that studies reported only HIV incidence estimates that were not based on BED

assay surveys. We did not identify any studies through screening of references that

were not also identified in one of the other searches. Four conference abstracts were

excluded because they reported data contained either in a full-text article or in an

abstract with a later publication date.

We identified thirty-nine studies for the final review—a summary is provided in

Figure 7.2.

7.2.2 Sensitivity Analysis

In order to explore the robustness of the incidence estimates to various method-

ological and parameter choices, we performed a number of sensitivity analyses. For

each of the full-text articles that reported the formula, parameter values and sur-

vey counts used in incidence estimation, we recomputed incidence. To explore the

sensitivity with respect to choices of methodology, we computed incidence using
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Fig. 7.2: Flow chart of search and selection criteria for studies included in the final

review.

all the different estimators found in the literature, in each of the three generations

mentioned above.

It has been noted that the incidence estimate is sensitive to the choice of cali-

bration parameters [10, 40]. In particular, a locally-valid estimate of the long-term

specificity is necessary because overestimates and underestimates of incidence can

occur when false-recent results are not appropriately accounted for. For this reason,

we explore the sensitivity of the incidence estimates to changes in both the window

period and the false-recent rate (alternatively, the long-term specificity).

When presenting incidence estimates, it is important that the variability of the

estimate be stated as a confidence interval (CI). We computed CIs under a variety

of assumptions in order to explore the effect of the parameter uncertainty, using a

closed-form expression for the coefficient of variation of the estimator derived with

the delta method [71], which assumed parameter error was distributed normally.

For the calibration-parameter and CI sensitivity analyses, we used the incidence

estimator of McWalter/Welte, because it is the least biased of the estimators [69]
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and is the only estimator with an expression for standard deviation that incorporates

the effect of parameter uncertainty [71].

7.3 Results

From each of the thirty-nine studies, we extracted information on study character-

istics and results, as displayed in Table 7.1 and Figure 7.3 and described below.

Additional survey data, only available for the full-text articles, is shown in Table 7.2

and described below.

(1), (35) – (39)

(32)

(1)

(3) – (7) 

(21), (31)
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(1) United States, The Netherlands (MSM, high-risk women) 1998-1999; (2) Russia (IDU) NR; (3) China (IDU) 2000-2006; (4) China (IDU) 2002-2005; 
(5) China (MSM) 2005-2006; (6) China (CSW) NR; (7) China (CSW) NR; (8) Thailand (military) 1991; (9) Thailand (IDU) 1996; (10) Thailand (IDU) 1999-2000; 
(11) Thailand (ANC, CSW) 2004-2005; (12) Thailand (military) 2005-2006; (13) Thailand (GP) NR; (14) Thailand (military, IDU) NR;  
(15) Cambodia (CSW, ANC, police) 1999-2002; (16) Cambodia (GP) 2006; (17) Cambodia (fishermen) NR; (18) India (STD) 2002-2004; (19) India (IDU) NR; 
(20) Ethiopia (ANC) 1995-2003; (21) Ivory Coast, Kenya (ANC, GP) 1998-2004; (22) Uganda (GP) 2004-2005; (23) Rwanda (ANC) 1989-1993; 
(24) Rwanda, Zambia (discordant couples) 2004; (25) Zimbabwe (postpartum mothers) 1997-2000; (26) Zimbabwe (GP) NR; (27) South Africa (GP) 2003-2006; 
(28) South Africa (GP) 2005; (29) South Africa (GP) 2005; (30) South Africa (GP) 2006-2007; (31) Ivory Coast (blood donors) 1997-2003; 
(32) Dominican Republic (CSW) 2004-2005; (33) Brazil (GP) 2004-2005; (34) Brazil (MSM) 2004-2005; (35) United States (ANC) 1991-1998; 
(36) United States (MSM) 2000-2003; (37) United States (MSM, STD, non-IDU) 2002-2004; (38)  United States (STD) 2004-2005; (39) United States (GP) 2006. 
 
Key: MSM indicates men who have sex with men; IDU, intravenous drug users; NR, not reported; CSW, commercial sex workers; ANC, antenatal care clinic 
attendees; GP, general population; STD, sexually transmitted disease clinic attendees. 

Fig. 7.3: Map showing location, population and observation period of 39 studies.

Location, Population Setting, Study Type and Assay

Thirty-nine relevant studies were published between 2003 and 2009 (twenty full-text

articles and nineteen abstracts) (Figure 7.2 and Table 7.1). In these studies, the BED

assay was used to assess HIV incidence in regions throughout the world. Seventeen

studies used data from Asia [44, 88, 89, 96, 103, 111, 110, 113, 114, 124, 48, 82, 104,

58, 49, 5, 94], twelve from Africa [19, 40, 52, 73, 86, 87, 92, 93, 121, 10, 101, 55], six
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Tab. 7.1: Descriptive table.
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  Authors Window Year Effective Sensitivity Short-term Long-term HIV- HIV+ BED+ 
    period length window   specificity specificity# (N) (P) (R) 
  Bärnighausen et al. 153 365.00 0.4192 - - 0.9831 9236 2519 165 
  Buchacz et al. 155 365.25 0.4244 - - 1 268 187 11 
  Gupta et al. 153 365.25 0.4189 - - 1 463 16 2 
  Hall et al.† 156 365.00 0.4274 NR NR NR NR 6864 2133 
  Hargrove et al. 187 365.00 0.5123 - - 0.9480 9562 4495 517 
  Hu et al. 160 365.00 0.4384 - - 1 1375 594 113 
  Jiang et al. (City D All) 155 365.00 0.4247 - - 1 2811 433 25 
  Jiang et al. (City D IDU) 155 365.00 0.4247 - - 1 585 275 25 
  Karita et al. (Masaka) 153 365.00 0.4192 0.7680 0.7230 0.9440 1191.8‡ 151 39 
  Karita et al. (Kakira) 153 365.00 0.4192 0.7680 0.7230 0.9440 1752.6‡ 190 47 
  Li et al. (Data for 2005) 155 365.00 0.4247 0.7682 0.7231 0.9443 509 17 7 
  Li et al. (Data for 2006) 155 365.00 0.4247 0.7682 0.7231 0.9443 515 26 9 
  McDougal et al.† 153 365.00 0.4192 0.7680 0.7230 0.9440 NR NR NR 
  Mermin et al. 155 365.00 0.4247 0.7680 0.7230 0.9440 16331.5‡ 1023 172 
  Nesheim et al. 160 365.25 0.4381 - - 1 48018 554 50.2§ 
  Priddy et al. 153 365.00 0.4192 - - 1 2136 66 12 
  Rehle et al.† 180 365.00 0.4932 0.7682 0.7231 0.9443 NR NR NR 
  Sakarovitch et al.† 160 365.00 0.4384 0.8570 0.7710 NR NR NR NR 
  Saphonn et al.† 168 365.00 0.4603 - - 1 NR 3599 NR 
  Shisana et al.† 180 365.00 0.4932 - - 1 NR NR 181 
  Simbayi et al.† 180 365.00 0.4932 0.7682 0.7231 0.9443 NR NR NR 
  Wolday et al.† 180 365.00 0.4932 - - 1 6394 1350 NR 
  Xiao et al. (IDUs) 153 365.00 0.4192 - - 1 945 225 34 
  Xiao et al. (County B) 153 365.00 0.4192 - - 1 6482 825 116 
    
  Table does not include studies for which only abstracts were available because abstracts did not include the required information. 
    
  Key: NR indicates not reported.
  †Insufficient data to recompute incidence.   
  ‡Adjustment for HIV+ individuals with missing BED samples. 
  §Non-standard adjustment for HIV+ individuals with missing BED samples. 
  # Long-term specificity = 1 − false recent rate. A specificity of 1 indicates use of a first-generation approach (i.e. a false-recent rate of 0). 

 

Tab. 7.2: Calibration information and sample counts.

from North America [35, 78, 84, 63, 18, 102], two from South America [107, 108], and

two from Europe [63, 109]. One study used data from more than one geographical

region [63]. Eleven studies were conducted in the general population [89, 5, 73, 86, 92,

93, 10, 101, 55, 35, 108] seven in intravenous drug users [44, 96, 113, 114, 124, 48, 109],

six in antenatal care (ANC) attendees [88, 82, 19, 121, 55, 78] five in commercial sex

workers (CSW) or female sex workers [88, 111, 110, 82, 34], five in men who have

sex with men (MSM) [58, 84, 63, 102, 107], three in the military [114, 49, 94], three

in sexually transmitted disease (STD) clinic attendees [103, 84, 18], and one each in

post-partum mothers [40], non-intravenous drug users [84], discordant couples [52],

blood donors [87], fishermen [104], and police [88]. Six studies used data from two or

more different populations [88, 114, 82, 55, 84, 63]; they are included in the counts

of each population above. The countries in which the reviewed studies took place

and the populations in which the BED assay surveys were conducted are shown in

Figure 7.3. The number of published studies using the BED assay to estimate HIV

incidence increased from one in 2003, to three in 2004, four in 2005, six in 2006, and

fourteen in 2007, but decreased slightly to eleven in 2008 (Table 7.1).

The BED assay was applied to samples collected as part of case-reporting surveil-

lance [35] (i.e. passive surveillance through which all individuals who are diagnosed

as HIV-infected in voluntary counseling and testing centers are reported to a central

organization, such as the US CDC), longitudinal population-based surveillance [10]

(i.e. active surveillance in which eligible individuals contribute blood samples for an
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HIV test repeatedly over time), sentinel surveillance [88, 48, 82, 121, 55], (i.e. active

surveillance that collects blood samples for HIV tests from all individuals belong-

ing to a certain population group, e.g. individuals attending one of a selected set

of antenatal care clinics), clinical cohort studies [114, 94, 19, 40, 86, 63, 109, 34],

preparatory studies for clinical trials [44, 113, 52], cross-sectional HIV surveys [111,

73, 86, 92, 93, 101], and stand-alone HIV incidence studies [89, 96, 103, 111, 124,

104, 58, 49, 5, 78, 84, 18, 102, 107, 108].

Total sample sizes in the reviewed studies ranged from 400 to 87,178 across the

33 studies that reported the sample size (Table 7.1). Nineteen studies reported us-

ing the commercially available BED immunoassay produced by Calypte Biomedical

Corporation [21], while the rest did not report the manufacturer of the assay used.

Incidence Estimation Approach

Fourteen studies [44, 88, 113, 114, 124, 48, 87, 92, 121, 78, 84, 18, 109, 34] used

only a first-generation approach, eight [103, 58, 73, 86, 93, 101, 63, 102] used only a

second-generation approach; one [10] used second- and third-generation approaches;

and two [40, 52] used formulae from all three generations. Fourteen studies [89, 96,

103, 111, 110, 82, 49, 5, 94, 19, 55, 35, 107, 108] did not report the formula used to

estimate HIV incidence.

Three studies collected additional clinical information on study participants but

did not consider using it to exclude or reclassify individuals [124, 52, 34]. Three

other studies indicated that their samples were unlikely to include individuals who

could be falsely classified as recently infected. McDougal et al. [63] used “specimens

largely derived from early infection,” which were known not to include individuals

with AIDS symptoms or on ART treatment. Bärnighausen et al. [10] and Mermin

et al. [73] did not apply inclusion criteria, but indicated that ART roll-out was not

widespread at the time of the study.

Four studies used additional clinical information to reclassify or exclude individ-

uals from the sample for BED assay testing. Three studies used a previous positive

HIV test [35, 84, 18], two studies used ART status [35, 18], and two studies used

AIDS diagnosis [48, 35]. Buchacz et al. [18] excluded individuals from their sample

who were both classified as recent by the BED assay and identified as having long-

standing infection by additional information. Priddy et al. [84] and Jiang et al. [48]

excluded all individuals identified as having long-standing infection by additional

information, independent of BED assay test results. Hall et al. [35] did not exclude

any individuals from the sample but classified all individuals as non-recent who were

identified as having long-standing infection, independent of their BED assay test re-

sults. Li et al. [58] collected information on ART and AIDS diagnosis, but found
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that none of their study participants needed to be excluded or reclassified on the

basis of this information. None of the other studies reported using extra clinical

information for reclassification or exclusion from the sample for BED testing.

In addition to the two strategies described above to correct for BED assay imper-

fection, a few studies adjusted for selective HIV study participation. An important

example is the study of Hall et al. [35] which used a method developed by Karon

et al. [53] to estimate the annual number of recently infected individuals in the

US based on the number of recently infected cases detected by the national case-

reporting surveillance. This estimate was calculated by dividing the number of cases

detected in the surveillance by an estimate of the probability of detection. We have

not reviewed the remainder of these methods in detail because they are specific in

their application to certain study designs rather than to the BED assay.

Finally, two approaches were used to deal with HIV-positive individuals that had

missing information on recent infection (e.g. as a result of insufficient sample to allow

BED assay testing after an initial HIV test). The first approach [18, 34] excludes

these individuals from the incidence estimation sample. The second approach [52, 73,

78] assumes that the proportion of recent infections in these individuals is the same

as the proportion in HIV-infected individuals with known recent infection status,

and adjusts the incidence estimate accordingly.

Optical Density Cut-off and Calibration Parameters

Twenty-three of the thirty-nine studies reported optical density cut-offs, with seven-

teen using a value of 0.8 [111, 48, 58, 49, 5, 94, 40, 52, 73, 92, 10, 101, 35, 84, 63, 18, 34]

and six using a value of 1.0 [44, 88, 113, 104, 87, 78]. One study used a value of 0.75

in addition to a value of 1.0 [104].

Window periods used in the calculation of incidence varied from 153 to 187 days.

Of the nineteen conference abstracts, eleven [89, 96, 103, 110, 82, 104, 55, 102, 107,

108, 109] did not report the window period used, while four reported using a value

of 153 days [114, 49, 5, 94], two reported 155 days [111, 101] and two reported 180

days [113, 19]. The window periods reported in the full papers are presented in

Table 7.2. To compute annual incidence, unit consistency demands that a window

period specified in days must be converted to units of years before being used in the

calculation of incidence. In Table 7.2 we also report the length of year factor (365 or

365.25) used in each study and the corresponding effective window period specified

in units of years.

In addition to the window period, studies using a second-generation formula

required estimates of sensitivity, short-term specificity and long-term specificity,

while studies using third-generation formulae only required estimates of the false-
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recent rate. With the exception of one study [10] that used a locally-valid long-term

specificity, all the studies that used a second-generation formula used the sensitivity,

short-term specificity and long-term specificity as reported by McDougal et al. [63].

Some studies did, however, use varying degrees of precision for these parameters as

reported in Table 7.2. All three studies using third-generation approaches estimated

a false-recent rate for the local setting where the BED assay was applied [40, 52, 10],

although one of them (Karita et al. [52]) did not use this estimate when calculating

incidence.

Confidence Interval Calculation

With the exception of Wasinrapee et al. [114] who computed CIs using a normal ap-

proximation based only on the number of BED recent classifications (hereafter BED

recent counts), none of the conference abstracts indicated how CIs were calculated.

Two of the full-text articles [58, 92] did not report how CIs were calculated, while

eight [48, 52, 73, 87, 121, 84, 63, 18] used a normal approximation based only on the

number of BED recent counts, one [124] used a log transform of a normal approxi-

mation based only on BED recent counts, two [86, 93] used a normal approximation

based on the BED recent and HIV-negative counts, one [78] used a modified Wald

method, two [40, 35] used a delta method, and one [10] used a full trinomial distri-

bution to approximate CIs. In all of these studies only uncertainty resulting from

counting error was taken into account, while the remaining three papers [44, 88, 34]

additionally accounted for the uncertainty associated with the window period by

using a Bonferroni procedure that combined the window period CI with the CI

for the counting error that was calculated using a Poisson distribution [47]. None

of the studies using second- or third-generation approaches attempted to account

for uncertainty stemming from error in the estimation of sensitivity and specificity

parameters.

7.3.1 Incidence Formulae

We identified ten incidence formulae and classified them into three generations (Ta-

ble 7.3), as described above (Figure 7.1). There were four first-generation formulae,

two second-generation formulae and four third-generation formulae. The differences

among the first-generation formulae stem from the different heuristics used to esti-

mate the at-risk population, resulting in different denominators. The denominators

of the two second-generation formulae differ for similar reasons. The reasons for

differences in the third-generation formulae have been systematically explored else-

where [69].
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First-Generation Formulae

I =
R

Nω +R
(1)

I =
R

Nω +R/2
(2)

I =
R

(N +R)ω
(3)

I =
R

(N +R/2)ω
(4)

N is the number of HIV negative individuals,

P is the number of HIV positive individuals, and

R is the number of assay recent individuals.

Second-Generation Formulae

I =
fR

Nω + fR
McDougal et al. [63] (5)

I =
fR

Nω + fR/2
CDC [23] (6)

where

f =
R/P + ρ2 − 1

(σ − ρ1 + 2ρ2 − 1)
.

Third-Generation Formulae

I =
R− εP

R− εP + (1− ε)Nω
Welte et al. [117] (7)

I =
R− εP

R− ε(N + P ) +Nω
Hargrove et al. [40] (8)

I =
R− εP

R/2− ε(N + P/2) +Nω
CDC [23] (9)

Ir =
R− εP

(1− ε)Nω
McWalter/Welte [71] (10)

where ε = 1− ρ2. To convert form a rate (Ir) to an annual risk of infection (I) use

I = 1− e−Ir .

Tab. 7.3: Formulae.
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7.3.2 Sensitivity Analysis: Recalculation of Incidence Values

For all the full-text articles that unambiguously reported the information required,

we recalculated HIV incidence to examine the impact of methodological choices. Ta-

ble 7.4 shows the incidence estimates as computed by all formulae listed in Table 7.3.

With the exception of a single entry, which may differ as a result of a rounding error,

we were able to recover all the estimates reported in the original papers.

Where the original paper used only a first-generation approach, we evaluated

second-generation formulae using the parameters of McDougal et al. [63] (σ = 0.723,

ρ1 = 0.768, ρ2 = 0.944), and third-generation formulae using ε = 1 − ρ2 = 0.056.

Note that for studies using a window period other than 153 days, the use of these

parameter values is inconsistent, because they were calibrated under the assumption

of a 153-day window period.

Considerable variability in incidence estimates occurs due to the choice of estima-

tor (Table 7.4). As expected, first-generation approaches produced larger incidence

estimates when compared with second- and third-generation approaches. If the

studies that used either a second- or third-generation approach had instead used

a first-generation approach, their incidence estimates would have increased by be-

tween 9% (Li et al. [58], data for the year 2005) and 70% (Hargrove et al. [40]). Had

the studies that used a first-generation approach used a second- or third-generation

approach (with calibration parameters of McDougal et al. [63]), their incidence esti-

mates would have decreased by between 27% (Priddy et al. [84]) and 97% (Jiang et

al. [48], data for “City D All”). It is important to note that the calibration param-

eters used for determining these decreases are unlikely to be valid for the particular

setting of each study; thus, the estimated decreases do not necessarily represent the

true relative overestimation of HIV incidence. They do, however, emphasize the

importance of estimator and parameter choices.

7.3.3 Sensitivity Analysis: Calibration Parameters

In order to explore the sensitivity of the incidence estimates to changes in the cali-

bration parameters, we applied the McWalter/Welte estimator to the sample counts

reported by full-text articles, using a range of false-recent rates and window periods.

Across all studies, we determined the maximum and minimum parameter values

used. To compute a conservative range of values for the sensitivity analyses, we

added a margin of half the difference between maximum and minimum value to the

maximum value (for both false recent rate and window period) and subtracted the

same margin from the lowest value (only in the case of the window period, because

a false-recent rate cannot be negative and the lowest observed value was zero). The
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Tab. 7.4: Incidence estimates.
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resulting ranges were 0% to 8.4% for the false-recent rate and 136 to 204 days for

the window period.

Figure 7.4 demonstrates the impact on incidence estimates of changing the false-

recent rate. The figure shows the expected inverse relationship between incidence

and false-recent rate. It also shows that the rate of change of incidence as a function

of false-recent rate varies from survey to survey. This finding can be explained

by the fact that the various populations surveyed have a ratio of recent infections

to long-term infections that is relatively larger or smaller, suggesting a stage of

epidemic that is more or less mature. For some cases, when the false-recent rate is

too large, negative incidence values occur. This is due to the fact that the number

of false-recent results is overestimated, with the consequence that the numerator in

the estimator (Formula (10)) becomes negative.

Figure 7.5 demonstrates the impact on incidence estimates of changing the win-

dow period. Again, in all cases, incidence declines with increasing value of window

period, but because the window period appears in the denominator, the declines are

not linear. For the ranges of parameter values displayed, the declines are generally

smaller than those that occur due to changes in the false-recent rate.

7.3.4 Recalculation of Confidence Intervals

In Table 7.5 we compute 95% CIs for the reproduced incidence estimates under

several scenarios. To incorporate the effect of parameter uncertainty, we used a

closed-form expression for the coefficient of variation of the estimator derived using

a delta-method approximation [71]. Where a first-generation approach was used in

the original study, we compute the annual risk of infection and uncertainty assuming

that the false-recent rate is set to zero. In the column labeled “Counting error

only”, we report the CIs that result from counting uncertainty, excluding parameter

uncertainty. In subsequent columns, we report CIs taking into account several values

of the coefficient of variation for both the window period and the false-recent rate

(where it is not zero).

7.4 Discussion

We have identified thirty-nine English-language articles published between 2003 and

2009 that used BED assay surveys to estimate HIV incidence. The use of the assay

has generally increased since 2003 (the slight observed decline in the number of

studies from fourteen in 2007 to eleven in 2008 may be due to delayed entry of

studies into the PubMed database). Despite the increase in the use of the assay, the

methods of its application have not converged to one approach.
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Fig. 7.4: Sensitivity of incidence estimates to changes in the false-recent rate

(FRR). Filled circles and error bars show originally published estimates,

solid lines show annual risk of infection as computed using Formula (10)

and dashed lines show 95% confidence intervals due to counting error as

determined using a delta method approximation [71] (excluding parame-

ter uncertainty).

7.4.1 Estimator Choices

With three exceptions [10, 40, 52], all the studies reviewed used either a first-

generation estimator (which assumes that the BED assay has a false-recent rate

of zero, or a second-generation estimator (which adjusts for the fact that the BED

assay is an imperfect test using three additional calibration parameters). The choice

of method can produce very different incidence values. In particular, use of a second-

or third-generation approach, with applicable calibration parameters, leads to sub-

stantially lower incidence estimates than those calculated using a first-generation

approach.

All three studies [10, 40, 52] that used third-generation estimators implemented

the approach of Hargrove et al. [40] and only one study implemented the estimator
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Fig. 7.5: Sensitivity of incidence estimates to changes in the window period. Filled

circles and error bars show originally published estimates, solid lines show

annual risk of infection and dashed lines show 95% confidence intervals

(excluding parameter uncertainty).
 
  
Authors Reported incidence ARI Counting error CoV 5% CoV 10% CoV 15% CoV 20% 
  % (95% CI) %  95% CI 95% CI 95% CI 95% CI 95% CI 
Bärnighausen et al. 3.17 (2.54-3.80) 3.17 2.53-3.80 2.45-3.87 2.26-4.06 2.00-4.31 1.72-4.59 
Buchacz et al. 9.5 (3.9-15.1) 9.22 3.77-14.36 3.69-14.43 3.48-14.62 3.13-14.92 2.68-15.32 
Gupta et al. 1.0 (0.1-4.4) 1.03 0.00-2.43 0.00-2.44 0.00-2.45 0.00-2.46 0.00-2.49 
Hargrove et al. 6.0 (5.2-6.9) 5.92 5.04-6.79 4.78-7.04 4.24-7.57 3.59-8.19 2.90-8.84 
Hu et al. 17.3 (12.8-24.2) 17.10 14.06-20.02 13.68-20.38 12.72-21.25 11.46-22.38 10.03-23.61 
Jiang et al. (City D All) 2.07 (1.26-2.89) 2.07 1.26-2.88 1.24-2.90 1.17-2.97 1.06-3.08 0.93-3.21 
Jiang et al. (City D IDU) 9.58 (5.83-13.34) 9.57 5.86-13.14 5.74-13.25 5.43-13.54 4.94-13.98 4.33-14.53 
Karita et al. (Masaka) 7.5 (5.2-9.9) 7.51 5.18-9.78 5.07-9.89 4.77-10.17 4.32-10.59 3.79-11.09 
Karita et al. (Kakira) 6.2 (4.4-8.0) 6.20 4.44-7.92 4.34-8.01 4.07-8.27 3.69-8.64 3.23-9.08 
Li et al. (Data for 2005) 2.9 (0.8-5.0) 2.92 0.55-5.24 0.53-5.26 0.48-5.31 0.39-5.39 0.28-5.49 
Li et al. (Data for 2006) 3.6 (1.3-5.9) 3.59 0.94-6.17 0.91-6.20 0.84-6.26 0.73-6.37 0.58-6.51 
Mermin et al. 1.8 (1.5-2.1) 1.74 1.37-2.10 1.32-2.15 1.21-2.26 1.07-2.40 0.91-2.56 
Nesheim et al. 0.24 (0.20-0.29) 0.24 0.17-0.30 0.17-0.31 0.16-0.32 0.14-0.33 0.12-0.35 
Priddy et al. 1.3 (0.6-2.1) 1.33 0.58-2.08 0.57-2.09 0.53-2.12 0.48-2.17 0.42-2.24 
Xiao et al. (IDUs) 8.2 (5.9-11.5) 8.23 5.49-10.88 5.38-10.99 5.07-11.28 4.60-11.71 4.03-12.23 
Xiao et al. (County B) 4.2 (3.5-5.0) 4.18 3.43-4.93 3.32-5.03 3.07-5.27 2.75-5.59 2.39-5.93 
  
The significant digits in the reported incidence column are the same as reported in each of the studies. 
The table includes only studies which provide sufficient information for independent confidence interval estimation. 
  
Key:  ARI indicates annual risk of infection (using Formula 10 and conversion formula, see Table 3); CoV, coefficient of variation for parameters. 

 

Tab. 7.5: Confidence intervals.
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proposed by McWalter and Welte [71]. It is perhaps not surprising that third-

generation estimators had more limited application because these estimators have

only been recently published [40, 117, 71].

7.4.2 Calibration

It is incontrovertible that the BED assay produces a certain proportion of false-

recent results. All studies that have estimated a false-recent rate for the BED

assay have reported non-zero values [10, 63, 40, 52]. Three studies using a first-

generation approach reported incidence estimates based on the BED assay that were

substantially higher than incidence estimates using other techniques [44, 109, 113].

These results are consistent with the fact that failure to account for false-recent

samples produces estimates that are too high. Two further studies reported that

the BED assay overestimated incidence, but did not report the approach used to

calculate incidence [19, 55]. Since first-generation approaches do not account for

false-recent results, incidence estimates using these approaches should be considered

invalid unless further justification for using a false-recent rate of zero can be provided.

None of the studies reviewed provided such justification.

Second- or third-generation approaches provide more accurate incidence esti-

mates if the correct calibration parameters are used. However, calibration param-

eters differ by setting, as illustrated by four of the studies reviewed. The original

estimates for sensitivity and specificity were provided by McDougal et al. [63], who

verified that a second-generation incidence estimate was consistent with an incidence

estimate obtained in a longitudinal cohort study. Hargrove et al. [40] found that

the false-recent rate for postpartum women in Zimbabwe is similar to that found by

McDougal et al. [63], but that the mean window period was larger. Bärnighausen

et al. [10] found that the false-recent rate for a population in rural KwaZulu Natal,

South Africa, was lower than the value reported by Hargrove et al. and McDougal

et al. All three of these studies found that BED assay-based incidence estimates,

computed using local parameters, were similar to incidence estimates based on longi-

tudinal data from the same population. Karita et al. [52] showed that the BED assay

in Uganda using second- and third-generation approaches (with the parameters of

McDougal et al. [63]) overestimates incidence values. They also reported prospec-

tive data that indicated a false-recent rate of 27% (8 of 30 individuals with follow-up

data past one year) with a 95% CI of 12-46%, which is higher than the false-recent

rate of 5.6% used in their incidence calculations. The binomial CI was not reported

in the original paper; it was computed using the exact method. Unfortunately, this

very uncertain point estimate for the false-recent rate leads to negative incidence

estimates. If, however, a false-recent rate of 22% had been used, the BED-based
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incidence estimates would have been similar to the values obtained by longitudinal

surveillance (e.g. applying Formula (10) to their survey counts for Masaka gives an

incidence of 1.5%, which is similar to the longitudinal incidence estimates of 1.7%

and 1.3%).

With one exception, all studies that used the second generation approach did so

in conjunction with the parameter values reported by McDougal et al. [63]. None

of these studies independently calibrated sensitivity and specificity, or justified on

other grounds why these values were likely to be correct for the particular study

setting. This potentially undermines their validity. It is perhaps not surprising

that researchers using second-generation approaches did so with parameter values

from another setting, because studies to calibrate these parameters require frequent

follow-up of large cohorts for periods of a year or longer, making calibration logisti-

cally complex and expensive to conduct [63].

It is important to emphasize that the use of exclusion or reclassification cri-

teria should be applied consistently in the calibration-parameter-estimation and

incidence-estimation surveys. Even if the value of a calibration parameter is lo-

cally estimated, it may not be appropriate for incidence estimation if the estimation

sample differs systematically from the calibration sample. For example, McDougal

et al. estimated long-term specificity using “specimens from longer-term-infected

individuals not known to have clinical AIDS, opportunistic infections, or to be on

treatment” [63]. The same exclusion criteria should thus be applied to samples in

studies using the McDougal parameter values in incidence estimation. However,

only one of the studies that used the McDougal parameter values collected informa-

tion on AIDS diagnosis and antiretroviral treatment with the intention to exclude

individuals from the sample for incidence calculation [58]. This issue of systematic

differences between calibration and incidence samples is especially important if the

differences relate to variables associated with the probability of false-recent BED

assay diagnosis.

7.4.3 Confidence-interval Calculation

Comparing the CIs reported in the literature with those we computed under the

assumption of no parameter uncertainty shows that the reported CIs were reasonable

and in some cases overestimated uncertainty [44, 34]. Only three studies computed

CIs that took into account the uncertainty of the calibration parameters [44, 34, 88].

When we included calibration uncertainty, the CIs of many incidence point estimates

were substantially widened. We used somewhat artificial values for the coefficient

of variation for the parameters—obviously, in real-life applications, the uncertainty

due to error in the measurement of parameters will be a function of the statistical
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power of the particular calibration study.

As shown by our CI calculations, surveys with fewer than several thousand indi-

viduals produce results with large uncertainty. Findings of studies with such small

sample sizes should be interpreted with caution. We do not discuss the issue of sam-

ple size calculations further, but refer the reader to ongoing work on characterizing

the necessary sample sizes to ensure reasonable precision [118].

7.5 Conclusion

Valid tests for recent HIV infection hold great promise for HIV research in that

they allow the estimation of incidence using cross-sectional surveys. Such tests

could thus substantially increase the capacity to monitor and understand the de-

velopment of the epidemic and the impact of interventions at the population level.

In the past five years, the BED assay has found worldwide application as a test

for recent infection. However, as this review and sensitivity analysis demonstrate,

many of the BED-derived HIV incidence estimates may not be valid. In particular,

incidence estimates derived using first-generation approaches should be considered

invalid, because they assume a false-recent rate equal to zero. Incidence estimates

derived using second and third-generation approaches may be valid, but only if the

calibration parameters are locally appropriate. Confidence intervals in general un-

derestimated the associated incidence uncertainty because they did not account for

parameter uncertainty.

It is possible to produce accurate incidence estimates if false-recent results are

correctly accounted for and if studies recruit a sufficiently large number of partici-

pants. Based on these findings, we make recommendations for the future use of the

BED assay. These recommendations are applicable not only to the BED assay, but

also more broadly to other tests for recent HIV infection (including algorithms [56]

with multiple tests and clinical information).

• Studies should report all information necessary for readers to independently

determine incidence point and uncertainty estimates. In particular, studies

should report (1) sufficient data to permit reconstruction of the population

counts of HIV-negative, HIV-positive and recently-infected individuals; (2) the

approach, formulae and parameter values used in incidence point estimation;

and (3) the method used to estimate CIs.

• The estimation of incidence should be based on methods that account for

false-recent results. In particular, the third-generation approach of McWalter

and Welte [71] should be used because it is both parsimonious (as opposed to
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second-generation estimators that are over-parameterized) and the least biased

of the estimators reviewed [69].

• Locally-valid estimates of the calibration parameters should be used for com-

puting incidence. If locally-valid estimates are not available, sensitivity of

incidence to changes in these parameter values should be explored. It is par-

ticularly important to use an accurate estimate for the false-recent rate.

• As far as possible, further clinical or biomarker information should be used

to reduce the false-recent rate. Furthermore, any additional information used

to exclude or reclassify individuals should be applied consistently in both the

study estimating the false-recent rate and the subsequent incidence estimation

study. (For example, it would be incorrect to calculate incidence in a sam-

ple that includes individuals on ART using a false-recent rate estimated in a

sample that excluded individuals on ART).

• CIs for incidence estimates should be computed using approaches that take

into account parameter uncertainty.

Debate on the most appropriate approach for dealing with false-recent results

continues [15, 116, 14, 39, 62]. The above recommendations reflect our judgments on

best current practice as identified through a systematic review of published studies

and theoretical considerations.



Chapter 8

Reply to ‘Should biomarker estimates of HIV

incidence be adjusted?’

∗ This chapter was coauthored with A. Welte and T. Bärnighausen [116], and is

reproduced with permission from Wolters Kluwer Health (Rightslink licence no.

2601230822792): AIDS (2009) 23:2062-3 DOI: 10.1097/QAD.0b013e32832eff59.

8.1 Correspondence

Brookmeyer [15] is right to attempt the important task of reviewing and contrasting

different approaches to biomarker-based HIV incidence estimates. The two ‘results’

highlighted in his abstract are as follows:

1. “The McDougal adjustment has no net effect on the estimate of HIV incidence

because false positives exactly counterbalance false negatives”.

2. “The Hargrove adjustment has a mathematical error that can cause significant

underestimation of HIV incidence rates”.

These findings appear to undermine the progress made in explaining why ear-

lier BED assay-based methods have tended to overestimate incidence. However,

both of Brookmeyer’s results are incorrect. Given the evidence for subpopulations

who fail to progress out of the biomarker-defined ‘recent’ category (so-called assay

nonprogressors), ‘adjustment’ is indeed necessary.

Brookmeyer outlines a conception of incidence estimation requiring demographic

and epidemic equilibrium conditions over the past M years, in which M is the

maximum time an individual remains classified ‘recent’ by the biomarker. He then

claims that M is 3 years for the BED assay, thus excluding the possibility of assay

nonprogressors. This seems hard to sustain in light of various data of which we

are aware [63, 40, 10]. Hargrove et al. [40] provide data on postpartum mothers

indicating that 5.2% of those surveyed remain persistently classified as ‘recent’ by

the BED assay. McDougal et al. [63] infer from their data that an individual has
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a 5.6% probability (reported as a long-term specificity ρ2 = 0.994) of testing below

BED threshold, if infected longer than twice the mean window period of the assay.

Under the assumption of no assay nonprogressors, Brookmeyer presents an argument

to demonstrate that no ‘adjustment’ is required. His first result (point one above)

is therefore inappropriate, as it depends on an assumption that is inconsistent with

the data-driven findings in the publications he critiques.

Brookmeyer reports a numerical simulation in which the Hargrove estimator (us-

ing ε = 0.052 = 1− ρ2) apparently produces egregious underestimates of incidence,

possibly even negative values. The cause of the underestimate is inconsistent calibra-

tion. The simulated epidemic has no assay nonprogressors, but he uses Hargrove’s

‘adjusted’ estimator that assumes them to be 5.2% of the population. Although

it is not reported, a near identical underestimate arises with the McDougal for-

mula (when, equivalently, ρ2 = 0.948 is used). The bias merely reflects that the

incidence estimators are unavoidably very sensitive to the calibration of ρ2, a very

important and usually neglected point [10]. Conversely, if one samples or simulates

a population in which there is a subpopulation of assay nonprogressors, then ‘un-

adjusted’ estimators are well known to overestimate incidence because a dispropor-

tionate number of ‘false recent’ classifications accumulate in the population. In this

situation, the McDougal and Hargrove estimators, when appropriately calibrated,

yield results with modest bias, dominated by counting error for reasonable sample

sizes [40, 10]. We provide an analytical closed-form demonstration of inherent bias

in each of these methods [69]. Brookmeyer’s other result (point two above), thus

incorrectly attributes substantial bias exclusively to the Hargrove estimator when in

fact both the McDougal and Hargrove estimators exhibit similar bias, which results

from Brookmeyer’s inconsistent calibration of the estimator.

As we have shown elsewhere [69, 117], it is possible to simplify the McDougal

framework, under its own assumptions, but not as Hargrove or Brookmeyer sug-

gest. Detailed analysis reveals an identity relating the sensitivity and specificity

parameters, leading to a simpler estimator that is easier to calibrate. We have also

derived a formally rigorous framework for biomarker-based incidence estimation that

specifically accounts for assay nonprogressors [71], and can also account for assay

regressors under suitable calibration [10]. This approach requires fewer assumptions

and is less prone to bias than either the McDougal or Hargrove method.

Brookmeyer notes the unsatisfactory correspondence between published bio-

marker-based incidence estimates and estimates based on prospective follow-up. His

discussion of possible sources of error focuses on sampling bias and imperfect mean

window period estimation. Although these issues are important, he proposes no

way of dealing with assay nonprogressors. In his conclusion, Brookmeyer remarks
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that “if, however, a proportion of HIV-positive persons are identified who remain in

the window period indefinitely, then an adjustment would be necessary”. This does

little to soften his strong statements, which undermine prior work addressing the

issue of nonprogressors that has helped us move beyond the naive estimators.

Using data from cross-sectional surveys to estimate incidence will remain an

attractive approach, but it requires the use of a robust estimator for which the correct

applicable calibrations have been performed. In particular, accurate calibration

of long-term specificity is of vital importance to correctly account for biomarker

misclassification.



Chapter 9

Incidence from Cross-sectional Surveys:

Improved Characterization of Tests for Recent

Infection

∗ This chapter was coauthored with A. Welte and R. Kassanjee [65].

Abstract

Background: Since it is cheaper, quicker and easier than prospective follow-up,

incidence estimation from cross-sectional surveys has gained much attention.

The estimators used with this methodology require a characterization of the

Test for Recent Infection (TRI), which has variously been specified using a

combination of mean window periods, sensitivities, specificities and false-recent

rates. Recent research has highlighted problems with such characterizations

and raised debate about how best to specify TRI properties.

Methods: By introducing a predetermined cutoff time (τ), and making the as-

sumption of constant incidence for a period τ preceding the survey, we provide

a precise and parsimonious characterization of a TRI, and derive a new inci-

dence estimator. The estimator depends on three parameters; the probability

of remaining in the window period at a time τ after infection, the mean window

period for those who leave it before τ and the proportion of the subpopulation

infected for longer than τ that are (incorrectly) classified recent by the test.

The new estimator is contrasted with the previous estimators of McDougal et

al., Hargrove et al. and McWalter & Welte.

Results: Although the epidemiological assumptions required are more restric-

tive than those of the McWalter/Welte method, the characterization of the TRI

is more general, better defined and more amenable to estimation. The McDou-

gal and McWalter/Welte estimators are shown to be special cases of the new

estimator. The extent to which the previous estimators differ from the new esti-

mator is shown under various scenarios. The assumption of constant incidence

for a period τ before the survey is shown to be benign under realistic epidemic

scenarios.

Conclusion: With a precise formulation of the TRI parameters and the as-
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sociated incidence estimator, the issues that have caused debate in the area of

cross-sectional incidence estimation are clarified.

9.1 Introduction

It is of considerable epidemiological importance to develop methodologies for es-

timating disease incidence. For some time there has been substantial interest in

methods for estimating incidence from cross-sectional data [17, 47, 80, 63, 40, 71].

Prevalence, in general, is a reflection of historical incidence, convolved with the

susceptible population dynamics and survival after disease acquisition. This con-

volution renders disease prevalence an indirect and unresponsive proxy for recent

incidence, unless disease duration is very short. In the case of lifelong infections

such as HIV, a more direct view of recent incidence is required. Cross-sectional test-

ing for “recent infection” in principle provides a simple proxy for recent incidence,

but tests for “recent infection”, based on some combination of laboratory assays

and clinical information exhibit considerable inter-subject variability, including sub-

populations with anomalous responses, sometimes loosely referred to as false-recent

results. These lead to subtle complications in the interpretation of data and deriva-

tion of provably consistent estimators, which have raised some controversy in the

recent literature [15, 39, 62, 116, 14]. This article briefly reviews the topic and

presents new analysis which synthesizes the ideas currently in contention.

A generic framework for recent infection tests applied to HIV can be formulated

by considering an immune response which increases1 over time post infection. A

quantitative result (typically an optical density of some analyte) can be cast into

a categorical result by use of a classification threshold, below which the response

is regarded as indicative of “recent infection”. An application of a cross-sectional

survey classifies individuals of the sample population as healthy (susceptible) indi-

viduals, or infected individuals who are either under or over the specified threshold

on the immune system response. The counts in the survey, corresponding to these

categories, are denoted NH, NU and NO respectively.

Developers of recent infection tests face a fundamental trade-off between the need

for the duration of recent infection to be long enough, to ensure that the population

proportion of individuals classified as recent is sufficiently large to provide statistical

power in sample populations of attainable size, and not so long that the test is

unrepresentative of “recent infection”. For example, a duration of one month is too

short, while a duration of three years is too long.

All candidate biomarkers exhibit non-trivial inter-subject variability in response,

1 There is no loss of generality if the response decreases with time.
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which is a source of complication in the analysis. Of serious concern is the subpopu-

lation of individuals that exhibit anomalous responses on the assay. Two important

classes are the assay non-progressors, who never develop enough of a response to HIV

infection to cross the threshold, and the regressors, who initially cross the threshold

but then drop below it again (e.g. due to immune failure as a result of late-stage

disease progression, or due to treatment). When the classification threshold for a

biomarker is increased there is a corresponding increase in the duration of recent in-

fection. There is, however, also an increase in the proportion of anomalous results.

Thus, developers must also face another fundamental trade-off between length of

duration and the proportion of anomalous results.

We review a number of approaches that have been suggested to deal with these

anomalous cases and describe some of the shortcomings associated with each. Ini-

tially, we describe a simple estimator that does not directly account for anomalous

results. We then describe generalizations of this approach that have been suggested

in the literature.

All these methods require some investment in parameterizing the interaction of

the proposed test with the intended study population (i.e., estimator calibration).

There is currently no consensus on a unified framework within which to compare

these approaches or to address their limitations [15, 39, 62, 116, 14]. By providing

precise definitions for the parameters that characterize a test for recent infection,

we derive a new estimator which unifies the previous approaches.

9.2 Previous Estimators

A recent infection test in which all individuals progress to the recent/non-recent

infection threshold, and there is no significant reversion below it, leads to the simple

estimator

I =
NU

ωNH

, (9.1)

where ω is the duration of recency (also known as the mean window period). In

the limit of a slowly varying susceptible population, this provides an estimate of the

weighted incidence, with the natural weighting proportional to the availability for

being infected and remaining classified recent once infected [51, 71]. The incidence

weighting scheme is given explicitly by

IW =

∫ 0
−∞ I(t)H(t)SU(−t) dt∫ 0
−∞H(t)SU(−t) dt

,

where I(t) is instantaneous incidence, H(t) is the susceptible population and SU(t)

is survival in the state of being under-threshold on the assay (i.e., being classified
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as recent). Alternatively, the incidence estimated in this manner can be interpreted

as the “incidence in the recent past” [16].

This estimator may be used even when anomalous results are present—there

are, however, two undesirable consequences. Firstly, incidence will be weighted

over the time periods for which the anomalous results are present. When assay

non-progressors are present, this means that the estimated incidence is a weighted

average over the whole course of the epidemic. This effect has been demonstrated in

a recent paper by Brookmeyer [16], where he calculates a “shadow time” associated

with such weighted incidence estimates. These shadow times are unreasonably large

when even a small percentage of assay non-progressors are present in the population

of interest. Secondly, and perhaps more seriously, the calibration of ω becomes more

onerous. When a subpopulation of assay non-progessors is present, then estimation

of ω must take place over the full life-span of these individuals. Moreover, since

individuals in this subpopulation exit the “recently-infected” category as a result

of death or treatment, this means that ω is less a property of the assay and more

dependent on environmental factors that are likely to change with location and

time (e.g. access to primary health care, ART coverage, local mix of opportunistic

challenges and nutrition). For example, this implies that ω in North America would

be very different to ω in rural Africa. Since estimation of the mean window period is

difficult and expensive, requiring follow-up over the lifetime of the non-progressors,

this means that providing an accurate location- and time-specific estimate of ω

for use with estimator (9.1) will be difficult. In particular, it is hardly realistic to

expect that a calibration study be conducted over a period of 10 to 20 years, and that

analysis of cross-sectional data should wait for completion of such a study. Moreover,

since ω is time dependent, the result of such a calibration study may not be valid

for very long. This implies that, if even a very small proportion of individuals are

assay non-progressors, it will be impractical to calibrate this estimator.

As a result of these complications, a number of approaches have been proposed

to estimate, and account for, the effect of anomalous test results. The first approach

was proposed by McDougal and colleagues [63]. They impose hard time boundaries

to define up to three states of infection (recent, non-recent and long), which are

then conceived as imperfectly reflected in the test. An estimator making use of

three extra parameters (sensitivity, short-term specificity and long-term specificity)

is introduced.

Hargrove and colleagues [40], under the assumption that sensitivity is approxi-

mately equal to short-term specificity provide a reduced estimator that depends only

on a mean window period and a false-recent rate, being one minus the long-term

specificity in the McDougal approach. More recently, it has been shown that there is
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a consistent method for reducing the parameters in the McDougal approach [117, 69].

The biases inherent in the McDougal and Hargrove approaches have also been in-

vestigated [69].

The reduction of the McDougal estimator and bias comparisons for the McDougal

and Hargrove parameters were inspired and facilitated by the derivation of a new

estimator [71] that makes fewer assumptions than either of these two approaches.

In the next section we provide an intuitive derivation of this approach, but point

the reader to the original paper for the full survival analysis derivation.

For the remainder of the paper, we shall refer to the following simple incidence

estimator

I =
NTR

ωNH

, (9.2)

where NTR is the estimate of the number of individuals in the sample that are

“truly recent”. The subtlety will be in defining precisely what “recency” means,

and providing the procedures and parameters required to estimate NTR and ω. By

addressing these issues we aim to provide a new incidence estimator that accounts

for the sources of false-recent results and has clear guidelines on how it should be

calibrated.

9.3 Accounting for Assay Non-progressors

All previous attempts to derive incidence estimators, that account for false-recency,

have made the assumptions of no regression and equal survival for assay progressors

and assay non-progressors [69]. Under these assumptions, we have previously derived

an incidence estimator using survival analysis [71]. Briefly, “recent infection” and

the parameters that describe it are defined as follows:

• For individuals that progress on the assay, recency means testing below-thresh-

old.

• The duration of recency ωR is defined as the mean time spent under the thresh-

old, for those individuals that progress.

• False-recent results are produced by individuals that fail to progress on the

assay. The probability of not progressing is denoted by PNP.

The first point above means that recent infection is a characteristic of the test and

is not defined by a definite time boundary. If we now “assign” recency times for the

non-progressors from the same distribution applicable to assay progressors then we
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can define an explicit incidence weighting scheme as follows:

IW =

∫ 0
−∞ I(t)H(t)SR(−t) dt∫ 0
−∞H(t)SR(−t) dt

,

where, as before, I(t) is instantaneous incidence and H(t) is the susceptible popu-

lation. In contrast to the previous weighting scheme, SR(t) is now survival in the

state of being under-threshold on the assay conditional on progressing. In the limit

of a slowly varying susceptible population, the denominator may be written as ωRNH

(compare with (9.2)), and so it remains to find an estimate of the numerator

NTR =

∫ 0

−∞
I(t)H(t)SR(−t) dt.

The assumptions of no regression and equal survival mean that, at every stage

in the epidemic, the ratio of assay non-progressors to assay progressors is PNP to

1 − PNP. This is also the ratio of the number of false-recent results (denoted NFR)

to the number of individuals with a test result over-threshold:

NFR

NO

=
PNP

1− PNP

.

The number of true-recent results is the number of individuals classified by the

biomarker as under the threshold minus the number of false-recent results:

NTR = NU −NFR = NU −
PNP

1− PNP

NO.

In conjunction with the expression for the denominator, this gives the estimator

I1 =
NU − PNP

1−PNP
NO

ωRNH

=
NU − PNP(NU +NO)

ωR(1− PNP)NH

. (9.3)

The number of true-recent results in this estimator is the same as that which

arises in the estimator of McDougal et al. [63]. Their estimator does, however, use

a different denominator (See [69] for further details).

9.4 Relaxing Assumptions

By relaxing the assumptions of no regression and equal survival for assay progressors

and assay non-progressors, an incidence estimator, similar to the previous one, may

by obtained using a slightly different definition of the parameters that describe

recency:

• For individuals that progress on the assay, recency means testing below-thresh-

old.
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• The duration of recency ωR is defined as the mean time spent under the thresh-

old, for those individuals that progress.

• False-recent results are produced by individuals that fail to progress on the

assay and individuals that revert below the threshold as a result of immune

failure or treatment. A general false-recent rate (FRR)2, denoted by φ, is

defined as the proportion of non-recent infections that are incorrectly classified

as recent.

The first two points are the same as in the previous section, and, as a result, so is the

incidence weighting scheme. The FRR described in the third point is a nontrivial

function of the progression of the epidemic (including historical incidence and suscep-

tible population), the survival functions for assay progressors and non-progressors,

and the rate at which regression occurs.

To derive a new expression for NTR, we note that the definition of the FRR may

be written as

φ =
NFR

NO +NFR

,

which can be rearranged to provide an estimate of the number of false-recent results

NFR =
φ

1− φ
NO.

As before, the number of true-recent results is the difference between the number

of individuals that are under-threshold and the number of false-recent results, i.e.,

NTR = NU −NFR. Thus, the estimator can be written as

I2 =
NU − φ

1−φNO

ωRNH

=
NU − φ(NU +NO)

ωR(1− φ)NH

, (9.4)

which is the same as (9.3), except that PNP has been replaced by φ.

These definitions raise the question, “Is it possible to specify a precise and consis-

tent procedure to estimate the parameters (ωR and φ) required by this estimator?”

If one is sure that all individuals that will progress on the assay do so before a

known maximum progression time (T ), then there are at least two consistent meth-

ods to provide estimates for ωR. The first involves prospectively enrolling individuals

with an approximately known infection time into a follow-up study (with frequent

visits) for a period at least as long as the maximum progression time. An empirical

survival curve of being under the threshold, for individuals that progress, is then

2 Note that the FRR is in fact a false positive rate. We prefer to use the word ‘recent’ instead

of ‘positive’ to emphasize that it relates to the test for recency, and not to the test for disease

positivity.



9.5 New Definitions for Parameters and a New Estimator 110

produced and integrated to obtain an estimate of the mean duration3. The sec-

ond method involves using a maximum likelihood approach on individuals that are

followed-up at intervals greater than the maximum progression time [115, 54].

Estimates of ωR will be biased if there are a significant number of late progressors,

i.e., individuals that progress at a time post-infection longer than the assumed cut-

off T . This raises the question, “How can one be confident that the value of T chosen

is at least as large as the maximum progression time?” This is an issue that has

been raised in the recent debate in the literature on biomarker based estimators [15,

39, 62, 116, 14].

The estimation of φ is perhaps more problematic. In a previous paper [10], a

cutoff time T equal to twice the mean window period was chosen, and the FRR was

estimated as the proportion of under-threshold individuals with a known infection

time greater than T . This makes the assumption that all such individuals are falsely

classified as recent, which may not be true if late progressors are present.

The FRR, as defined, is a product of the whole history of the epidemic. However,

the procedure outlined in the last paragraph produces an estimate for the FRR that

is only applicable to the subgroup of individuals with a time since infection greater

than T . If the proportion of false-recent results for the subgroup of individuals with

a time since infection less than T is different from this estimated FRR, then this

procedure provides a biased estimate of φ. An unbiased estimate of φ is a non-trivial

mixture of the FRR estimates applicable to both subgroups.

As noted previously, the change from using a probability of not progressing

to using a general false-recent rate has not fundamentally changed the incidence

weighting scheme described in the previous section. If the maximum progression

time T is known, however, then one may reduce the limits of integration and the

weighted incidence can be written as

IW =

∫ 0
−T I(t)H(t)SR(−t) dt∫ 0
−T H(t)SR(−t) dt

.

9.5 New Definitions for Parameters and a New

Estimator

The observation that knowledge of the maximum progression time changes the limits

of integration on the incidence weighting scheme suggests a new scheme in which

one specifies a cutoff time and explicitly writes the weighting scheme with the lower

3 This is similar to the procedure used by McDougal et al. [63], except that it is not clear from

their paper whether or not they removed the assay non-progressors when computing their curve.
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limit of integration specified by the cutoff time. New definitions for the parameters

that describe recency may then be proposed.

• For individuals that progress on the assay before a prespecified cutoff time τ ,

recency means testing below-threshold.

• The duration of recency ωτ is defined as the mean time spent under the thresh-

old, for those individuals that progress on the assay before τ .

• False-recent results are produced by the fraction of individuals that fail to

progress on the assay before τ . The probability of not progressing before τ is

denoted by Pτ .

• All individuals with an infection time longer than τ are by definition non-recent

infections. An FRR φτ is defined as the proportion of individuals infected for

longer than τ who are classified (falsely) as recent.

The first point means that recent infection is now a characteristic of the test and the

cutoff time, which is conveniently chosen (e.g. one year). The last point provides a

precise definition of an epidemic dependent FRR more amenable to estimation than

the FRR proposed in the previous section. Note that the three parameters ωτ , Pτ
and φτ have been written with the subscript τ to emphasize that they are functions

of the value chosen for τ . Of course, one would like τ to be chosen so that most

individuals who progress do so before that time. This ensures that the false-recent

rate, as defined, will not unduly depend on incidence in the recent past.

The incidence weighting scheme is then written as

IW =

∫ 0
−τ I(t)H(t)SR(−t) dt∫ 0
−τ H(t)SR(−t) dt

. (9.5)

As before, in the limit of a slowly varying susceptible population, the denominator

may be written as ωτNH, and so it remains to find an estimate of the numerator

NTR =

∫ 0

−τ
I(t)H(t)SR(−t) dt. (9.6)

Let the number of HIV seropositive individuals in the population be given by n

(i.e., n = NU +NO). The number of seropositive individuals can also be written as

n =

∫ 0

−∞
I(t)H(t)S(−t) dt,

which depends on the historical incidence, the number of susceptible individuals and

the post-infection survival of HIV infected individuals S(t). Denote the number of
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seroconverters with a time since infection less than or equal to τ by nt≤τ and those

with a time greater than τ by nt>τ . The number of individuals in the population

with a time since infection less than τ can be written as

nt≤τ =

∫ 0

−τ
I(t)H(t)S(−t) dt. (9.7)

We now make the following three observations:

• The total number of individuals in the population that are under-threshold

is equal to the number of individuals that are truly recent infections plus the

number of false-recent results.

• The number of individuals with an infection time less than τ that are truly non-

recent is nt≤τ−NTR. By definition, Pτ specifies the fraction of these individuals

that have failed to progress prior to τ , and, as a result, are incorrectly classified

as recent. Hence the number of false-recent results with an infection time less

than τ is Pτ (nt≤τ −NTR).

• The number of false-recent results with an infection time greater than τ is just

the FRR, φτ , multiplied by nt>τ = NU +NO − nt≤τ .

These observations lead to the expression

NU = NTR + Pτ (nt≤τ −NTR) + φτ (NU +NO − nt≤τ ). (9.8)

Now, in order to get an estimate for nt≤τ , make the assumption of uniform

infection events in the population over the last time period τ , i.e., I(t)H(t)S(−t) =

f0. This is the same assumption made by McDougal et al. [63, 69] and is equivalent

to the following assumptions:

• Incidence is constant over the last period τ ,

• Susceptible population is constant over the last period τ , and

• No death as a result of infection occurs in a period τ post-infection (i.e.,

S(t) = 1 for t ∈ [0, τ ]).

These assumptions, in conjunction with (9.7) and (9.6), mean that

nt≤τ = τf0 =
τ

ωτ
(ωτf0) =

τ

ωτ
NTR,

which, in conjunction with (9.8), yields an expression for NTR given by

NTR =
NU − φτ (NU +NO)

1− Pτ + τ
ωτ

(Pτ − φτ )
.
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Having computed an estimate for the numerator (compare with (9.2)) we obtain a

new estimator for incidence given by

I3 =
NU − φτ (NU +NO)

(ωτ (1− Pτ ) + τ(Pτ − φτ ))NH

. (9.9)

Note that if Pτ = φτ = PNP we recover the previous estimator (9.3), and if Pτ =

φτ = φ we recover estimator (9.4).

As mentioned previously, the assumptions made in deriving this estimator are

the same assumptions made in the derivation (and reduction [69]) of the McDougal

estimator [63], with one important exception. McDougal et al. made the assumption

that the empirical survival curve, of individuals in the state of recency, used for

calibration was flat after τ = 2ω. This assumption has been relaxed by allowing Pτ
to be different from φτ .

9.6 Numerical Simulations

The assumption of constant incidence and susceptible population used in deriving

the new estimator is stringent, and it is necessary to understand the kinds of biases

that arise when realistic transient conditions occur. For this reason, we explore the

bias that may be expected under realistic violations of this assumption.

For demonstration purposes, suppose incidence and susceptible population vary

according to the exponential functions of time given by

I(t) = I0e
αt and H(t) = H0e

βt, (9.10)

where I0 and H0 are the instantaneous incidence and susceptible counts at the time

of the survey, and α and β are factors expressing the rate at which incidence and the

susceptible population are changing. We also assume that the survival function SR

is generated using a Weibull distribution with scale parameter l = 0.44 and shape

parameter k = 7, corresponding to a mean of 150 days and a standard deviation of

25 days. A cutoff time τ = 1 year is selected, which means that ωτ = 150 days, and

the probability of not progressing was set to Pτ = 2%.

Figure 9.1 shows the bias, being the relative difference between IW and I3, as

a function of the FRR φτ and the incidence growth rate (expressed as an annual

percentage, i.e., −50% means a halving of incidence in one year, while 100% means

a doubling). This plot was produced for the situation in which there is no growth

of the susceptible population. See the Appendix for a derivation of the expressions

used.

When the annual growth rate of the susceptible population is set to 10% the

plot produced is the same as that shown, except the surface is shifted upwards
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Fig. 9.1: Bias between IW and I3 expressed as a percentage.

by approximately 2%. Similarly, when the annual growth rate is set to -10% the

surface is shifted downward by about 2%. This is consistent with the bias findings

in McWalter & Welte [71].

This exercise shows that the bias introduced by making the assumption of con-

stant incidence and susceptible population over a time period τ prior to the survey

is benign—of the order of a few percent.

It is also interesting to explore the extent to which the estimator I2 is different

from I3. Using the parameter choices ωR = ωτ and φ = φτ for the estimator I2, the

Appendix derives an expression for the relative difference between the two estimators

as a function of δ, being the relative difference between Pτ and φ

δ =
Pτ − φ
φ

.

Figure 9.2 shows the relative difference between the estimators as a function of

φτ in the range 0 to 5% and the extent to which Pτ is different from φτ expressed

as a relative percentage difference (i.e., δ = −100% means Pτ = 0 and δ = 100%

means that Pτ = 2φτ ). The difference is also of the order of a few percent, but large
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enough to warrant further investigation.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

−100

−75

−50

−25

0

25

50

75

100

−8

−6

−4

−2

0

2

4

6

8

 ← −2

 ← 0

False−recent rate (%)

 ← −4

 ← −6

Relative Difference Between New and Old Estimators

 ← 2

Relative difference   
between Pτ and φτ (%)

 ← 4
 ← 6

R
el

at
iv

e 
di

ffe
re

nc
e

in
 in

ci
de

nc
e 

(%
)

Fig. 9.2: Relative difference between I3 and I2 expressed as a percentage.

9.7 Appendix

9.7.1 Bias Computation

The expressions for I(t) and H(t) given by (9.10) mean that

IW =
I0
∫ 0
−τ e

(α+β)tSR(−t) dt∫ 0
−τ e

βtSR(−t) dt
.

In order to evaluate I3, recall that

NU = NTR + Pτ (nt≤τ −NTR) + φτ (NU +NO − nt≤τ ),

in which case the numerator of I3 can be written as

(1− Pτ )NTR + (Pτ − φτ )nt≤τ .
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We also have

NTR = H0I0

∫ 0

−τ
e(α+β)tSR(−t) dt

and

nt≤τ = H0I0

∫ 0

−τ
e(α+β)t dt.

Substituting these expressions into the estimator I3 and noting that NH = H0 yields

I3 = I0

(
(1− Pτ )

∫ 0
−τ e

(α+β)tSR(−t) dt+ (Pτ − φτ )
∫ 0
−τ e

(α+β)t dt

ωτ (1− Pτ ) + τ(Pτ − φτ )

)
.

The bias may now be computed using numerical integration on the expression

for the relative difference

r =
IW − I3
IW

.

Note that, when the relevant substitutions are performed, this expression is inde-

pendent of I0 and H0, which means that the bias is only dependent on the rates of

growth of the incidence and susceptible population, not the values at the time of

the survey.

9.7.2 Relative Difference Between I3 and I2

Here, we derive an expression for the relative difference (r) between estimator I3

and estimator I2

r =
I3 − I2
I3

,

assuming that φ = φτ is used as the FRR when computing I2. To simplify expres-

sions we use ω = ωR = ωτ and express Pτ = φ+δφ in terms of the relative difference

(δ) between Pτ and φτ . Then I3 may be expressed as

I3 =
NU − φ(NU +NO)

(ω(1− φ− δφ) + τδφ)NH

,

with

r = 1− NU − φ(NU +NO)

ω(1− φ)NH

× (ω(1− φ− δφ) + τδφ)NH

NU − φ(NU +NO)
=

(ω − τ)δφ

ω(1− φ)
.

Remarkably, the final expression is independent of the sample counts. This also

means that the estimate I3 can be written as a constant factor multiplied by the

estimate I2

I3 = I2

(
ωR(1− φ)

ωτ (1− Pτ ) + τ(Pτ − φ)

)
,

which can be deduced by directly inspecting (9.4) and (9.9).



Appendix A

Selected MATLAB Code

A.1 Fig2-5.m
%

% Program to simulate a population and test incidence estimator on a

% number of cross-sectional samples. This simulation uses Weibull

% survival functions.

%

T=50; % Number of years

nsteps=50; % Number of time steps

H0=100000; % Initial number of susceptables

H1=H0/20; % Linear rate of change of susceptables

Pnp=0.05; % Probability of remaining in recently infected state

eps=Pnp/(1-Pnp);

lamle=8.83; % Scale parameter for life expectancy

kle=4.5; % Shape parameter for life expectancy

lamw=0.44; % Scale parameter for window period

kw=7; % Shape parameter for window period

ssize=5000; % Sample size

rand(’seed’,1);

itime=zeros(1,1500000);

ni=0;

t=0;

while t<T

ni=ni+1;

if t<10 % Set parameters for linear hazard rate based on current time

I1=0;

I0=0.01;

elseif t>=10 && t<20

I1=0.009;

I0=0.01-10*I1;

elseif t<30

I1=0;

I0=0.1;

elseif t<40

I1=-0.007;

I0=0.1-30*I1;

else

I1=0;

I0=0.03;

end

% Use cubic roots formula

z=cubic(I1*H1/3,(I0*H1+I1*H0)/2,I0*H0,log(rand)-I1*H1*t^3/3-(I0*H1+I1*H0)*t^2/2-I0*H0*t);

z=z(imag(z)==0);

t=min(z(z>t));

itime(ni)=t;

end

itime=itime(1:ni);

%%

falserecents=rand(1,ni)<Pnp; % Determine which individuals are false-recent

longtime=itime+lamw.*(-log(rand(1,ni))).^(1/kw); % Times are Weibull distributed

death=itime+lamle.*(-log(rand(1,ni))).^(1/kle);
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omega=lamw*gamma(1+1/kw); % Compute window period

omsqr=lamw^2*(gamma(1+2/kw)-gamma(1+1/kw)^2)+omega^2;

weightedinc=zeros(1,nsteps); sampleinc=zeros(1,nsteps); CoV=zeros(1,nsteps);

PH=zeros(1,nsteps); PU=zeros(1,nsteps); PO=zeros(1,nsteps);

for t=1:nsteps

ctime=t*T/nsteps;

Rt=sum(itime<ctime & longtime>ctime & death>ctime); % True recents

Rf=sum(longtime<ctime & death>ctime & falserecents); % False recents

L=sum(longtime<ctime & death>ctime & not(falserecents)); % Longs

S=H0+floor(H1*ctime); % Susceptables

totpop=S+Rt+Rf+L; % Total population

PH(t)=S/totpop; % Compute population proportions

PU(t)=(Rt+Rf)/totpop;

PO(t)=1-PH(t)-PU(t);

samp=[]; % Sample the population

while length(samp)<ssize

samp=[samp rand(1,ssize-length(samp))*totpop];

samp=unique(ceil(samp)); % Ensure sampling without replacement

end

NH=sum(samp<=(totpop-(Rt+Rf+L))); % Compute sample counts

NU=sum(samp<=(totpop-L))-NH;

NO=ssize-NH-NU;

weightedinc(t)=Rt/(S*omega-H1*omsqr/2); % Incidence using linear formula and true recents

sampleinc(t)=(NU-eps*NO)/(omega*NH); % Sample incidence (simple formula)

% Compute coefficent of variation

CoV(t)=sqrt((1/PH(t)+(PO(t)*PU(t)*(1+eps)^2)/(PU(t)-PO(t)*eps)^2)/(ssize*(PO(t)+PU(t))));

end

%%

fprintf(’Time %d PH %.5f PU %.5f PO %.5f\n’,15,PH(15),PU(15),PO(15));

fprintf(’Time %d PH %.5f PU %.5f PO %.5f\n’,20,PH(20),PU(20),PO(20));

fprintf(’Time %d PH %.5f PU %.5f PO %.5f\n’,30,PH(30),PU(30),PO(30));

fprintf(’Time %d PH %.5f PU %.5f PO %.5f\n’,35,PH(35),PU(35),PO(35));

fprintf(’Time %d PH %.5f PU %.5f PO %.5f\n’,40,PH(40),PU(40),PO(40));

fprintf(’Time %d PH %.5f PU %.5f PO %.5f\n’,50,PH(50),PU(50),PO(50));

t=(1:nsteps)/nsteps*T;

close all;

figure(’Position’,[1,1,1600,700]);

axes(’FontSize’,12);

I1=0;

I0=0.01;

plot(0:10,I0+(0:10).*I1,’:k’);

hold;

plot(t,weightedinc,’k’);

plot(t,sampleinc,’+k’);

plot(t,weightedinc+weightedinc.*2.*CoV,’-.k’);

I1=0.009;

I0=0.01-10*I1;

plot(10:20,I0+(10:20).*I1,’:k’);

I1=0;

I0=0.1;

plot(20:30,I0+(20:30).*I1,’:k’);

I1=-0.007;

I0=0.1-30*I1;

plot(30:40,I0+(30:40).*I1,’:k’);

I1=0;

I0=0.03;

plot(40:51,I0+(40:51).*I1,’:k’);

plot(t,weightedinc-weightedinc.*2.*CoV,’-.k’);

title(’Monte Carlo Experiment’,’fontsize’,14,’fontweight’,’b’);

xlabel(’Years’,’fontsize’,14);

ylabel(’Incidence’,’fontsize’,14);

axis([0 51 0 0.14]);

set(gcf,’color’,’none’);

legend(’Instantaneous incidence’,’Weighted incidence (total population)’,’Estimated incidence (sample)’, ...

’Two standard deviation envelope’,2);
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A.2 Cubic.m
function z=cubic(a,b,c,d)

%

% Function to compute roots of a cubic equation. Used by Fig2-5.m

%

if a~=0

a1=b/a;

a2=c/a;

a3=d/a;

Q=(3*a2-a1^2)/9;

R=(9*a1*a2-27*a3-2*a1^3)/54;

D=Q^3+R^2;

Dsqrt=sqrt(D);

if D<0

S=(R+Dsqrt)^(1/3);

T=conj(S);

else

RpD=R+Dsqrt;

RmD=R-Dsqrt;

if RpD<0 S=-(-RpD)^(1/3); else S=RpD^(1/3); end % Make sure we get real cube roots!

if RmD<0 T=-(-RmD)^(1/3); else T=RmD^(1/3); end

end

sqrt3=sqrt(3);

z=[S+T -(S+T)/2+i*sqrt3*(S-T)/2 -(S+T)/2-i*sqrt3*(S-T)/2]-a1/3;

elseif b~=0

D=sqrt(c^2-4*b*d);

z=[(-c-D)/(2*b) (-c+D)/(2*b)];

else

z=-d/c;

end

return

A.3 Fig4-2.m
%

% Compute the probability of failing to detect an incidence reduction when

% in fact the incidence halves.

%

Pnp=0.05; % Probability of not progressing

eps=Pnp./(1-Pnp);

omega=0.425; % Window period

Inc=0.005:0.0025:0.05; % Incidence range

alpha=11; % Average survival time once infected

Ifactor=.5; % Factor indicating change in incidence

N1=5000:1250:25000; % Number of samples for survey 1

N2=N1; % Number of samples for survey 2

signif=0.05; % Alpha

% Functions for incidence estimator and CoV

Est=@(H,U,O,Pnp,omega) (U-O*Pnp/(1-Pnp))/(H*omega);

CoV=@(PH,PU,PO,N,Pnp) sqrt((1/PH+(PO*PU*(1+Pnp/(1-Pnp))^2)/(PU-PO*Pnp/(1-Pnp))^2)/(N*(PO+PU)));

% Functions to compute steady state proportions

k=@(eps,omega,alpha) eps+(1+eps)*omega/(alpha-omega);

PU=@(I,eps,omega,alpha) omega*I*k(eps,omega,alpha)/(k(eps,omega,alpha)-eps+omega*I*(1+k(eps,omega,alpha)));

PO=@(U,eps,omega,alpha) U/(eps+(1+eps)*omega/(alpha-omega));

Prob=zeros(length(N1),length(Inc));

for I=1:length(Inc)

for J=1:length(N1)

% Compute population proportions for two surveys

PU1=PU(Inc(I),eps,omega,alpha);

PO1=PO(PU1,eps,omega,alpha);

PH1=1-PU1-PO1;

Prev=PU1+PO1;

PU2=(Ifactor*Inc(I)*omega*(1-Prev)+eps*Prev)/(1+eps);

PO2=Prev-PU2;

PH2=1-PU2-PO2;

% Compute standard deviations

SDev1=CoV(PH1,PU1,PO1,N1(J),Pnp)*Est(PH1,PU1,PO1,Pnp,omega);

SDev2=CoV(PH2,PU2,PO2,N2(J),Pnp)*Est(PH2,PU2,PO2,Pnp,omega);

% Compute Null hypothesis population proportions

PHN=(N1(J)*PH1+N2(J)*PH2)/(N1(J)+N2(J));

PUN=(N1(J)*PU1+N2(J)*PU2)/(N1(J)+N2(J));

PON=(N1(J)*PO1+N2(J)*PO2)/(N1(J)+N2(J));

% Compute probability of failing to detect decrease

SDevN1=CoV(PHN,PUN,PON,N1(J),Pnp)*Est(PHN,PUN,PON,Pnp,omega);

SDevN2=CoV(PHN,PUN,PON,N2(J),Pnp)*Est(PHN,PUN,PON,Pnp,omega);
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SDevReal=sqrt(SDev1^2+SDev2^2);

SDevNull=sqrt(SDevN1^2+SDevN2^2);

Ilim=-sqrt(2)*erfcinv(2*(1-signif/2))*SDevNull;

meandiff=Est(PH1,PU1,PO1,Pnp,omega)-Est(PH2,PU2,PO2,Pnp,omega);

Prob(J,I)=1-0.5*(1+erf((Ilim-meandiff)/(SDevReal*sqrt(2))));

end

end

%%

% Graph probability

close all;

figure(’Position’,[1,1,1200,1000],’Colormap’,[(256:-1:0)’./512+0.4 (256:-1:0)’./512+0.4 (256:-1:0)’./512+0.4]);

axes(’FontSize’,12);

surf(Inc.*100,N1./1000,Prob*100);

xlabel(sprintf(’Initial incidence\n (per 100 pyar)’),’Fontsize’,14,’Position’,[-22.41 -109.488 286.624]);

ylabel(sprintf(’Sample size\n(thousands)’),’Fontsize’,14,’Position’,[-25.216 -97.015 286.624]);

zlabel(’Probability of detecting reduction (%)’,’Fontsize’,14);

axis([min(Inc)*100 max(Inc)*100 min(N1)/1000 max(N1)/1000 0 100]);

set(gca,’xtick’,.5:.5:5);

set(gca,’ytick’,5:2.5:25);

view([315 20]);

title(sprintf(’Probability of Detecting Reduction in Incidence\n

(Final incidence=half of initial incidence, \\omega=%.0f days, \\epsilon=%.0f%%, \\alpha=%.0f%%)’,

omega*365,Pnp*100,signif*100),’Fontsize’,14,’fontweight’,’b’);

% Compute and display contour

hold on;

set(gcf,’DefaultLineLineWidth’,2);

C=contour3(Inc.*100,N1./1000,Prob*100+0.1,[90+0.1 90+0.1],’-k’);

text(C(1,end),C(2,end),90+0.2,’ \leftarrow 90’,’HorizontalAlignment’,’left’,’fontsize’,10)

% Produce a 2D contour plot

figure(’Position’,[1,1,1200,1000]);

axes(’FontSize’,15);

[C,h]=contour(Inc.*100,N1./1000,Prob*100,[0.5 1 2.5 5 10 20 30 40 50 60 70 80 90 95 99],’k’,’ShowText’,’on’);

text_handle = clabel(C,h);

set(text_handle,’Fontsize’,14);

title(sprintf(’Probability of Detecting Incidence Reduction - Contours of Constant Probability (%%)\n

(Final incidence=half of initial incidence, \\omega=%.0f days, \\epsilon=%.0f%%, \\alpha=%.0f%%)’,

omega*365,Pnp*100,signif*100),’Fontsize’,20,’fontweight’,’b’);

xlabel(sprintf(’Initial incidence (per 100 pyar)’),’Fontsize’,18);

ylabel(sprintf(’Sample size (thousands)’),’Fontsize’,18);

set(gca,’xtick’,.5:.5:5);

set(gca,’ytick’,5:2.5:25);

A.4 Fig9-1.m
%

% Compute bias for new estimator using exponential incidence and

% susceptable population

%

lamw=0.44; % Scale parameter for window period

kw=7; % Shape parameter for window period

omega=lamw*gamma(1+1/kw);

inc=@(t,alpha) exp(log(1+alpha/100).*t); % Exponential incidence

sus=@(t,beta) exp(log(1+beta/100).*t); % Exponential susceptibles

Pnp=0.02; % Probability of not progressing

tau=1; % Cutoff time

Phirange=0:0.0025:0.05; % Range of FRRs

alpharange=-50:12.5:100; % Range of incidence growth rates

beta=0;

bias=zeros(length(Phirange),length(alpharange));

for i=1:length(alpharange)

% Compute integrals numerically

truedenom=quad(@(x)exp(-(x./lamw).^kw).*sus(-x,beta),0,tau);

Ntr=quad(@(x)exp(-(x./lamw).^kw).*inc(-x,alpharange(i)).*sus(-x,beta),0,tau);

HIVposletau=quad(@(x) inc(-x,alpharange(i)).*sus(-x,beta),0,tau);

weightedInc=Ntr/truedenom;

% Compute bais
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for j=1:length(Phirange)

Phi=Phirange(j);

estInc=((1-Pnp)*Ntr+(Pnp-Phi)*HIVposletau)/(omega*(1-Pnp)+tau*(Pnp-Phi));

bias(j,i)=(weightedInc-estInc)/weightedInc;

end

end

%%

% Graph computed bias

close all;

figure(’Position’,[1,1,1200,1000],’Colormap’,[(256:-1:0)’./512+0.4 (256:-1:0)’./512+0.4 (256:-1:0)’./512+0.4]);

axes(’FontSize’,12);

surf(alpharange,Phirange*100,bias*100);

view([45 50]);

axis([-50 100 0 5 -1.5 2]);

set(gca,’xtick’,-50:25:100);

set(gca,’ytick’,0:0.5:5);

title(’Bias in Estimator’,’fontsize’,14,’fontweight’,’b’);

xlabel(’Annual growth in incidence (%)’,’fontsize’,14,’Position’,[660.289 -20.241 21.578]);

ylabel(’False-recent rate (%)’,’fontsize’,14,’Position’,[711.902 -18.52 21.578]);

zlabel(’Bias (%)’,’fontsize’,14);

% Compute and display contours

hold on;

set(gcf,’DefaultLineLineWidth’,2);

el=0.01;

el2=0.05;

[alpha,Phi]=meshgrid(alpharange,Phirange);

C=contour3(alpharange,Phirange*100,alpha*100+el,[el el],’-k’);

text(C(1,2),C(2,2),0+el2,’ \leftarrow 0’,’HorizontalAlignment’,’left’,’fontsize’,10)

C=contour3(alpharange,Phirange*100,(Phi-Pnp)*100+el,[el el],’-k’);

text(C(1,end),C(2,end),0+el2,’ \leftarrow 0’,’HorizontalAlignment’,’left’,’fontsize’,10)

C=contour3(alpharange,Phirange*100,bias*100+el,[0.5+el 0.5+el],’-k’);

text(C(1,2),C(2,2),.5+el2,’ \leftarrow 0.5’,’HorizontalAlignment’,’left’,’fontsize’,10)

text(C(1,end),C(2,end),.5+el2,’ \leftarrow 0.5’,’HorizontalAlignment’,’left’,’fontsize’,10)

C=contour3(alpharange,Phirange*100,bias*100+el,[1+el 1+el],’-k’);

text(C(1,2),C(2,2),1+el2,’ \leftarrow 1’,’HorizontalAlignment’,’left’,’fontsize’,10)

C=contour3(alpharange,Phirange*100,bias*100+el,[1.5+el 1.5+el],’-k’);

text(C(1,2),C(2,2),1.5+el2,’ \leftarrow 1.5’,’HorizontalAlignment’,’left’,’fontsize’,10)

C=contour3(alpharange,Phirange*100,bias*100+el,[-0.5+el -0.5+el],’-k’);

text(C(1,C(2,1)+3),C(2,C(2,1)+3),-0.5+el2,’ \leftarrow -0.5’,’HorizontalAlignment’,’left’,’fontsize’,10)

text(C(1,C(2,1)+1),C(2,C(2,1)+1),-0.5+el2,’ \leftarrow -0.5’,’HorizontalAlignment’,’left’,’fontsize’,10)

C=contour3(alpharange,Phirange*100,bias*100+el,[-1+el -1+el],’-k’);

text(C(1,C(2,1)+3),C(2,C(2,1)+3),-1+el2,’ \leftarrow -1’,’HorizontalAlignment’,’left’,’fontsize’,10)
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A New Paradigm for Incidence
Estimation From Cross-sectional Data
Thomas A. McWalter and Alex Welte (University of the Witwatersrand, Johannesburg, and SACEMA)

Background
Incidence measurement using cross-sectional surveys is an attractive approach be-
cause it is cheaper, quicker, potentially less-biased and logistically simpler to imple-
ment than prospective follow-up. The basic approach is summarized as follows:

• Test the HIV status of a representative cohort. This yields two counts: N the
number of HIV negative and P the number HIV positive individuals.

• Among HIV positive individuals, find the number R of ‘recent infections’ as
classified by a biomarker.

• Under ideal circumstances, the survey counts can be used to compute inci-
dence using the estimator

I =
R

Nω
,

where the window period ω is the mean time individuals spend classified as
‘recent’ by the biomarker.

Unfortunately, biomarkers like the BED assay [6] are known to produce false posi-
tive results (i.e. non-recently infected individuals that are classified as recent). Con-
troversy has arisen over how to account for these false positive results.

Old Paradigm
Under the assumption of epidemic equilibrium, McDougal et al. [3] proposed an
approach to correct for false positive results which may be summarized as follows:

• Define ‘recent infection’ to mean an infection for a period shorter than ω.
• False positives are individuals that test recent but have been infected for

longer than the window period ω. False negatives are individuals that are
infected for shorter than ω but produce a non-recent biomarker result.

• Estimate the sensitivity σ, short-term specificity ρ1 (infected between ω and
2ω) and long-term specificity ρ2 (infected longer than 2ω) for the assay.

• Using survey counts, compute incidence using the estimator

I =
fR

Nω + fR
, where f =

R/P + ρ2 − 1

σ − ρ1 + 2ρ2 − 1
.

Calibration of this approach is complex, and since it is difficult to consistently incor-
porate calibration uncertainty into confidence intervals for incidence estimates this
has never been done.

New Paradigm
Without the need for epidemic equilibrium, we have derived a new incidence es-
timator using survival analysis [5]. Under the special case of equilibrium, the ap-
proach may be summarized as follows:

• Identify the proportion ε of individuals that will never be classified as non-
recent by the test — these are called assay non-progressors.

• For individuals that progress on the assay, define ‘recent infection’ to mean
classified as recent by the biomarker. Recent infection is now a characteristic
of the test, not a definite time boundary. The window period ω is now defined
as the mean time assay progressors spend classified as recent.

• False positives are assay non-progressors with a time since infection larger
than ω. There are no false-negatives under this definition.

• Using survey counts, compute incidence using the estimator

I =
R− εP

(1− ε)Nω
.

The model can be generalized to the case where individuals regress, i.e. revert to
being classified as recently infected by the test as a result of end stage AIDS or use
of ARVs. In this case, the parameter ε is interpreted as a false positive rate and must
be appropriately calibrated for the setting in which the survey takes place.

Confidence Intervals
Confidence intervals for the estimator are derived using the delta method. They
include the error associated with calibration parameters, specified as normal distri-
butions with standard deviations σε and σω . The coefficient of variation of incidence
is:

Cv =

√
1

P

(
N + P

N
+

(P −R)R[1 + ε/(1− ε)]2

[R− ε/(1− ε)(P −R)]2

)
+
σ2
ω

ω2
+

σ2
ε(P −R)2

(1− ε)4[R− ε/(1− ε)(P −R)]2
,

with 95% confidence intervals computed as I ± 1.96× CvI .

Estimator Validation
A model epidemic was simulated in which infection times were generated using
a non-homogeneous Poisson process, with individual recency times and lifetimes
generated using Weibull distributions. The susceptible population was linearly in-
creasing with S(t) = 100, 000+5, 000t (t in years). The red curve shown in the graph
below is the model instantaneous incidence parameter used. The target for the es-
timates was the realized weighted incidence (black line), which was calculated for
the complete population. This is flanked by a two standard deviation counting er-
ror envelope (blue lines). Simulated incidence estimates (+ symbols) were obtained
by drawing cross-sectional samples of 5,000 individuals from the simulated popula-
tion. Calibration parameters ω = 150 days and ε = 5% were assumed to be known
exactly.
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The above simulation shows that even under demographic and epidemic non-
equilibrium conditions the estimator performs well. Obviously, more precise
incidence estimates can be obtained with larger sample sizes.

We have also compared the performance of the estimator applied to field data with
an incidence estimate obtained from prospective follow-up [1], with favorable re-
sults. A key point arising from this validation exercise is that a locally applicable
calibration for the false positive rate ε must be used.

Parameter Reduction and Bias Comparison
Under the assumption of a steady state epidemic, we have shown [7] that there is
a relationship between the sensitivity and specificity parameters of the McDougal
approach:

σ − ρ1 + ρ2 = 1.

This allows the elimination of σ and ρ1 from their estimator. Since ρ2 = 1 − ε, it
also means that the parameters that remain are those required in the new paradigm.

Hargrove et al. [2] have proposed another estimator which results from a similar
reduction of the McDougal estimator under the assumption that σ = ρ1.

Comparing these two estimators with the new estimator, under a model steady state
epidemic, only the new estimator recovers an unbiased estimate of the incidence [4].

Results
The key findings of this work may be summarized as follows:

• The new estimator is applicable under more relaxed assumptions than any of
the previous estimators [5].

• Robust results are achieved when applied to a model epidemic which includes
significant transients.

• Confidence intervals are accurate under model epidemic conditions.
• When compared to the other estimators, the new estimator is least biased [4].
• When applied, under consistent calibration, to field data it performs well com-

pared to the incidence found by prospective follow-up [1].
• The calibration parameters ω and ε may vary with setting and care should be

taken to ensure that valid estimates for the particular setting are used [1].

Conclusion
This work explores some of the issues that have lead to the controversy surrounding
incidence measurement from cross-sectional surveys. In particular, it presents a
consistent estimator with accurate confidence bounds. It also highlights the crucial
role of using locally valid estimates for calibration parameters.
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