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Abstract 
 
This thesis describes the application of vinylogous sulfonamides in a 

generalised synthetic protocol for the synthesis of indolizidine alkaloids, viz. 

monomorine I, 5-epi-monomorine I and the key precursor to indolizidine 209D. 

Chapter one puts the work into perspective with a review of the different 

classes of amphibian alkaloids, with specific emphasis on previous syntheses 

of indolizidine 209D and monomorine I. This is followed by a brief overview of 

previous synthetic strategies employed for alkaloid synthesis in the Wits 

laboratories and an introduction to vinylogous sulfonamides. Chapter 2 

concludes with our aims and proposed strategies for the project. 

 

The attempted total synthesis of (−)-indolizidine 209D is described in Chapter 3. 

The initial three steps to prepare t-butyl (3R)-3-{benzyl[(1R)-1-

phenylethyl]amino}nonanoate (274) proceeded well, but the fourth step, 

deprotecting the nitrogen, gave inconsistent results and hindered the 

completion of the synthesis. The free amine that we succeeded in isolating, t-

butyl (3R)-3-aminononanoate (275), reacted with chlorobutyryl chloride to give 

us lactam, t-butyl (3R)-3-(2-oxo-1-pyrrolidinyl)nonanoate (277) in addition to the 

unusual by-product N-(cyclopropanecarbonyl)cyclopropanecarboxamide (327). 

From the lactam (277) we successfully prepared the key intermediate, 

vinylogous sulfonamide t-butyl (3R)-3-{2-[(E)-(p-toluenesulfonyl)methylene-1-

pyrrolidinyl} nonanoate (280). The vinylogous sulfonamide effectively facilitated 

a high-yielding cyclisation reaction to produce the bicyclic hexahydroindolizine 

(282). Unfortunately the failing debenzylation reaction prevented the completion 

of the synthesis as no more material was available. 

 

The total syntheses of (±)-monomorine I and (±)-5-epi-monomorine I are 

described in Chapter 4. Notable intermediates include the enamide, ethyl 3-

[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293), which we prepared from a 

condensation reaction between the ketoester (292) and the racemic amine 

(291). The diastereoselective reduction of the enamide (293) was optimised to 

give ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate (294) as a 1:5 mixture of 
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isomers. After thionation, the two isomers were separable, (295A) was the 

intermediate for (±)-monomorine I and (295B) the intermediate for (±)-5-epi-

monomorine I. Following the formation of the vinylogous sulfonamide, the key 

cyclisation step proceeded well for both the diastereomers to give the 

hexahydroindolizines (298A) and (298B). We obtained crystal structures of both 

hexahydroindolizines and were able to confirm the relative stereochemistry of 

the isomers. Defunctionalisation of the vinylogous sulfonamide included a 

stereoselective platinum-catalysed reduction of the alkene, followed by 

desulfonylation. Conditions were optimized and the synthesis was completed to 

give (±)-monomorine I in an overall yield of 3% and (±)-5-epi-monomorine I in 

an overall yield of 7%.  

 

Approaches towards the enantioselective synthesis were explored but, 

unfortunately, we experienced difficulties with the debenzylation reaction 

required to produce the chiral amine (291). In the process of trying to 

circumvent this problem a side route involving monobenzylated analogues was 

investigated. While the side route produced some interesting products, we were 

unable to direct the synthetic path back towards enantiopure monomorine I. 

 

The feasibility of extending this methodology to more complex alkaloids was 

briefly investigated. Initial experimentation involving allylated analogues of the 

ketoester (292) was investigated and was found to be incompatible with our 

reaction conditions.  
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CHAPTER 1 
AN OVERVIEW OF AMPHIBIAN ALKALOIDS, AND REPORTED 

SYNTHESES OF INDOLIZIDINE 209D AND MONOMORINE I 
 
1.1 Definition, occurrence and classification of alkaloids 
 
In 1819 an apothecary from Halle gave the name “alkaloids” to the “alkali-like” 

compounds purified from plant extracts. These “alkaloids” proved to be very 

diverse in origin and structure. One of their few similarities is that they are all 

biosynthesized from amino acids.1 In the early days of alkaloid discovery, 

compounds such as coniine (1), morphine (2), nicotine (3) and the toxic 

molecule strychnine (4) from the seeds of the Strychnos plant were discovered. 

The poison used in the execution of Socrates, coniine, otherwise known as 

poison hemlock, was the first alkaloid to be synthesized by Ladenberg in 1886. 

The opium alkaloid morphine, whose name comes from Morpheus, the ancient 

Greek god of dreams, was first isolated in 1803, while its total synthesis only 

followed in 1952. Most alkaloids are toxic in large enough doses, but many, 

such as codeine (5), a morphine analogue widely used as a pain killer, have 

medicinal uses.2 
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The definition of alkaloids has evolved with time, but they are generally 

accepted as nitrogen-containing secondary metabolites that are limited in 

Nature. One useful definition is Pelletier’s “An alkaloid is a cyclic organic 

compound containing nitrogen in a negative oxidation state which is of limited 

distribution among living organisms”.3 This definition works for most alkaloids, 

but excludes the acyclic amines and amides. A more general and 

comprehensive definition is the recent IUPAC definition; “An alkaloid is a basic 

nitrogen containing compound (mostly heterocyclic) occurring mostly in the 

plant kingdom (but not excluding those from animal origin). Amino acids, 

peptides, nucleotides, nucleic acids, amino sugars and antibiotics are not 

normally regarded as alkaloids. By extension, certain neutral compounds 

biogenetically related to basic alkaloids are included”.4 

 

The first alkaloid isolated from an animal species was samandarine (6), isolated 

from the striking black and yellow European Fire Salamander in 1866.5 Today 

there are over ten thousand known alkaloids, widely exemplified in Nature. 

Initially, these secondary metabolites were named according to the organism 

from which they were isolated, ending in “-ine” to indicate they were amines.1, 2 

Then they were classified according to structural features. Nowadays, the type 

of ring system is a key feature of the classification. One such class of alkaloids 

is the indolizidines (7), which are bicyclic compounds, with fused 6- and 

5-membered rings and a bridgehead nitrogen. They are closely related to 

quinolizidines (8), which are analogous bicyclic structures with two fused 

6-membered rings sharing a bridgehead nitrogen (Figure 1.1).6 Indolizidines 

and quinolizidines form the structural basis for far more complicated fused 

polycyclic alkaloids and 25 to 30% of all known alkaloids incorporate either the 

fundamental indolizidine or quinolizidine structure.6 
 

 
 

Figure 1.1:  Indolizidine (7) and quinolizidine (8) structures with conventional 
numbering. 
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Indolizidines and quinolizidines occur widely in Nature, in bacteria, fungi, higher 

plants, invertebrates and vertebrates, both terrestrial and marine. A common 

ring system however, does not imply a common biogenetic pathway, and these 

apparent structural relationships are coincidental.7 

  

Alkaloids exhibit a wide range of biological activities. In plants they usually 

exhibit allelochemical properties, that is to say they act as deterrents to 

herbivores, micro-organisms and even to other plants. In animals, alkaloids 

generally appear to be a chemical defence against predators or as a defence 

against protozoans, fungi and bacteria. Even when they are not highly toxic, the 

alkaloids are bitter tasting and noxious to predators. Most of the indolizidine 

alkaloids affect the nerves or muscles of buccal tissue.8 Even so, many 

alkaloids have medicinal properties and have acted as scaffolds for drug 

development. 

 

Extensive review articles on alkaloids have been published, especially the 

amphibian  alkaloids and the “-izidine” alkaloids.9 - 19 From these reviews it is 

clear that while there is a lot of interest in the isolation and synthesis of 

alkaloids, biosynthetic elucidation is sparse, and considering the obvious 

biological activity, pharmacological and biochemical research is virtually non-

existent. The few alkaloids that have been well studied, such as  slaframine (9), 

swainsonine (10) and castanospermine (11), are good indicators of the 

pharmaceutical potential of these molecules.6 
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1.2  Indolizidine alkaloids in Nature 
 

Amphibian skin contains an array of biologically active compounds, including 

biogenic amines, peptides, proteins, steroidal butadienolides, cardenolides and 

alkaloids. It has been shown that secretions from the granular skin glands can 

serve to protect amphibians from predators due to noxious effects on buccal 

tissue.8 Although the aposematic colouration of the frog skin warns predators of 

the toxins in the skin, to date there has been no correlation observed between 

the brightness of colouration, behaviour and toxicity in Dendrobates pumilio, a 

particularly varied and striking species of the frog.20  

 

Before we can discuss “amphibian” alkaloids, it is important to understand that 

although many of these alkaloids were originally extracted from frog skin, they 

have subsequently been found to occur in other organisms such as arthropods 

and plants. In many cases, the reason a given alkaloid was originally detected 

in frogs is due to the relatively high concentration of that alkaloid in the frog’s 

skin. These lipophilic alkaloids are extracted from the homogenized frog skins 

with methanol, followed by an acid/base partitioning.17 The alkaloids are then 

typically characterised by GCMS, HPLC, FTIR and NMR spectroscopy. 

Sometimes chemical transformations such as hydrogenations, acetylations, 

boronations, methylations etc. are employed to assist in the identification of key 

functional groups.17, 21 Flame ionization GC is used to quantitatively 

characterize mixtures of alkaloids.17, 21 As technology has advanced, we are 

now able to detect and characterise alkaloids that previously went undetected 

due to the microgram quantities isolated. 

 

As more “amphibian” alkaloids are detected in arthropods it has become 

increasingly obvious that there is a connection between them. In answer to this 

conundrum, John Daly proposed that the frogs in fact sequestered the alkaloids 

from arthropods through their diet. In 2000 a review by Daly et al.22 showed that 

of the five hundred alkaloids known in frogs, twenty-two of them were also 

found in arthropods. There were an additional twenty-two alkaloids which had 

been detected in arthropods that at the time had not been detected in frogs. 

Despite the large number of alkaloids that had still not been detected in the 
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supposed dietary source, this discovery prompted dietary studies on the frogs. 

One of the studies revealed that when frogs are raised in captivity on a fruit fly 

diet, i.e. in the absence of dietary alkaloids, no alkaloids are detected in their 

skin. A further study showed that when certain species of frog were fed fruit 

flies dusted with alkaloid-containing powder, they accumulated those specific 

alkaloids in their skin. It was also demonstrated that environmental 

manipulations such as light and stress did not trigger alkaloid production in 

these frogs.20 Another interesting observation from these studies indicated that 

while some frog species accumulate alkaloids with ease, other frog species 

cannot accumulate them at all, and that certain species accumulate certain 

alkaloids better than other species.20  

 

Of the eighty genera of frog that have been examined, only seven genera 

contained alkaloids.23 This reflects that only some species have the ability to 

transport and store the dietary alkaloids, thus it is a highly specialized and 

conserved biogenetic pathway. These alkaloids are so important to the frogs 

that they salvage skin alkaloids by ingesting their own shedded skin.8 While 

many species of frog reject several arthropods as a food source due to their 

bite and sting, certain frog species have evolved modified sodium channels that 

no longer respond to the toxins such as batrachotoxin (12),20 thus allowing 

them to eat the toxic arthropods. The dendrobatid frog species in particular 

have become known as the “ant specialists”, consuming toxic ants in higher 

proportions than they are present in the environment.23, 24 Because of this, 

many alkaloids were originally detected only in dendrobatid anurans and hence 

became known as the “Dendrobatid alkaloids”. These alkaloids have 

subsequently been isolated from three other anuran families, including ranid 

frogs of the genus Mantella.25 

 

In support of the dietary hypothesis, there is a large variation in alkaloid 

distribution within a particular species, but not within a given population. Thus 

there is a correlation between alkaloid distribution and environmental 

conditions/available food sources for a population.26 Importantly, early studies 

of alkaloid distribution in frog skin are fairly consistent with later studies for a 
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given population, allowing for the advancement of equipment and the superior 

detection of trace alkaloids.26  

 

In ants, the distribution of alkaloids is caste specific.23 For example, in certain 

Solenopsis species the queen ants contain the bicyclic indolizidines while the 

workers only contain the corresponding piperidines.23 This invited the 

postulation that the piperidines found in the workers could be the precursors for 

the biosynthesis of the indolizidines. The functional significance of alkaloids for 

arthropods is largely unknown; for example the queen ants do not defend the 

colony, so why would their venom contain these ‘deterrent’ bicyclic alkaloids? 

The possible biological function of these alkaloids could be to protect eggs from 

microbial infection or to use them as a sex attractant.23, 27 While there has been 

a study that indicated a possible taxonomic significance to the distribution of 

alkaloids in ants, the biosynthetic pathways to most of the alkaloids remain 

unknown. The pharmacological activity of these ant alkaloids still requires 

extensive investigation.23, 27 

 

The limited biological studies on amphibian alkaloids have investigated the 

interaction of these alkaloids with the binding sites on nicotinic acetylcholine 

receptor channel (AChR) complex from the Torpedo californica electric organ.28 

For indolizidines and gephyrotoxins (e.g. gephyrotoxin 287C) (13) the 

hydrophobic interaction of side chains seems to be especially important, with 

longer, saturated chains interacting more favourably as more potent non-

competitive blockers of the nicotinic receptor than shorter or unsaturated 

chains. The stereoconfiguration of these side-chains did not affect the results.28 

All the indolizidines and gephyrotoxins investigated acted as moderately active 

inhibitors. Presumably, artificially synthesized indolizidines with longer side 

chains would be even more potent and less sensitive to allosteric regulation by 

receptor agonists.28 
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1.3  Major classes of “amphibian” alkaloids 
 
Originally two major groups of alkaloids were identified: The ones based on 

straight chains (class A) and the ones based on isoprene units (class B).25 This 

classification is no longer used, and instead there are now twenty structural 

classes of alkaloids in amphibians, with over eight-hundred “amphibian” 

alkaloids known to date.17 The conventional code given to any new alkaloids 

discovered consists of the nominal molecular weight and an identifying letter, 

both in bold face.17 Owing to the occurrence of mixtures of stereoisomers in 

Nature, sometimes the prefixes cis, trans, epi, or iso are given to discriminate 

between two isomers.a  

 

1.3.1 Steroidal alkaloids 
There are two classes of amphibian alkaloids that can be classified as steroidal 

alkaloids; samandarines (6 + 14) and batrachotoxins (12 + 15). Samandarines 

were first isolated from Salamandridae Salamandra, the European fire 

salamander.5 There is evidence that the salamanders synthesize samandarines 

from cholesterol. It forms the main component in parotid glands (20 mg/gland 

for the fire salamander, 5 mg/gland for the alpine salamander). Samandarine 

(6) is highly toxic, with an LD50 of 70 µg/mouse. This toxicity is likely due to 

potent local anaesthetic activity. Thus far nine structures that fit this class have 

been isolated.17 

                                                 
a For clarity when reading this thesis, boldface numbers will only be used to refer to 
structures, not when referring to alkaloids classified by the conventional code. 
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The second class of steroidal alkaloids are the batrachotoxins, isolated from 

Dendrobatidae Phyllobates in 1969. These are Western Colombian rain forest 

poison dart frogs. Only the three Colombian species of the five neotropical 

species of dendrobatid frogs (genus Phyllobates) have high levels of 

batrachotoxins and all of them have been used for poisoning blow darts. In 

contrast, the Central American species have very low levels of the toxins. 

Congeners of the batrachotoxins have been found in beetles of the species 

Melyridae Choresine and hence the beetles are the putative dietary source. The 

frogs that sequester the toxin have batrachotoxin resistant sodium channels 

and can therefore ingest the beetles with no ill effects. The batrachotoxins have 

also been found in the feathers and skin of passerine birds of Papua New 

Guinea. There have been no studies on the passerine birds to suggest 

biosynthesis or sequestering. There are three major alkaloids that fit into this 

class, and the most toxic frog, Phyllobates terribilis, has more than 1000 µg of 

batrachotoxin A (15) per frog skin, with a LD50 of 0.1 µg/mouse. P. bicolor and 

P. aurotaenia have 100 – 200 µg/skin. The mode of action of the toxin is by 

depolarisation of the nerve and muscle membranes by selective stabilization of 

sodium channels in an active, open form. These toxins have been widely used 

to research voltage dependent sodium channels.17 

 

 
 
1.3.2 Monocyclic alkaloids 
There are two classes of monocyclic alkaloids, the pyrrolidines, for example, 

(16), and the piperidines, for example (17) and (18). Pyrrolidines were identified 

as major alkaloids in Dendrobates histrionicus in 1986. They have been known 

in myrmicine ant venom since 1970 and studies have shown that pyrrolidine 

197B (16) is sequestered poorly in an artificial environment. Ten pyrrolidines 
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have been identified to date, nine of which are trace alkaloids. There has been 

no toxicity data reported. They act as non-competitive blockers of nicotinic 

receptors.17 

 

2,6-Disubstituted piperidines were first reported in the skin extracts of South 

American dendrobatid frogs in 1986. Twenty piperidines have since been 

reported. They have been known to occur in the venom of certain myrmicine 

ants since 1971 and they are relatively rare in dendrobatids and mantellids, 

occurring only in trace amounts.29 Toxicity data has only been reported for the 

cis and trans piperidines from myrmicine ants – known as the solenopsins 253J 
(17 + 18) – which have proved toxic to mice and potent antifungals. They also 

act as non-competitive blockers of nicotinic receptors.17 

 

 
 

1.3.3 Bicyclic alkaloids 
There are several classes of alkaloids that are classified as bicyclics: 

Histrionicotoxins, pumiliotoxins, decahydroquinolines, pyrrolizidines, 

indolizidines, quinolizidines, lehmizidines and epiquinamides.  

 

Histrionicotoxin 283A (19) was the first histrionicotoxin isolated from 

Dendrobates histrionicus, a South American, brightly coloured, extremely 

variable species of dendrobatid frog. The structure was first determined in 

1971, and to date sixteen amphibian alkaloids fit into this class. A New World 

myrmicine ant is the putative dietary source. These alkaloids have been 

isolated in all neotropical frogs, at the high levels of up to 200 µg/frog. They 

exhibit low toxicity (even 1000 µg was not lethal to a mouse), but they are 

noxious and bitter and therefore act as predator deterrents. Biologically they 

function as non-competitive blockers of nicotinic receptor channels.17 
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Pumiliotoxins were first isolated from Dendrobates pumilio in 1967. They were 

found as major alkaloids in this highly variable, brightly coloured, small 

Panamanian dendrobatid frog. The structures of pumiliotoxin A (20) and B (21) 

remained elusive until 1980, when X-ray crystallography revealed the structure 

of pumiliotoxin 251D (22); A and B were solved by analogy. Over thirty 

pumiliotoxins are known [with twenty of those being allopumiliotoxins (23)]. 

Many of the structures are tentative. These toxins are widely distributed in 

anurans from the neotropics, semi-temperate South America, Madagascar and 

Australia. They have been detected in formicine ants of two genera, as well as 

in oribatid mites – the putative dietary source for the ants.24 Dendrobatid 

anurans have the pumiliotoxin 7-hydroxylase enzyme that has been shown to 

convert the dietary pumiliotoxin enantioselectively into the highly toxic 

allopumiliotoxin. This is the only known example in amphibians of a 

metabolically altered sequestered alkaloid. These alkaloids are prevalent in 

fairly large quantities, up to 200 µg/frog. They exhibit high toxicity with an LD50 

of 50 µg/mouse for allopumiliotoxin and 7-fold less for pumiliotoxins. Biological 

studies have revealed marked cardiotonic activity by prolonging the open-time 

of voltage dependent sodium channels thereby triggering inositol triphosphate 

production in cardiac and neuronal preparations.17 

 

The first decahydroquinoline was originally isolated along with the pumiliotoxins 

in Dendrobates pumilio and mistakenly named pumiliotoxin C (24). The real 

structure of decahydroquinoline cis-195A (24) was determined in 1969 by X-ray 

crystallography. Fifty alkaloids now belong to the 2,5-decahydroquinoline class 

and they are commonly found in neotropical dendrobatids, and rarely found in 

mantellid and bufonid anurans. The putative dietary source is the myrmicine 

ants.22 These alkaloids occur in up to 50 µg/frog and exhibit low toxicity. The 

lethal dose for decahydroquinoline cis-195A is 250 µg/mouse. The mode of 

action is as a non-competitive blocker of nicotinic receptors.17 
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Pyrrolizidines such as pyrrolizidine 223H (25) have been known to occur in 

myrmicine ants since 1980 and were first reported in anurans in 1993.21 There 

are about twenty-six alkaloids, including stereoisomers, in the 3,5-disubstituted 

pyrrolizidine class and both cis and trans isomers occur naturally. They are 

fairly common in trace amounts and myrmicine ants are definitely the dietary 

source.22 No toxicity data has been reported.17 

 

There are at least four classes of indolizidine alkaloids. The 3,5-disubstituted 

indolizidines were the first to be discovered in dendrobatid frogs. Indolizidine 

195B (26) was isolated in 1986 from dendrobatid anurans, and reported as the 

diastereomer of the 5Z,9Z alkaloid monomorine I (27), isolated from myrmicine 

ants in 1973.30 All four isomers (26 – 29) of monomorine I have been detected 

in anurans. In this class, at least thirty alkaloids, including stereoisomers, have 

been detected, and they occur randomly in dendrobatid, mantellid and bufonid 

anurans as minor or trace alkaloids. Myrmicine ants are undoubtedly the dietary 

source. Almost no toxicity data has been reported; the only tested 

3,5-disubstutituted indolizidine is indolizidine 239CD (30) with an LD50 of 
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greater than 200 µg/ mouse. They act as non-competitive blockers of nicotinic 

receptors.17 
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The second class of indolizidines are the 5,8-disubstituted indolizidines, which 

were first described in 1987. This is the largest class of alkaloids in anuran 

skins with more than eighty examples, including stereoisomers. They are 

common in dendrobatid and mantellid frogs and uncommon in bufonids. In most 

cases they occur as minor or trace alkaloids. One example is indolizidine 209B 

(31). The dietary source is not clear, but these alkaloids are present in leaf-litter 

arthropods, so the most likely sources are ants and oribatid mites.24 There has 

been no toxicity data reported, but they are potent non-competitive blockers of 

nicotinic receptors.17 

 

A new major class of the amphibian indolizidine alkaloids has been proposed: 

The 6,7-dehydro-5,8-disubstituted indolizidines, for example indolizidine 207E 

(32). Thirty alkaloids in this class have already been identified, all of which are 

minor or trace alkaloids in dendrobatid, bufonid and mantellid skin extracts. The 

putative dietary source is the myrmicine ant. As yet no toxicity data or biological 

activity data has been reported.17 
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5,6,8-Trisubstituted indolizidines were first proposed in 1997, and already 

seventy alkaloids belonging to this class have been discovered. Most structures 

are still tentative. Indolizidine 249H (33), with a six carbon alkenyl chain, is the 

first and only example of a branched chain in the ‘-izidines’ from an anuran skin 

extract. Indolizidines 223A (34) and 231B (35) occur in quantities up to 

50 µg/frog, whereas the other alkaloids in this class occur as minor or trace 

alkaloids, hence the tentative structures. They are commonly found in mantellid 

species, but rarely found in bufonids. They have been detected in myrmicine 

ants and oribatid mites.24 No toxicity data or biological activity data has been 

reported.17 
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The structures proposed for the 5-monosubstituted indolizidines 167B (36) and 

209D (37) were both tentative, and they are the only members of this class. 

They have since been proved to be pyrrolizidines and renamed as 167F (38) 

and 209K (39). It remains unclear as to whether this class of alkaloids exists in 

Nature. If these alkaloids do exist, they occur as trace components only and as 

a result they are difficult to characterise.17 
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There are two classes of quinolizidines, the 4,6-disubstituted quinolizidines and 

the 1,4-disubstituted quinolizidines. Of the 4,6-disubstituted quinolizidines there 

are only six examples, and five of these structures are tentative. Quinolizidine 

195C (40) is a minor or trace alkaloid in dendrobatid and mantellid frogs, and 

the others are rarely seen. Quinolizidine 195C is a major alkaloid in myrmicine 

ants, the confirmed dietary source. The frogs and ants both contain the same 

enantiomer of this alkaloid. No toxicity or biology has been reported.17 

 

The 1,4-disubstituted quinolizidines were first recognized in 1996 and since 

then twenty structures have been isolated. Most of these structures are 

tentative. Quinolizidine 217A (41), 231A (42), and 233A (43) are common in 

certain species of mantellid frogs (up to 50 µg/frog) and they are also seen in 

dendrobatids. The other quinolizidines occur as trace alkaloids and are rare in 

Nature. As yet, none have been identified from bufonid frogs. The dietary 

source was recently identified as oribatid mites.24 No toxicity data is available, 

but the alkaloids do act as non-competitive blockers of nicotinic receptors.17 
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Lehmizidines are a new and exciting class of bicyclic alkaloids that occur only in 

one species of Colombian dendrobatid frogs, Dendrobates lehmanni. The 

structure of lehmizidine 275A (44) was finally established in 2001, and since 

then the structures of nine other lehmizidines have been tentatively assigned. 

They are all minor alkaloids and they only occur in this montane species of 

Western Colombia. The putative dietary source is the myrmicine ant and no 

toxicity or biological data are available.17 

 

The last class of the bicyclic alkaloids are the epiquinamides. Epiquinamide 

(45) was reported in 2003 as a trace alkaloid in the Ecuadorian dendrobatid 

frog Epipedobates tricolor. It is the only member of its class and it has only 

been detected in one extract of a dendrobatid frog. The dietary source is still 

unknown. Its’ biological activity is as an agonist at the nicotinic receptor.17 

 

 
 

1.3.4 Tricyclic alkaloids 
There are four classes of tricyclic alkaloids that have been found in frog skin 

extracts, namely gephyrotoxins, coccinelline tricyclics, cyclopentaquinolizidines 

and spiropyrrolizidines. The structure of gephyrotoxin 287C (46), isolated from 

Dendrobates histrionicus, was revealed in 1977 by X-ray crystallography. 

These alkaloids are rarely detected and occur as minor alkaloids. The putative 

dietary source is the myrmicine ant. They exhibit low toxicity with a lethal dose 

of greater than 500 µg/mouse and they act as non-competitive blockers of 

nicotinic receptors.17 

 

The coccinelline alkaloids have been known to occur in coccinellid beetles 

since 1971. They have been detected as a minor alkaloid in a Panamanian 
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dendrobatid frog. Coccinelline 205B (47), 261C (48) and 263G (49) are 

indolizidine tricyclics. The coccinelline alkaloids have been found in 

dendrobatid, mantellid and bufonid anurans as minor or trace alkaloids. 

Precoccinelline 193C (50) was recently reported in oribatid mites and is the 

presumed dietary source for the coccinellid beetles. There is no toxicity data 

available. The unnatural enantiomer of 205B (47) is a potent and selective 

blocker for α-7 nicotinic receptors.17 
 

 
 

Cyclopentaquinolizidines were discovered in the 1970s in a tiny Colombian 

dendrobatid frog, Minyobates bombetes. The structure was only reported in 

1992 and currently there are only ten alkaloids in this class, including 

cyclopentaquinolizidine 235H (51).17 

 

Spiropyrrolizidines have been detected in both mantellid and bufonid frogs but 

are rarely seen in dendrobatids. There are nine alkaloids in this class and they 

have also been detected in millipedes. The siphonotid millipede is the putative 

dietary source for spiropyrrolizidine 236 (52). No toxicity data is available, but 

they are potent non-competitive blockers of the nicotinic receptor.17 



 

 17

 

 
 

1.3.5 Pyridine alkaloids 
Epibatidine (53) is the main pyridine alkaloid that has been detected in frogs. It 

acts as a potent analgesic and it only occurs in certain South American frogs of 

the genus Epipedobates. It is presumed to be sequestered through a plant to 

arthropod to frog food chain. It is highly toxic with a lethal dose of 

0.4 µg/mouse. Nicotine and other pyridine alkaloids found in plants have also 

been detected in anuran extracts.17 

 
1.3.6 Indole alkaloids 
Pseudophrynamines contain the indole skeleton and they were first detected in 

myobatrachid frogs in 1976 using an Ehrlich colour reaction for indoles. There 

are thirteen alkaloids in this class, including pseudophrynamine 258 (54), 

although some of the structures are tentative. These alkaloids are unique in that 

they are biosynthesized by the frogs and not sequestered through their diet. 

They have only been detected in myobatrachid frogs of the genus 

Pseudophryne and they are potent non-competitive blockers of the nicotinic 

receptor.17 
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1.4 Indolizidines of interest in this project 
 
1.4.1.1 Introduction to indolizidine 209D 
The 5-monosubstituted indolizidine 209D (37) was the tentatively proposed 

structure of a natural product isolated from a dendrobatid frog and was one of 

the only two members of this class. It has since been shown that the real 

structure of this natural product is a pyrrolizidine and it has subsequently been 

renamed as 209K (39). It remains unclear as to whether this class of alkaloids 

does exist in Nature; however, indolizidine 209D has been the target alkaloid of 

many syntheses over the past thirty years and remains a popular choice for 

demonstrating the scope of new synthetic methodology. 
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Indolizidine 209D became the first target molecule of this project as a previous 

student at the University of the Witwatersrand had already performed extensive 

research into its total synthesis.31 Repeating the experiments and optimising the 

reactions offered good experience with this type of chemistry and allowed for 

complete characterization of all the molecules in the synthesis for the purpose 

of publication.   

 
1.4.1.2 Previous syntheses of indolizidine 209D 
To date there have been at least twenty-five publications detailing the total 

synthesis of indolizidine 209D. Each of these publications uses a disconnection 

quite different from the one we chose to employ in our synthesis. Figure 1.2 

shows the key cyclisation disconnections used by other research groups. Table 

1.1 gives a detailed breakdown of which isomer was synthesized by which 

disconnection and the numbers in the columns are literature references to 

these publications. 
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Figure 1.2: Cyclisation disconnections used in previous syntheses of indolizidine 209D.  

 

Disconnection (+)-209D (−)-209D (±)-209D 

1 32 32 - 36 37, 38 

2 39, 40, (5-epi)-41 42  

3  43 44 

4  45  

5 46, 47 48 49 

6  50, 51 52 

OTHER  53 - 56 44, 57 

 
 
Table 1.1: Key disconnections in the synthesis of indolizidine 209D (literature 
references to the previous syntheses of indolizidine 209D are given in columns 2 – 4). 
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The C8a –C1 disconnection approach 

Pohmakotr et al.49 used disconnection 5 (see Figure 1.2 and Table 1.1) to 

synthesize the indolizidine skeleton. Synthesis of the δ-lactam (56) was 

achieved in 60% yield by the Beckmann rearrangement of 

2-hexylcyclopentanone (55) using sodium hydroxide and tosyl chloride (see 

Scheme 1.1). This reaction gave an inseparable mixture of lactams (56) and 

(57) in a 4:1 ratio. This mixture was treated with 1-bromo-3-

phenylsulfonylpropane and sodium hydride to give sulfides (58) and (59) in 41% 

and 12% yield respectively. Sulfide (58) was separated from sulfide (59) and 

was oxidized in the presence of sodium periodate to give sulfoxide (60) in 87% 

yield. The key step in this synthesis was the cyclisation step which was 

promoted by deprotonating the α-position of the sulfoxide. This allowed ring 

closure onto the lactam carbonyl to give indolizidine (61). Due to the instability 

of (61) it was used without purification to give the reduced product (62) and its 

diastereomer (63) in 47% and 45% yield respectively, over the two steps. Initial 

desulfurization attempts using a sodium amalgam or Raney nickel proved 

unsuccessful, and finally the synthesis was completed by removing the 

sulfoxide group with nickel boride to give racemic indolizidine 209D (37) and its 

epimer in 80% and 86% yield respectively.  The total synthesis of racemic 209D 

was achieved in six steps with an overall yield of 8%. 
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Scheme 1.1: Total synthesis of indolizidine 209D by Pohmakotr and co-workers.49 
Reagents and conditions: i) a) NH2OH.HCl, EtOH; b) TsCl, NaOH, acetone, RT, 
overnight; ii) NaH, DMF, PhS(CH2)3Br, 0°C, to RT, overnight; iii) NaIO4, MeOH, H2O, 
0°C, to RT, overnight; iv) LiHMDS, THF, -78°C, to RT, overnight; v) NaBH4, MeOH, 
0°C, to RT overnight; vi) NiCl2.6H2O/NaBH4, MeOH/THF (3:1), 0°C, to RT, 2 hr. 
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Alternative disconnections 

Yu et al.53 developed an efficient catalyst system that promotes cycloadditions 

between terminal alkyl alkynes and alkenyl isocyanates involving a carbonyl 

migration process. This technology was the key step in their synthesis of 

indolizidine 209D (37) (see Scheme 1.2). The [2+2+2] cycloaddition of an 

alkenyl isocyanate (64) and a terminal hexyl alkyne was attempted with various 

catalyst systems. The catalyst that gave the highest conversion and 

enantiomeric excess produced indolizidine (65) as the principal product in a 

yield of 66% and an ee of 91%. Vinylogous amide (65) readily underwent 

diastereoselective reduction in the presence of hydrogen and palladium to give 

compound (66) as a single diastereomer in 82% yield. The Barton-McCombie 

protocol for deoxygenation via (67) was employed to give (−)-indolizidine 209D 

(37) in 55% yield. Starting from the alkyne, the total synthesis was achieved in 

four steps with an overall yield of 30%. 

 

 
Scheme 1.2: Total synthesis of indolizidine 209D by Yu and co-workers.53 Reagents 
and conditions: i) 2.5 mol% [Rh(C2H4)2Cl]2, 5.0 mol% L-CH2OTIPS, PhMe, 110°C, 
12 hr.; ii) Pd-C, MeOH, H2, (1 atm.); iii) (imidazole)2CS, DMAP, neat, 50°C; iv) AIBN, 
Bu3SnH, PhMe, 100°C. 
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Pearson et al.54, 55 employed an approach that utilizes intramolecular Schmidt 

reactions of azides with carbocations (see Scheme 1.3). Starting from known 

β-ketoester (68) alkylation with chloropropyl iodide at the α-position, followed by 

azide formation and a second alkylation at the ketone with n-hexyl magnesium 

bromide and cerium chloride gave alcohol (69) in 30% yield over the three 

steps.  Alcohol (69) was dehydroxylated to generate a carbocation which 

rearranged rapidly by means of a 1,2 hydride shift to give a second carbocation 

that underwent intramolecular cyclisation onto the azide to  produce the 

spirocyclic aminodiazonium ion (70). Migration of the adjacent bonds formed 

iminium ions (71) and (72). Reaction with sodium borohydride produced 

indolizidine 209D in 24% [from (69)] and its structural isomer (73) in 36% yield 

[from (69)]. The total synthesis took five steps and produced indolizidine 209D 

in 7.2% yield. 
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Scheme 1.3: Total synthesis of indolizidine 209D by Pearson and co-workers.54 
Reagents and conditions: i) a) t-BuOK, Cl(CH2)3I; b) HBr, NaN3; c) n-hexyl MgBr, 
CeCl3, THF, 1 hr.; ii) TfOH, benzene; iii) NaBH4. 
 

Lee and Li55  started from S-proline ester (74) (see Scheme 1.4) which they 

protected with Cbz, followed by a borane reduction to the corresponding 

aldehyde and transformation to pyrrolidine acrylate (75) by a Horner-Emmons 

reaction in 65% yield for the three steps. Pyrrolidine (75) was hydrogenated and 

the ester was reduced with lithium aluminium hydride to give alcohol (76) in 

53% yield over the two steps. The alcohol (76) was treated with ethyl propiolate 

and brominated to give the key intermediate β-amino acrylate (77) in 73% yield 

over the two steps. The radical derived from the primary bromide of (77) 

underwent intramolecular conjugate addition to the β-amino acrylate to form the 

indolizidine skeleton as a single stereoisomer (78) in 86% yield. Reduction of 
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the ester (78) followed by activation of the resulting alcohol with a tosyl group 

gave indolizidine (79) in 91% yield over the two steps. The final step, 

homologation of the alkyl side chain with an appropriate dialkylcuprate, gave 

indolizidine 209D (37) in 99% yield. This route serves as a general route to 

5-monosubstituted indolizidine alkaloids and the use of a different 

dialkylcuprate in the final step gave access to indolizidine 167B as well. The 

total synthesis was achieved in eleven steps and produced indolizidine 209D in 

an overall yield of 19%. 
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Scheme 1.4: Total synthesis of indolizidine 209D by Lee and co-workers.55 Reagents 
and conditions: i) a) ClCO2Bn, NaOH; b) BH3.DMS, THF; c) Py.SO3, Et3N, DMSO, 
Ph3PCHCO2Et; ii) a) H2, Pd(OH)2, MeOH; b) LiAlH4, THF; iii) a) HCCCO2Et, p-TsCl, 
Et3N, CH2Cl2; b) LiBr, acetone; iv) Bu3SnH, AIBN, benzene, reflux, 5 hr.; v) a) LiAlH4, 
THF; b) p-TsCl, Et3N, CH2Cl2; vi) (C6H13)2CuLi, ether, 0°C. 
 

The synthetic strategy employed by Back and Nakajima56 is of particular 

interest to us as it utilizes vinylogous sulfonamides (see Chapter 2, Section 

2.2.2). Their synthesis relies on the coupling reaction of proline-derived 

chloroamine (80) and an alkynyl sulfone (81) (see Scheme 1.5). The acetylenic 

group is activated by the electron withdrawing sulfone allowing it to participate 
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in conjugate additions to give β-substituted vinyl sulfones (vinylogous 

sulfonamides). These can then be deprotonated at the α-position due to the 

anion stabilization of the sulfone and then reacted with electrophiles. The 

products can easily be desulfonylated by exposure to Birch reduction 

conditions. Chloroamine (80) was coupled with alkynyl sulfone (81) to give the 

vinylogous sulfonamide (82). In the presence of base (82) underwent 

intramolecular cyclisation to give indolizidine (83) in an efficient 94% yield over 

the two steps. Stereoselective reduction of the conjugated double bond 

followed by cleavage of the sulfone with sodium in ammonia gave indolizidine 

209D (37) in a respectable yield of 60%.  

 

 
 
Scheme 1.5: Total synthesis of indolizidine 209D by Back and Nakajima.56 Reagents 
and conditions: i) THF, reflux; ii) LDA, THF, -78°C; iii) NaBH3CN, MeOH; iv) Na, NH3 
liq. 
 

This completes the brief overview of published syntheses of indolizidine 209D. 

Several of the additional publications follow analogous synthetic strategies to 

those detailed in section 1.4.2.2. Chapter 2 describes how our proposed 

synthesis differs from previously published syntheses and how we exploited 

novel methodology in an attempt to achieve the total synthesis of 209D. 
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1.4.2.1 Introduction to monomorine I 
The second target natural product of this project was monomorine I (27), and its 

total synthesis formed the bulk of the original research conducted during this 

project. Monomorine I (27) has frequently been used as a target molecule to 

illustrate the applicability of new synthetic methodology. It is the natural target 

molecule for any new methodology developed for the synthesis of 

3,5-disubstituted indolizidines as it is appropriately simple and has served as a 

target for many research groups. It thus allows for easy comparison between 

the different methods available. Monomorine I (27) was first detected in the 

pheromone trail of the myrmicine ant, Monomorium pharaonis, in 1973.  

Monomorine I was isolated from Monomorium pharaonis along with alkaloids 

monomorine II – VI (84 – 88), all in the scent trail mix (see Figure 1.3).30, 58 

Monomorene was also isolated and its structure was revealed as a bicyclic 

saturated hydrocarbon.58 Monomorine (27) was the first indolizidine derivative 

discovered in the animal kingdom.30, 59 It originates in the abdominal gland and 

is found both in the poison gland, the Dufour’s gland and in sting excretions.59 

Five years later, one of its diastereoisomers was discovered in a frog skin 

extract and became known as indolizidine 195B (26) after its molecular weight 

and chronology of discovery.17 Subsequently all four diastereomers of 3-butyl-5-

methylindolizidine (26 – 29) have been detected in frog skin extracts.21 
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Figure 1.3: Monomorine II – VI (84 – 88), isolated from the Monomorium pharaonis 
scent trail mix.  
 

The Pharaoh ant, Monomorium pharaonis is a tiny, red-brown ant that is 2 – 

3 mm in size and small enough to penetrate bandages and sterile packaging. 

Originally a tropical species, it has now become a domestic pest in non-tropical 

countries in both North America and Western Europe, and the ants are 

attracted to heated buildings, particularly hospitals, bakeries and 

households.29, 58 Their attraction to wound exudates, beds soiled with urine and 

baby slobber, combined with their ability to carry pathogenic bacteria causes 

them to transmit disease.29, 30, 58 Their well concealed nests and multi-queened 

colonies that thrive in small wall spaces have eluded most insecticides.60 There 

is a need to detect and control infestations at an early stage or it becomes 

almost impossible to route out the queens and the nests.60  

 

A famous infestation of the Biological Laboratories of Harvard University during 

the 1960s and 1970s was finally exterminated after discovering that the worker 

ants had carried radioactive chemicals from culture dishes to the surrounding 

walls (coincidently this inspired the science-fiction novel “Spirals” by William 

Patrick).60 Shortly thereafter the Dutch Ministry of Public Health and 

Environmental Hygiene commissioned research into trail pheromones as a 
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potential means to control the ant population.59 It had been noted that trail-

following behaviour was common in both the queens and the workers and it 

was hypothesized that the trail pheromones could be used to trap the ants and 

thus exterminate them.59 It was demonstrated that a crude hexane extract of 

homogenized ants could induce trail-following behaviour in the ants. 

Monomorine I (27) was one of the components in the ant-trail mix. Studies 

revealed that the trail following activity is both concentration dependent and 

synergistic.29 The term pheromone is no longer a valid term for a single 

molecule, as it is often refers to a mixture of compounds that creates the 

‘pheromone’ effect.59 This is definitely the case for monomorine I (27)  as the 

mutually synergizing mixtures of alkaloids are far more active than the 

individual compounds.29, 59, 61 Dual or multiple functions are suspected for most 

of these alkaloids, as sex attractants, insect repellents, trail markers, 

antimicrobials etc.58 The most active component of the trail pheromones is in 

fact faranal (89), a sesquiterpenoid also found in the Dufour’s gland, with as 

little as 1 picogram giving a positive trail following result.62, 63 

 

 
 

Monomorine I (27) seems to play a role both as a trail marker, a repellent and in 

allomone defence.59 It has been demonstrated as a repellent against ants when 

combined with 2,5-dialkylpyrrolidines.61 Interestingly, it is only the 5Z,9Z isomer 

of 3-butyl-5-methylindolizidine that has both attractant and arrestant (causing 

aggregation) activities in feeding studies with M. pharaonis.61 

 

Monomorine I (27) has three stereogenic centres, and therefore could exist as 

one of eight stereoisomers. The nitrogen atom is an sp3 hybridized centre, 

however the atomic inversion energy is easily overcome. In most indolizidines 

the trans-fused ring junction is dominant at equilibrium. Bohlmann determined 

that if two or more α hydrogen atoms were anti-periplanar to the lone pair on 

the nitrogen then bands would be observed in the infra-red spectrum in the 
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region of 2790 cm-1. Therefore the presence or absence of these bands could 

be used to determine the favoured ring junction configuration. In fact, a single 

hydrogen atom anti-periplanar to the nitrogen lone pair also gives a band in the 

IR spectra, but it is often obscured by methylene signals.4 In addition, the 

coupling constants and chemical shift in the 1H-NMR spectra could be used to 

determine the conformation of the molecule.4 

 

Initially the favoured chair conformer was expected for monomorine I, but the 

spectroscopic evidence accumulated accommodates the trans-fused boat 

conformer as illustrated in Figure 1.4. NMR spectral evidence supports this 

conformation as long-distance cis-coupling of the hydrogen atoms shown in 

Figure 1.4 is also observed.1, 4 

 

 
 

Figure 1.4: The preferred, trans-fused boat conformation of monomorine I. 

 

The trans-fused indolizidine ring shows a single, weak, Bohlmann band due to 

the cis-relationship of H-5 and H-8a at approximately 2790 cm-1.2 This allows 

assignment of the relative configuration, but not the absolute configuration. The 

relative configuration of monomorine I (27) was elucidated by NMR spectral 

comparison of the natural compound to the four major diasteromers. The 

absolute configuration of monomorine I (27) has been established as 3R,5S,9S 

and that of indolizidine 195B (26) as 3S,5S,9S.4 Many differing stereoselective 

syntheses have been attempted with varying degrees of success. 

 

Structurally similar alkaloids to those found in the Pharaoh ant were discovered 

in dendrobatid frog species in 1986.3 Several of these 3,5-disubstituted 

indolizidine alkaloids are shown below (see Figure 1.5) (27 + 90 – 92). These 

provide additional synthetic targets for the methodology outlined in this project.  
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Figure 1.5: Monomorine I (27) and structurally related indolizidines (90 – 92). 

 
1.4.2.2 Previous syntheses of monomorine I 
During the development of methodology for synthesizing monomorine I (27), all 

four diastereomers have been synthesized. As all four diastereomers are 

natural products all these syntheses have value and application in natural 

product chemistry. The many different synthetic routes have varying degrees of 

stereoselectivity and in the different syntheses, different enantiomers have 

been favoured as the final product. When comparing the approaches adopted 

by different research groups working on monomorine I and its diastereomers, 

and 3,5-disubstituted indolizidines in general, the key difference shows up in 

the cyclisation step (Figure 1.6 and Table 1.2), and although monomorine I has 

already been synthesised many times, the methodology envisaged in this 

project will provide a novel cyclisation strategy to 3,5-disubstituted indolizidines. 

 

The first successful synthesis of monomorine I was performed by Ritter et al.30 

in 1973. But it was only when Oliver and Sonnet64 synthesized all the 

diastereomers of monomorine I in 1974, making use of stereoselective 

reactions, that the relative stereochemistry of monomorine I was established. 

The first synthesis to give exclusively (+)-monomorine I was performed by 

Yamazaki and Kibayashi65 in 1988 and it incorporated disconnection 1 (see 

Figure 1.6) as the key disconnection. This was also the first disconnection that 

led to the successful synthesis of indolizidine 195B.7 Table 1.2 shows which 

disconnections from Figure 1.6 were used for the total synthesis of 

(+)-monomorine I, (−)-monomorine I and (±)-monomorine I.   
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Figure 1.6: Cyclisation disconnections used in previous syntheses of monomorine I. 

 

Disconnection (+)-monomorine (−)-monomorine (±)-monomorine

1 65 - 76 77 64, 78 - 83 

2 73, 84 - 90 91, 92 93 - 101 

3  102 - 104 105 - 107 

4 108 - 110   

5   111 

6   112 

7   113 

8 114   

195B 19, 66, 84, 115, 116 117 - 120 101 

 

Table 1.2: Key disconnections in the synthesis of monomorine I (literature references 
to the previous syntheses of monomorine I are given in columns 2 – 4). 
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Disconnection 1: The C5 - N disconnection approach  
Berry and Craig67 prepared (+)-monomorine I in eleven steps starting from 

chirally pure D-norleucine (see Scheme 1.6). A key feature of their synthesis 

was the highly stereoselective ring closure, via a 5-endo-trig cyclisation. 

Enantiopure aziridine (94) was prepared in two steps from D-norleucine via 

amino alcohol (93) and then exposed to anion ring opening by methyl phenyl 

sulfone at the less substituted carbon. The resulting amine was 

dephosphonylated and reprotected with a benzoyl group to give (95) in 58% 

yield over the three steps. Compound (95) was deprotonated with a strong base 

and condensed with hex-5-enal. The resulting alkoxy anion was trapped by 

acetylation to give (96) in 75% yield. Treatment of (96) with base resulted in a 

one-pot elimination of acetic acid and a 5-endo-trig cyclisation to give (97) in 

73% yield. Pyrrolidine (97) was formed as a single diastereomer as confirmed 

by X-ray diffraction. Reduction of the benzoyl group followed by a modified 

Wacker oxidation gave (98) in 66% yield. Debenzylation of pyrrolidine (98) 

resulted in spontaneous reductive amination to give indolizidine (99) as a single 

isomer. Desulfonylation using sodium naphthalenide gave the resulting 

(+)-monomorine I (27) in a 10% overall yield for the eleven steps. 
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Scheme 1.6: Total synthesis of monomorine I by Berry and Craig.67 Reagents and 
conditions: i) a) Ph2P(O)Cl (2.1 eq.), Et3N (3 eq.), THF, 0°C → RT, 12 hrs.; b) excess 
NaH, RT, 1 – 2 weeks; ii) PhSO2Me (1 eq.), BuLi (1 eq.) 3:1 THF-Me2N(CH2)2NMe2, 
-78°C → RT, 12 hrs.; iii) BF3.OEt2 (10 eq.) 1:1 CH2Cl2-MeOH, RT, 12 hrs.; iv) BzCl (1.2 
eq.), pyridine (1.1 eq.), CH2Cl2, RT, 12 hrs, work up with Me2N(CH2)3NH2; v) BuLi (2.1 
eq.) 3:1 THF-Me2N(CH2)2NMe2, -78°C, add hex-5-enal (1.3 eq.) -78°C, 40 min., then 
add Ac2O (5 eq.), -78°C → RT, 12 hrs.; vi) ButOK (2.1 eq.), ButOH (10 eq.), in THF, 
RT, 12 hrs.; vii) DIBAL-H (4 eq.), CH2Cl2, -78°C → RT, 2 hrs.; viii) Hg(OAc)2 (1.05 eq.), 
3:1 THF-H2O, PdCl2 (0.6 eq.), CuCl2 (3 eq.), RT, 1.5 hrs.; ix) 10% Pd-C, cyclohexa-1,4-
diene (15 eq.), MeOH, reflux, 4 hrs.; x) Na+C10H8

- (3.5 eq.), THF, RT, 5 min. 
 
Riesinger, Bäckvall and co-worker70 employed a general approach to 

indolizidine alkaloids using an easily prepared, common chiral intermediate 

(103) in their synthesis of (+)-monomorine I (see Scheme 1.7). The 

stereochemistry was introduced either by using Sharpless epoxidation 

methodology on molecule (101) via (102) or by purchasing the commercially 

available chiral epoxide (100). Their key step was a novel Wittig coupling with a 
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ketone-protected phosphonium salt. Pyrrolidine (103) was subjected to a 

debenzylation to give (104) in 95% yield. Compound (104) was oxidized to the 

corresponding aldehyde (105), ready for the Wittig reaction. Wittig coupling 

gave (106) in 65% yield over the two steps. The double bond was reduced 

using platinum dioxide and the tosyl group was removed using dissolving metal 

conditions. Compounds (107) and (108) were obtained in 96% and 62% yields 

respectively. The final step was the cyclisation reaction which took place under 

acidic conditions to cleave the ketal and under one atmosphere of hydrogen 

pressure with activated palladium on carbon to reduce out the resulting imine 

and afford (+)-monomorine I (27) as it hydrochloride salt in 92% yield. The 

overall yield from the commercially available epoxide (100) was 12%. 
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Scheme 1.7: Total synthesis of monomorine I by Riesinger and co-workers.70 
Reagents and conditions: i) Pd-C, H2, MeOH; ii) pyridine-SO3, DMSO, Et3N, CH2Cl2; 
iii) Br-Ph3P+(CH2)2C(OCH2C(CH3)2CH2O)CH3, ButOK, THF, -78°C; iv) PtO2, H2, EtOH; 
v) Na/NH3, EtOH, −78°C → RT; vi) 10% Pd-C, H2, HCl (1.0 M), MeOH. 
 

Yuguchi, Tokuda and Orito82 used a synthetic route with the novel feature of a 

one-pot, four component coupling reaction, palladium catalysed and mediated 

by an organozinc reagent under a carbon monoxide atmosphere (see Scheme 
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1.8). 1,4-Diketone (112) was prepared by this reaction from organozinc reagent 

(109) and the Michael acceptor (110) in 79% yield via intermediate (111). The 

diketone (112) was then subjected to a Paal-Knorr reaction with ammonium 

acetate to give pyrrole (113) in 99% yield. Catalytic hydrogenation of pyrrole 

(113) followed by a trimethylaluminium-mediated cyclisation gave indolizidine 

(114) in 80% yield over the two steps. The final steps introduced the methyl 

group via a Grignard reaction and mild reduction of the resulting alcohol with 

sodium borohydride. This gave racemic monomorine I (27) as a single 

diastereomer in 56% yield over the three steps. Thus monomorine I was 

synthesized in a total of eight steps with an overall yield of 35%. 
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Scheme 1.8: Total synthesis of monomorine I by Yuguchi and co-workers.82 Reagents 
and conditions: i) CO (1 atm.), Pd(PPh3)4, Me3SiCl, LiCl; ii) H3O+; iii) NH4OAc, EtOH;  
iv) H2 (25 atm.), PtO2, AcOH; v) Me3Al, CH2Cl2; vi) MeMgBr, THF; vii) AcOH; 
viii) NaBH4. 
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Disconnection 2: The C3 - N disconnection approach  
The presence of 2,6-disubstituted piperidines in ants together with the absence 

of the 2,5 dialkyl pyrrolidines suggests that the biogenetic pathway forms the 

6-membered ring prior to the 5-membered ring. Takahata and Momose84 chose 

to follow this “biomimetic” model (see Scheme 1.9). Starting with readily 

available enantiopure L-alanine, amine (115) was prepared. Intramolecular 

amidomercuration using mercury trifluoroacetate followed by sodium bromide 

gave piperidine (116). Oxidative demercuration with sodium borohydride gave a 

5.6:1 cis : trans mixture of piperidine alcohols (117) and (118). These 

diastereomers were separated by column chromatography to give the desired 

cis isomer in 56% yield from amine (115). Swern oxidation of the cis-piperidine 

alcohol (117) gave the aldehyde (119), which was the enantiomerically pure 

intermediate for the synthesis of several methyl substituted ant indolizidines. 

Chain homologation by Horner-Emmons reaction gave an (8:1) E:Z mixture of 

the unsaturated enone (120). Exposure of enone (120) to hydrogen in the 

presence of Pearlman’s catalyst reduced out the double bond, deprotected the 

nitrogen and allowed the subsequent cyclisation reaction to occur. Finally, the 

resulting iminium moiety was stereoselectively reduced to give the desired 

(+)-monomorine I (27) in 59% yield, along with its C-3 epimer (26) (indolizidine 

195B) in 17% yield.  
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Scheme 1.9: Total synthesis of monomorine I by Takahata and co-workers.84 Reagents 
and conditions: i) Hg(OCOCF3)2, CH3NO2; ii) NaBr, NaHCO3; iii) O2, NaBH4, DMF; 
iv) (COCl)2, DMSO, Et3N; v) (H3CO)2POCH2CO(CH2)3CH3, NaH, THF; vi) H2, Pd(OH)2, 
MeOH. 
 

Somfai et al.97 began their synthesis with the protection of alcohol (121) 

followed by epoxidation to give epoxide (122) in 88% yield over the two steps 

(see Scheme 1.10). The epoxide was then converted into aziridine (123) in 75% 

yield by reaction with sodium azide followed by treatment with 

triphenylphosphine. Aziridine (123) was alkylated with t-butyl bromoacetate 

under basic conditions to give compound (124) in 76% yield. The silyl group 

was removed under standard conditions to give a free alcohol which underwent 

Swern oxidation and Wittig olefination to give the key intermediate vinyl 

aziridine (125) in 60% yield over the three steps. The key step in this synthesis 

converted vinyl aziridine (125) into 2,6-disubstituted piperidine (126) via an aza-

[2-3]-Wittig rearrangement in the presence of lithium di-isopropylamide in an 

efficient 99% yield. This reaction gave exclusively the cis isomer.  

Hydrogenation of piperidine (126) using 5% palladium on carbon gave poor 
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yields, rather, 5% rhodium-on-carbon was employed to give (127) in an 

excellent 91% yield. Reduction of the t-butyl ester gave alcohol (128) in 93% 

yield. This was followed by a Swern oxidation and a Horner-Emmons reaction 

which gave enone (129), almost exclusively as the Z isomer, in a reasonable 

yield of 74%. The final step was reduction of the alkene followed by 

stereoselective cyclisation by reductive amination in the presence of 5% 

palladium on carbon. This gave racemic monomorine I (27) and racemic 

indolizidine 195B (26) in a 1.5:1 ratio in a combined yield of 73%. In total the 

synthesis took fourteen steps and gave an overall yield of 8% for 

(±)-monomorine I (27) and 5.4% for (±)-indolizidine 195B (26).  
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Scheme 1.10: Total synthesis of monomorine I by Somfai and co-workers.97 Reagents 
and conditions: i) t-BuPh2SiCl, Et3N, DMAP, CH2Cl2; ii) m-CPBA, CH2Cl2; iii) NaN3, 
NH4Cl, MeOCH2CH2OH, H2O, reflux; iv) Ph3P, PhMe, reflux; v) t-butyl bromoacetate, 
K2CO3, 18-crown-6, CH3CN; vi) Bu4NF, THF, 0°C → RT; vii) DMSO, (COCl)2, Et3N, 
CH2Cl2, -78°C; viii) Ph3PCH3Br, KHMDS, THF, -20°C; ix) LDA, THF, -78°C; x) 5% 
Rh-C, H2, MeOH; xi) LiAlH4, THF; xii) DMSO, (COCl)2, Et3N, CH2Cl2, -78°C; 
xiii) (MeO)2POCH2COBu, LiCl, i-Pr2NEt, CH3CN; xiv) 5% Pd-C, H2, MeOH. 
  
Oliver and Sonnet64, 100 were one of the first research groups to synthesize 

monomorine I (see Scheme 1.11). Ritter et al.30 did perform an earlier 

synthesis, however, at the time they did not know which stereoisomer 

corresponded to the natural product. Oliver and Sonnet started with 2,6-lutidine 

(130), which was treated with n-butyllithium, followed by the addition of 

1,2-epoxyhexane to give alcohol (131) in 60% yield. Hydrogenation afforded 

both the cis and the trans piperidines (132) and (133) in a 1:1 ratio and a 

combined yield of 63%. These were separated using spinning band distillation. 
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Cyclisation of (132) using triphenylphosphine bromide followed by triethylamine 

gave 3-butyl-5-methyloctahydroindolizidines (26 – 27) in 85% yield and 

cyclisation of (133) gave (28 – 29) in 76% yield. Full interpretation of NMR, IR 

and MS data allowed assignment of the relative stereochemistry and 

comparison to the natural products. 
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Scheme 1.11: Total synthesis of monomorine I by Oliver and Sonnet.64, 100 Reagents 
and conditions: i) a) BuLi; b) 1,2-epoxyhexane; ii) H2, PtO2; iii) a) Ph3P.Br2; b) Et3N. 
 
Disconnection 3: The C8 – C8a disconnection approach  
Jefford et al.105 employed a route that started with a straightforward Michael 

reaction between ethyl (E)-but-2-enoate (134) and 2-butylpyrrole (135) (see 

Scheme 1.12). The reaction yielded compound (136) in 69% yield, but did not 

run to completion as 20% of the pyrrole (135) was recovered. An Arndt-Eistert 

chain extension allowed preparation of the key intermediate diazoketone (137) 
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in 86% yield. Rhodium catalysed decomposition of (137) resulted in a 

regioselective cyclisation of the piperidine ring via (138) to give (139) in 88% 

yield. Compound (139) underwent catalytic reduction in the presence of Adams 

catalyst and hydrogen gas to give indolizidine (140) in 80% yield with all-cis 

geometry due to the stereoselective transfer of hydrogen from the platinum 

surface. Deoxygenation of (140) proved difficult, presumably as the hydroxyl 

group was in an equatorial position. Jefford et al.105 finally succeeded in 

removing the hydroxy group by following a procedure developed by Barton and 

McCombie: The alcohol was converted to an imidazolecarbothionate (141) in 

90% yield and then reduced by tributylstannane in toluene heated at reflux to 

give racemic monomorine I (27) in 70% yield. The total synthesis was 

accomplished in six steps with an overall yield of 26%. 
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Scheme 1.12: Total synthesis of monomorine I by Jefford and co-workers.105 Reagents 
and conditions: i) KOH, CH3CN; ii) a) i-BuOCOCl, N-methylmorpholine; b) CH2N2, 
Et2O; iii) Rh2(OAc)4, CH2Cl2; iv) PtO2, EtOH, AcOH, H2 (20 bar); 
v) N,N-thiocarbonylimidazole, ClCH2CH2Cl; vi) Bu3SnH, toluene. 
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Disconnection 4: The C3 – N, C5 - N disconnection approach 

Randl and Blechert110 employed cross metathesis (CM) as the key step in the 

synthesis of (+)-monomorine I (see Scheme 1.13). The first coupling partner 

was prepared from the commercially available enantiopure starting material 

(R)-methyloxirane (142). This was converted to the corresponding alcohol by a 

Grignard reaction with vinylmagnesium bromide under regioselective copper-

catalysed conditions. The alcohol proved unstable and was immediately 

tosylated to give (143) in 65% yield.  Reaction with sodium azide gave azide 

(144) with inversion of stereochemistry. This proved a poor candidate for CM so 

the azide was reduced to the amine and protected with a benzoyloxycarbonyl 

(Cbz) group to afford the first coupling partner, compound (145). The other 

coupling partner was prepared via norbornene (145) which was prepared from 

a Stetter reaction of norbornene-2-carbaldehyde (146) with hept-1-en-3-one in 

85% yield. Flash pyrrolysis of (147) afforded the retro Diels-Alder product (148) 

in 81% yield. Alkenes (145) and (148) were coupled using the Grubbs-Hoveyda 

catalyst (149) to give the cyclisation precursor (150) in 89% yield. 

Hydrogenation of (150) with palladium on carbon reduced the alkene, 

deprotected the amine and caused double reductive amination to give 

(+)-monomorine I (27) in 75% yield. (−)-Indolizidine 195B (26) was isolated as a 

side product in 15% yield. Therefore the amination to create the pyrrole ring 

must have proceeded with a diastereoselectivity of 5:1. The synthesis was 

completed in a total of seven steps with an overall yield of 35%. 
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Scheme 1.13: Total synthesis of monomorine I by Randl and co-workers.105, 110 
Reagents and conditions: i) a) C2H3MgBr, Cu(COD)Cl (0.1 eq.), THF, -78°C → RT, 
12 hr.; b) TsCl, DMAP (0.1 eq.), CH2Cl2, 36 hr.; ii) NaN3, DMF, 40°C, 12 hr.; iii) a) 
LiAlH4, Et2O, 0°C → RT, 2 hr.; b) Cbz-Cl, K2CO3, THF, 12 hr.; iv) hept-1-en-3-one, 
3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride (0.05 eq.), Et3N (0.5 eq.), 
65°C, 18 hr.; v) flash pyrrolysis, 500°C, 10 mbar; vi) Grubbs-Hoveyda (0.05 eq.), 
CH2Cl2, reflux, 4 hr.; vii) H2, Pd-C, MeOH, RT, 48 hr. 
 

Disconnection 5: The C1 - C8a disconnection approach  
By employing dissolving metal conditions, Grierson and Zeller111 went from 

2-butyl-10-cyano-5-oxa-1-azabicyclo[4.4.0]decane (151) to racemic 

monomorine I (27) in six steps (see Scheme 1.14). Firstly, the methyl group 

was introduced using methyl iodide and low temperatures to give the kinetic 

product (152) exclusively. The kinetic product was completely converted to the 

thermodynamic product (153) by heating it at reflux with catalytic zinc bromide. 

Dissolving metal conditions were employed to remove the cyano group and the 

product (154) was isolated in a 70% yield from the starting material (151). Ring 

opening of compound (154) was achieved using diethylcyanophosphate and 

zinc bromide and gave phosphonate (155) in 75% yield. Deprotonation using 

lithium diisopropylamine allowed stereoselective ring closure to give indolizidine 

(156) as a single diastereomer. To complete the synthesis the second cyano 
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group was removed using dissolving metal conditions and racemic monomorine 

I (27) was isolated in 73% yield. The overall yield for the six steps was 38%.  

 

 
 
Scheme 1.14: Total synthesis of monomorine I by Grierson and co-workers.111 
Reagents and conditions: i) s-BuLi, THF-HMPT, -78°C, CH3I; ii) ZnBr2, reflux; 
iii) Na/NH3 (liq.); iv) (EtO)2POCN, ZnBr2; v) LDA, THF, -20°C; vi) Na/NH3 (liq.). 
 

Using the same synthetic methodology, monomorine I was also obtained in a 

mere three steps with an overall yield of 4% (see Scheme 1.15). The first step 

employed methyl iodide and sodium in ammonia which gave a 1:4 mixture of 

the kinetic product (152) in 10% yield and the thermodynamic (154) product 

with the cyano group already removed in 40% yield. Ring opening of (154) 

using diethylcyanophosphate and zinc dibromide gave compound (155) in 75% 

yield. Lastly, the ring closure of (155) to monomorine I (27) was achieved 

directly by using potassium and 18-crown-6. However, there was a loss of 

stereoselectivity and the 8a-epimer (29) of monomorine I was isolated as the 

major product with a ratio of 1 : 2.3 and a combined yield of 42%. 
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Scheme 1.15: Total synthesis of monomorine I by Grierson and co-workers.111 
Reagents and conditions: i) ICH3, Na/NH3 (liq.); ii) (EtO)2POCN, ZnBr2; iii) K, 
18-crown-6, THF. 
 
Disconnection 6: The C8a – N, C3 - N disconnection approach 

Castano and Echavarren112 formed both the piperidine and pyrrolidine ring in 

one step (see Scheme 1.16). 2-Methylpiperidine (157) was TROC protected in 

96% yield using Schotten-Baumann conditions and TROCCl. The protected 

piperidine (158) was oxidized to give imide (159) in 88% yield using sodium 

periodate and ruthenium trichloride according to the procedure developed by 

Sharpless and co-workers121 The imide (159) was hydrolysed by heating it at 

reflux in water and hence the carboxylic acid (160) was obtained in 89% yield. 

The carboxylic acid (160) was converted into the corresponding acid chloride 

and then coupled with a β-stannyl enone in the presence of palladium. The 

coupled product underwent a spontaneous reduction of the enone. This key 

step in the synthesis gave the desired diketone (161) in 45% yield in addition to 

the undesired product (162), produced by a reduction reaction by tributylstannyl 

chloride. The low yield of 45% was also attributed to the competitive re-

formation of the imide (159). Removal of the TROC protecting group from the 

diketone (161) allowed spontaneous cyclisation to form indolizidine (163). The 

optimum conditions for this reaction proved to be sonication in the presence of 

cadmium with acetic acid and dimethylformamide as the solvent, which gave 

(163) in a 96% yield. The final step was the reduction of the pyrrole ring of (163) 
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with rhodium on carbon in the presence of hydrogen. This gave racemic 

monomorine I (27) and two of its diastereomers (28 + 29) in a 2:2:1 ratio, and a 

combined yield of 60%. Several other hydrogenation conditions proved 

unsuccessful. Thus racemic monomorine I was synthesized in seven steps with 

an overall yield of 8%. 

 

 
Scheme 1.16: Total synthesis of monomorine I by Castano and co-workers.112 
Reagents and conditions: i) TROCCl, NaOH; ii) RuCl3 (cat.), NaIO4; iii) H2O, ∆; 
iv) a) SOCl2; b) E-Bu3SnCHCHCOBu, Pd(PPh3)4, dioxane, 100°C; v) Cd, HOAc-DMF, 
23°C; vi) H2, Rh-C, 25°C, EtOH. 
 
Disconnection 7: The C3, C5, C8a - N disconnection approach 
Mori, Hori and Sato113 developed a unusual route to monomorine I involving 

nitrogen fixation (see Scheme 1.17). The ketone (164) was prepared by the 

method of Shawe and Shiels.81 Ozonolysis of the ketone (164) followed by 

treatment with dimethyl sulfide gave the triketone (165) in 85% yield. The key 

step in the synthesis was coupling the triketone (165) with a titanium nitrogen 
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complex, formed by the reaction of titanium tetrachloride, lithium and 

trimethylsilyl chloride under dry air. This gave indolizidine (166) in 22% yield. 

The yield could be increased to 30% by using molecular nitrogen instead of dry 

air. Finally, the reduction of the pyrrole ring in the presence of rhodium on 

alumina and hydrogen atmosphere gave racemic monomorine I (27) in 32% 

yield, racemic indolizidine 195B (26) in 4% yield and the C-3, C-8a epimers (28 
+ 29) in 16% yield. 
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Scheme 1.17: Total synthesis of monomorine I by Mori and co-workers.113 Reagents 
and conditions: i) a) O3; b) Me2S; ii) Dry air, TiCl4, Li, TMSCl, THF; iii) Rh/Al2O3, EtOH, 
H2 (20 atm), 34 hr. 
 
Disconnection 8: The C2 - C3 disconnection approach 
Starting from benzoyl-protected D-glutamic acid (167), Lee and Chung114 

converted it into the corresponding oxazolidinone, which was reduced to the 

alcohol and brominated to give oxazolidinone (168) in 90% yield over three 

steps (see Scheme 1.18). Oxazolidinone (168) was reduced, the 

N-hydroxymethyl group was removed and the bromine was substituted for a 

phenyl selenide group to give selenide (169) in 81% yield over three steps. 

Prolonged treatment with base gave the cyclic carbamate, and subsequent 

reaction with ethyl propiolate gave β-amino acrylate (170) in 96% yield. Radical 

cyclisation formed the substituted piperidine ring in 80% yield as a 66:34 
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mixture of diastereomers. The major cis isomer (171) was converted into the 

selenide (172) via the alcohol and bromide in 83% yield. The carbamate ring 

was cleaved to give the diselenide product (173) in 91% yield. The nitrogen was 

realkylated with 1-pentyn-3-one to give (174) in 100% yield. The second radical 

cyclisation formed the indolizidine skeleton in 57% yield as a mixture of 

diastereomers (175). Formation of the corresponding dithioketals allowed 

separation of the two diastereomers (176 + 177) in 37% and 44% yield 

respectively. Removal of the dithioketal groups with Raney nickel in absolute 

ethanol gave (+)-monomorine I (27) and (+)-indolizidine 195B (26) in 71% and 

78% yield respectively. Although this was one of the longer syntheses (thirteen 

steps) it incorporated novel ring closures and effectively used radical 

cyclisations to give (+)-monomorine I in 6.3% overall yield and indolizidine 195B 

in 8.3% yield. 
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Scheme 1.18: Total synthesis of monomorine I by Lee and co-workers.114 Reagents 
and conditions: i) a) (CH2O)n, p-TsOH, PhMe; b) BH3.THF, 0°C; c) CBr4, PPh3, THF, 
0°C; ii) a) LiBH4, -78°C; b) KOMe, MeOH; c) (PhSe)2, NaBH4, EtOH, 0°C; iii) a) KOMe, 
MeOH-THF; b) HCCCO2Et, NMM, CH2Cl2; iv) Bu3SnH, AIBN, PhH; v) a) LiAlH4, -40°C; 
b) CBr4, PPh3, CH2Cl2; c) (PhSe)2, NaBH4, EtOH, 0°C; vi) PhSeSiMe3, ZnI2, PhMe; 
vii) HCCCOEt, CH2Cl2; viii) Bu3SnH, AIBN, PhH; ix) HSCH2CH2SH, BF3.OEt2, CH2Cl2, 
N2; x) Ra-Ni, EtOH.  
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This completes the general overview of the total syntheses of monomorine I. 

Chapter 2 details how our synthesis exploits novel methodology to achieve the 

total synthesis of both monomorine I and 5-epi-monomorine I. 

 

1.4.3.1 Introduction to tricyclic alkaloids 
Tricyclic alkaloids have been known to occur in coccinellid beetles since the 

early 1970s and more recently they have been detected in certain frog species. 

Due to their structural complexity there are far fewer reported total syntheses of 

the tricyclic alkaloids compared to the bicyclic alkaloids. The tricyclic alkaloids 

are rarely detected in Nature and occur in minor and trace amounts when they 

do. However, there was evidence of their potent biological activity which 

warrants further investigation. 

 

Certain of the tricyclic alkaloids show a structural relationship to the 

3,5-disubstituted indolizidines, as their tricyclic system formally incorporates a 

3,5-disubstituted indolizidine within the skeleton. This also means that they 

could potentially be accessed by closing the two side chains of the indolizidine 

to form the third ring. One possible method would be ring closing metathesis as 

shown in Figure 1.7.  

 

 
 
Figure 1.7: Proposed synthetic connection between 3,5-disubstituted indolizidines 
(178) and tricyclic alkaloids (179). 
 

The structural relationship between these two classes of alkaloids drew our 

interest as it offered an additional area for extending this project.  The proposed 

RCM was an obvious choice for forming the third ring as our research group 

has some experience with RCM and there was literature precedent for this type 

of chemistry. 

 



 

 53

1.4.3.2 Previous synthesis of a tricyclic alkaloid 

The work of Smith III and Kim122 is a good example of exploiting the structural 

relationship between indolizidines and tricyclic alkaloids, and they have 

demonstrated the effectiveness of RCM in forming the tricyclic skeleton. 

Extending methodology developed for the synthesis of the 3,5-disubstituted 

indolizidine (−)-223AB (180), Smith III and Kim were able to synthesize 

(−)-coccinelline 205B (47).  

 

Coccinelline 205B (47) is one of the alkaloids isolated from the skin of a 

neotropical frog Dendrobates pumilio which possesses an unusual tricyclic 

azaacenapthylene ring. 
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Smith III and Kim’s synthesis proceeds via a lynchpin coupling reaction 

between TBS dithiane, an epoxide and an aziridine (see Scheme 1.19). The 

umpolung electronics of the dithiane allow successive deprotonations and 

sequential alkylation with the epoxide and the aziridine electrophiles. The 

coupling between (181), (182) and (183) proceeded to give the dialkylated 

dithiane (184) in 53% yield, with 31% yield of the monoalkylated dithiane 

recovered. A one-pot removal of the two TBS groups and mesylation of the 

alcohols followed by removal of the tosyl group using a sodium amalgam 

allowed spontaneous cyclisation to form indolizidine (185) in 70% yield over the 

three steps. Indolizidine (185) was refluxed in an acidic acetone solution to 

remove the acetonide group and this gave the ketone (186) in 83% yield. The 

ketone (186) was transformed into the corresponding enol silyl ether to provide 

the second alkene for the intramolecular RCM reaction, which proceeded 

efficiently to give the tricyclic compound (187) in 81% yield over the two steps.   
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Some difficulty was experienced in obtaining the correct stereochemistry for the 

C-6 methyl group and Smith III et al.122 overcame this difficulty by proceeding 

via the methyl enol ether of ketone (187). Conversion of (187) to the methyl 

enol ether and hydrolysis to the aldehyde (188) produced the desired 

stereoselectively which can be accounted for by the proposed electrostatic 

repulsion of the hydronium ion and the ammonium ion – steric hindrance would 

have favoured the opposite stereoselectivity. The aldehyde (188) was reduced 

to the corresponding alcohol (189) in a yield of 74% from the ketone (187) over 

three steps. The alcohol was removed to give compound (190) in 83% yield. 

The dithiane was then removed to give (191) in 90% yield. The final steps in the 

synthesis follow a method developed by Toyooka et al.123 to give 

(−)-coccinelline 205B (47) in 64% yield. The overall yield for the (−)-coccinelline 

205B (47) using the longest linear sequence of nineteen steps was 5.6%. 
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Scheme 1.19: Total synthesis of coccinelline 205B by Smith III and co-workers.122 
Reagents and conditions: i) a) t-BuLi, Et2O, -78°C → -45°C, 1 hr.; b) (182), Et2O, -78°C 
→ -20°C, 2 hr.; c) (183), THF, -78°C to 0°C 2 hr.; ii) TBAF; iii) MsCl, Et3N, THF;  
iv) a) K2CO3, MeOH, 1 hr; b) 5% Na-Hg, Na2HPO4, 15 hr.; v) 2M HCl, acetone, reflux; 
vi) a) LHMDS, TMSCl, THF, -78°C; b) Grubbs II (0.1 eq.), benzene, 65°C, 15 hr.; 
vii) a) Ph3PCH2OMeCl, t-BuOK, THF, RT; b) 6M HCl/THF (1:1), 14 hr.; viii) NaBH4, 
MeOH, 0°C; ix) a) MsCl, Et3N, THF; b) LiHBEt3, THF, reflux; x)PhI(O2CCF3)2, TFA, 
CH3CN-H2O (1:1), RT; xi) a) Ph3PCH3Br, n-BuLi, THF; b) p-TsOH, benzene. 
 

Chapter 2 details how our project could be extended to provide a novel 

synthesis of the tricyclic skeleton. Due to time constraints our investigations into 

tricyclic alkaloids only extended as far as a model study. 
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CHAPTER 2 
BACKGROUND, AIMS AND SCOPE OF THIS PROJECT 

 
2.1  The “Wits Approach” to indolizidine alkaloids 
 
2.1.1 Introduction to the “Wits Approach” 
Alkaloid chemistry in the Backeberg Laboratories in the School of Chemistry at 

the University of the Witwatersrand has been very active over the past three 

decades with nine MSc students124 - 132 and seventeen PhD students31, 133 - 148 

having graduated during this time. Our approach to alkaloid synthesis relies 

largely on the use of enaminones e.g. (192) (see Figure 2.1), especially 

vinylogous urethanes and vinylogous amides. Alternatively they can be thought 

of as β-acylated enamines. We exploit these functionally rich moieties to 

develop generalized methodology, and our particular approach has come to be 

known as the “Wits approach”.149 

 

 
 
Figure 2.1: Generalised enaminone and corresponding cyclic enaminone. 
 

Invariably we use a secondary or tertiary amine that is part of a pyrrolidine 

(193) or piperidine ring with an exocyclic carbon-carbon double bond 

conjugated to an electron-withdrawing group. Their reactivity can be modulated 

by changing the electron-withdrawing group. In our group these serve as 

scaffolds for alkaloid synthesis, as they are easily incorporated into larger 

structures and offer opportunity for chemoselective, regioselective, 

diastereoselective and enantioselective control. This versatility is associated 

with the ambident nucleophilicity and electrophilicity of enaminones (see Figure 

2.2).149 
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Figure 2.2: Reactive sites of the enaminone system. 

 

The enaminone group is resistant to mild hydrolysis and oxidation owing to the 

delocalization of charge through the vinyl substituent. In a vinylogous urethane, 

for example (R’ = OR), chemoselective reduction of esters present elsewhere in 

the molecule is possible, while leaving the vinylogous urethane untouched. 

 

2.1.2 Preparation of enaminones 
The earliest preparation of an exocyclic vinylogous urethane was by Lukeš150 

and dates from 1932. They used a Reformatsky reaction to react lactam (194) 

with ethyl bromoacetate (195) in the presence of magnesium to form the 

vinylogous urethane (196) in 68% yield (see Scheme 2.1). 
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Scheme 2.1: Synthesis of an exocyclic vinylogous urethane by Lukeš and co-
workers.150 
 

One of the favourite methods of accessing enaminones in our laboratories 

involves reacting a thiolactam (197) with an α-halo carbonyl compound to form 

an α-thioiminium salt (198). The salt (198) is then treated with a mild base, and 

an episulfide (199) forms. In the presence of a sulfur scavenger the episulfide 

spontaneously collapses to form the exocyclic double bond and hence the 
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enaminone (200). This is known as the Eschenmoser sulfide contraction (see 

Scheme 2.2) after the researcher who developed it,151 and is one of the easier 

methods of accessing enaminones.  

 

 
Scheme 2.2: An example of the Eschenmoser sulfide contraction. 

 

A recent study on sulfide contraction reactions indicated that improved yields 

can be obtained through the addition of sodium iodide and the use of polar 

aprotic solvents such as acetonitrile or chloroform.152 

 

Another method frequently employed at Wits to access exocyclic vinylogous 

amides or urethanes also starts from a thiolactam (201).153 The thiolactam 

(201) is reacted with methyl iodide to form an α-thioiminium salt (202) which is 

then condensed with an anionic nucleophile (203) (e.g. a malonate) to give an 

intermediate acylated product (204). The acylated product (204) often 

spontaneously deacylates to form the enaminone (205) (see Scheme 2.3). If 

necessary, the deacylation reaction can be facilitated by heating the acylated 

product (204) at reflux in an acidic solution.154 
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Scheme 2.3: Formation of exocyclic vinylogous amides via a malonate condensation. 
 

Several other very specific routes to enaminones have also been used at Wits, 

but they will not be discussed since they were not used in the present project. 

For example, one such method, entailing a novel Reformatsky reaction with a 

thiolactam, is illustrated in Scheme 2.7. 

 

2.1.3 Enaminones in action at Wits 

At Wits we have used enaminone methodology to access pyrrolidines, 

indolizidines, quinolizidines, lehmizidines and perhydroindole alkaloids, 

pyrrolo[1,2-a]indoles and pyrrolo[1,2-a]quinolines. Most of these scaffolds 

exploit the nucleophilicity of the β-position of the enaminone (see Figure 2.2).  

 

Enaminones have been used at Wits as partners in acylative ring closure. One 

synthesis that utilized this methodology was the formal synthesis of ipalbidine 

(206). The aza-Michael addition of thiolactam (207) to the acceptor (208) gave 

the alkylated thiolactam (209). This compound underwent an Eschenmoser 

sulfide contraction with ethyl bromoacetate to form the exocyclic vinylogous 

urethane (210). Selective hydrolysis of the saturated ester followed by 

formation of a mixed anhydride facilitated the acylative ring closure of (210) by 

increasing the electrophilicity of the carbonyl group, hence allowing the weakly 

nucleophilic β-position of the enaminone to cyclise onto the anhydride to give 

the indolizidinone (211). Hydrolysis and decarboxylation of (211) followed by 

chemoselective reduction of the enaminone (212) gave (213), a known 
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precursor to ipalbidine (206) and hence completed the formal synthesis (see 

Scheme 2.4).155 
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Scheme 2.4: The formal synthesis of ipalbidine by Howard et al.155 Reagents and 
conditions: i) NaOH (cat.), THF; ii) BrCH2CO2Me, THF; iii) Ph3P, Et3N, MeCN; 
iv) NaOH, H2O, reflux; v) ClCO2Me, Bu4NI (cat.), THF; vi) KOH, H2O, reflux; vii) HCl, 
H2O, reflux; viii) LiAlH4, THF. 
 

The other popular cyclisation methodology used at Wits entails alkylative ring 

closure. A strategically placed alcohol, or a 3-hydroxypropyl substituted onto 

the pyrrolidine nitrogen, was converted into a better leaving group, such as an 

iodide, which allowed the weakly nucleophilic β-position of the enaminone to 

facilitate cyclisation. This approach was nicely demonstrated in the formal 

synthesis of (–)-indolizidine 209B (see Scheme 2.5).139, 156 Chiral amine (214) 

was added to the Michael acceptor (215) with subsequent debenzylation of the 
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amine in the presence of palladium-on-carbon to give the primary amine (216) 

in 68% yield over the two steps. Amine (216) was condensed with chlorobutyryl 

chloride and converted into the corresponding thiolactam (217) in 73% yield 

over the three steps. The thiolactam (217) then underwent an Eschenmoser 

sulfide contraction with ethyl bromoacetate to give the vinylogous urethane 

(218) in 94% yield. Chemoselective reduction of the saturated ester gave the 

alcohol (219) in 88% yield. Finally, alkylative ring closure proceeded in the 

presence of iodine, triphenylphosphine and imidazole to give the bicyclic 

product (220). Chemoselective and diastereoselective reduction of the 

enaminone and ester gave the alcohol (221) in 38% yield over two steps and 

completed the formal synthesis of (–)-indolizidine 209B (222). Following the 

synthesis of Holmes et al.157 the alcohol (221) was defunctionalized via the 

corresponding methanesulfonate and the total synthesis was completed.  

 

 
Scheme 2.5: The formal synthesis of (–)-indolizidine 209B (222) by Michael and 
Gravestock.139, 156 Reagents and conditions: i) BuLi, THF, -78°C; ii) H2, (7 atm.), 10% 
Pd-C, AcOH;  iii) Cl(CH2)3COCl NaHCO3, CHCl3, reflux; iv) KOBut, ButOH; 
v) Lawesson’s reagent, PhMe,  reflux; vi) a) BrCH2CO2Et, MeCN, RT; b) Ph3P, Et3N. 
MeCN, RT; vii) LiAlH4, THF, RT; viii) I2, imidazole, Ph3P, PhMe, 110°C; ix) H2, (1 atm.), 
PtO2, AcOH, RT; x) LiAlH4, THF, RT. 
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As shown in the preceding synthesis (Scheme 2.5), in order to use enaminone 

reactivity to assist with the enantioselective alkaloid synthesis, it was necessary 

to introduce at least one stereogenic centre prior to enaminone formation. 

Chiral auxiliaries should prove a useful tool in the introduction of stereogenic 

centres, but as yet appropriate chiral auxiliaries remain elusive. The successful 

stereoselective syntheses of indolizidines following the enaminone route have 

used β-amino acids, esters and lactones as homochiral building blocks. One of 

the successful routes uses methodology developed by Davies et al.158 to 

incorporate the correct stereochemistry. This methodology was successfully 

used to introduce chirality both in the synthesis of (−)-indolizidine 209B 

(Scheme 2.5) and (−)-indolizidine I67B (see Scheme 2.6). 

 

Starting from t-butyl bromoacetate (223) and triethyl phosphite, phosphonate 

(224) was prepared. The phosphonate (224) was then reacted in a Horner-

Wadsworth-Emmons reaction to give the Michael acceptor (225) in 63% yield 

over the two steps. The alkenoate (225) underwent a stereoselective aza-

Michael reaction with the dibenzylated chiral amine (214). After debenzylation 

with 10% palladium-on-carbon and hydrogen gas in acetic acid, the 

enantiomerically pure amine (226) was isolated in 52% yield over the two steps. 

This amine (226) was reacted with chlorobutyryl chloride and cyclised to form 

the lactam (227) in 56% yield. The lactam (227) was thionated in the presence 

of Lawesson’s reagent to give thiolactam (228) in 85% yield. The thiolactam 

underwent an Eschenmoser sulfide contraction reaction to give the enaminone 

(229) in 79% yield. The enaminone (229) was converted to the corresponding 

mixed anhydride via the carboxylic acid (230), and this facilitated acylative ring 

closure of the enaminone to give hexahydroindolizidinone (231) in 55% yield. 

Using standard transformations, defunctionalisation of the ester, enaminone 

and the resulting ketone proceeded via (232), (233) and (234) to give 

(−)-indolizidine 167B (36) in a total of fifteen steps and an overall yield of 1.5% 

(see Scheme 2.6).159 
 



 

 63

CO2tBu

C3H7

Ph N
H

Ph

tBuO2C C3H7

NH2

N
S

C3H7

tBuO2C

N

C3H7

CO2tBu

N

C3H7

O
H

N

C3H7

H

v - vi

56%

xv

72%

vii

85%

viii - ix
79%

xiv

62%

x

[226] [227]

[228] [229] [230]

[231]

[233] [234] [36]

N

C3H7

H

S

S

N

C3H7

O

N

C3H7

O

CO2Et

xii

83%

xiii

60%

xi
55%

N

C3H7

EtO2C

HO O

N
O

C3H7

tBuO2C

CO2tBu

(EtO)2PO

CO2tBu

Br

i ii

63%

iii-iv 52%

[223] [224] [225]

[232]

[214]

EtO2C

 
 

Scheme 2.6: The total synthesis of (–)-indolizidine 167B (36) by Michael and 
Gravestock.159 Reagents and conditions: i) P(OEt)3, 110°C; ii) butanal, DBU, LiCl, 
MeCN, RT; iii) BuLi, THF, -78°C; iv) H2,, (7 atm.), 10% Pd-C, AcOH; v) Cl(CH2)3COCl, 
NaHCO3, CHCl3, RT; vi) KOBut, ButOH; vii) Lawesson’s reagent, toluene, reflux; 
viii) BrCH2CO2Et, MeCN, RT; ix) Ph3P, Et3N, MeCN, RT; x) Me3SiI, CCl4, RT; xi) Ac2O, 
MeCN, 50°C; xii) KOH, H2O, reflux, then HCl, reflux; xiii) LiAlH4, THF, RT; 
xiv) HS(CH2)3SH, BF3.Et2O, CF3CO2H, RT; xv) Raney-Ni, EtOH, reflux. 
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Enaminone cyclisations have also been used for the synthesis of 

aziridinomitosenes (see Scheme 2.7).160 In a model study, 2-bromoaniline was 

condensed with the protected D-erythronolactone (235), which was the source 

of chirality, to give the alcohol (236) in 89% yield. Mesylation of the alcohol 

(236) and subsequent ring closure gave the lactam (237) in 90% yield over two 

steps. Thionation of lactam (237) formed the thiolactam (238) in 90% yield. 

Initial attempts at the Eschenmoser sulfide contraction involving the N-aryl 

thiolactam (238) proceeded in very low yields, probably due to the decreased 

nucleophilicity of the sulfur atom owing to conjugation with the aromatic ring. 

This problem was overcome by using a novel zinc-mediated Reformatsky 

reaction with ethyl bromoacetate in the presence of catalytic iodine. This 

produced the vinylogous urethane (239) in 91% yield. The next step, the Heck 

cyclisation, was efficiently catalysed by palladium acetate and cyclisation onto 

the aromatic ring proceeded to give (240) in 99% yield. Deprotection of the 

alcohols gave the diol (241) which was reacted with thionyl chloride to give the 

cyclic sulfite ester (242) in 74% yield over the two steps. Reaction of the cyclic 

sulfite ester (242) with sodium azide regioselectively gave the azide (243) in 

92% yield and mesylation of the remaining hydroxy group gave (244) in 95% 

yield. Finally, the formation of the aziridine (245) completed the total synthesis 

in 60% yield. In total the synthesis took eleven steps and the overall yield was 

25%. This methodology was subsequently applied to the synthesis of a fully 

functionalised aziridinomitosene, in which the ring was part of a quinone 

system.161  
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Scheme 2.7: The total synthesis of aziridinomitosene analogues (245) by Michael et 
al.160, 162 Reagents and conditions: i) 2-bromoaniline, EtMgBr, THF, -78°C; ii) MeSO2Cl, 
Et3N, CH2Cl2, 0°C, to RT; iii) NaH, THF, RT; iv) Lawesson’s reagent, PhMe, reflux; 
v) Zn (5 eq.), BrCH2CO2Et (3 eq.), I2 (0.2 eq.), THF, ultrasound, then add [238], THF, 
reflux; vi) Pd(OAc)2 (0.1 eq.), PPh3 (0.4 eq.), KOAc (7.5 eq.), Bu4NBr (2.5 eq.), 
DMF-MeCN-H2O (1:1:0.2), 100°C, 5 hr.; vii) TFA, THF-H2O (1:1), RT; viii) SOCl2, Et3N, 
CH2Cl2, -15°C; ix) NaN3, DMF, 55°C, then aq. H2SO4; x) MeSO2Cl, Et3N, CH2Cl2, 0°C, 
to RT; xi) P(OMe)3, THF, reflux, then NaH, RT. 
 

One final example from the Wits laboratories is the synthesis of tricyclic 

analogues of quinolone antibiotics (see Scheme 2.8).160 Starting from various 

N-aryl thiolactams (246) a modified Reformatsky reaction with diethyl 

bromomalonate gave the difunctionalised enaminones (247). Ring closure onto 
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the aromatic ring was catalyzed by polyphosphoric acid at elevated 

temperatures and gave the esters (248). The final step was the hydrolysis of 

the ester group to give the quinolone antibiotic analogues (249). 
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Scheme 2.8: The synthesis of tricyclic analogues of quinolones (249) by Michael et 
al.160, 162 Reagents and conditions: i) BrCH(CO2Et)2 (4 eq.), Zn (4 eq.), I2 (0.2 eq.), THF, 
reflux; ii) PPA, 85-100°C; iii) NaOH, H2O, reflux, then HCl.  
 

Other research groups are also currently investigating new methodology 

pertaining to enaminones. One group in particular is that of Ma and co-

workers163, 164 who employ enaminones in the cyclisation step in the synthesis 

of indolizidine and quinolizidine alkaloids (see Scheme 2.9). They used a one-

pot process, mixing the alkene (250) and the amine (251) in the presence of 

potassium carbonate, to produce the allenyl enolate (252) or (253) in situ. The 

anion (252) or (253) spontaneously cyclised, alkylatively or acylatively, to give 

the corresponding bicyclic compound (254) or (255) respectively.  One example 

of an amphibian indolizidine synthesized via this route was indolizidine 223A 
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(34), which was synthesized in twelve steps with an overall yield of 14.5%.163, 
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Scheme 2.9: The use of vinylogous urethanes in the synthesis of indolizidine and 
quinolizidine alkaloids by Ma and coworkers.163 
 
2.2  Vinylogous sulfonamides 
 
2.2.1  Preparation of vinylogous sulfonamides 
A particular type of “enaminone” analogue, namely the vinylogous sulfonamide, 

has recently emerged at Wits as an interesting enaminone variant. Its synthetic 

utility is due to the electron-withdrawing sulfone group, its ability to form 

α-sulfonyl anions, and its ready removal by hydrogenolytic, alkylative or 

oxidative cleavage once it has served its purpose. This allows for easy, high-

yielding ring closure and the formation of indolizidine products that do not bear 

substituents at C-8 (Figure 1.1).30 Vinylogous sulfonamides differ from the 
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classic enaminones in that the sulfone group does not participate in conjugation 

whereas the carbonyl group does.166 

 

The literature available on sulfone chemistry is abundant and vinylogous 

sulfonamides are currently receiving a lot of attention by various research 

groups. Kozerski et al.166 have performed extensive NMR studies on the three 

tautomeric forms of β-sulfonyl enamines viz. the E, Z and imine tautomers. As 

the energy difference between the imine and the enamine is very small these 

tautomers interchange rapidly at most temperatures by a proposed 

1,3-sigmatropic proton transfer.  

 

Arias et al.167 have developed a novel preparation of vinylogous sulfonamides 

by reacting α-lithiated alkyl sulfones with lactams of pyrrolidines and 

piperidines. Meanwhile, Brillon et al.168 have developed a novel preparation of 

difunctionalized enamines (256) by condensing 2-(phenylsulfonyl)acetonitrile 

(PhSO2CH2CN) with thiolactams in the presence of silver carbonate. 

 

 
 
2.2.2  Uses of vinylogous sulfonamides 
One of the principal research groups investigating the reactivity of vinylogous 

sulfonamides is that of Thomas Back.56 He has demonstrated the utility of his 

methodology in the synthesis of quinolones169, 170 piperidines, pyrrolidines, 

indolizidines and quinolizidines56 (see Figure 2.3). His research group primarily 

exploits acetylenic sulfones by deprotonating the α-position in order to facilitate 

ring closure in an alkylative manner, e.g. in the synthesis of indolizidines and 

quinolizidines (see Scheme 2.10) or an acylative manner. For example, in the 

synthesis of (−)-lasubine II (257)171 and pumiliotoxin C (24)172 (see Scheme 

2.11 and 2.12). He has reacted acetylenic sulfones with anilines in 

cycloaddition reactions, e.g. in the synthesis of quinolones I and II (258) (see 

Scheme 2.13). He also uses acetylenic sulfones as efficient dienophiles in 
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cycloaddition reactions, due to the electron-withdrawing effect of the sulfone. 

This research group’s expertise extends to include the reactivity of allenic 

sulfones in addition to acetylenic sulfones.   
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Figure 2.3: Natural products, (−)-Lasubine II (257), pumiliotoxin C (24) and quinolones I 
and II (258), synthesized using acetylenic sulfones.56, 169, 170 
 
 
 
 
 

 
 
Scheme 2.10: Pyrrolidine (260) adds to the acetylenic sulfone (259) which facilitates 
alkylative ring closure to form (261), the precursor to indolizidines or quinolizidines.56 
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Scheme 2.11: Piperidine (263) adds to the acetylenic sulfone (262) which facilitates 
acylative ring closure to form (264), the precursor to (−)-lasubine II.171 
 
 
 
 
 

 
 
Scheme 2.12: Amine (266) adds to the acetylenic sulfone (265) which facilitates 
acylative ring closure to form (267), the precursor to pumiliotoxin C.172 
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Scheme 2.13: Aniline (269) adds to the acetylenic sulfone (268) to form (270), the 
precursor to quinolones I and II.169, 170 
 

2.3 Aims and proposed strategies of this project 
 
2.3.1 (−)-Indolizidine 209D 
Ibrahim Yillah, a former PhD student in the Wits laboratories, endeavoured to 

use vinylogous sulfonamides in the “Wits approach” for the total synthesis of 

(−)-indolizidine 209D (37).31, 173 This indolizidine has since proved to be the 

incorrectly assigned structure of pyrrolizidine 209K (39) and as yet no 

5-monosubstituted alkaloids have been confirmed from amphibian origin. 

Although Yillah completed his PhD in 2002, some of the intermediate molecules 

in his synthesis were not reliably characterized, in particular, the optical rotation 

values obtained did not correspond to literature values for analogous 

compounds. The methodology employed in his synthesis aligns with the 

methodology chosen for the total synthesis of monomorine I and its 

diastereomers in this PhD project. In an attempt to familiarise ourselves with 

this chemistry, to obtain the full characterization information, verify his 

experimental data, and optimize some of his reactions, we undertook to repeat 

his total synthesis of (−)-indolizidine 209D (37). The work he reported in his 

PhD thesis is shown in Scheme 2.14. 

 

Starting from t-butyl bromoacetate (271), Horner-Wadsworth-Emmons 

methodology was utilized to transform phosphonate (272) into Michael acceptor 

(273) in 86% yield over two steps. Following the protocol developed by Davies 

et al.158 aza-Michael addition with a chiral dibenzylated amine (214) allowed for 
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the stereoselective formation of (274) in 99% yield. Debenzylation in the 

presence of palladium-on-carbon afforded amine (275) in 92% yield. The 

condensation of amine (275) with 4-chlorobutyryl chloride afforded amide (276) 

in 89% yield. In the presence of a strong base the amide (276) cyclised to form 

the lactam (277) in 73% yield. Thionation of the lactam (277) afforded the 

corresponding thiolactam (278) in 80% yield. The thiolactam (278) was 

condensed with 1-[(4-methylphenyl)sulfonyl]acetone (279) which spontaneously 

deacylated to give the vinylogous sulfonamide (280) in 77% yield. Reduction of 

the t-butyl ester proceeded to give the corresponding alcohol (281) in 94% 

yield. Alkylative cyclisation afforded the bicyclic molecule (282) in 83% yield. 

Finally, reduction of the double bond gave (283) in 56% yield, followed by 

reductive cleavage of the sulfone to give (−)-indolizidine 209D (37) in 72% yield. 

Overall the synthesis took twelve steps and gave (−)-indolizidine 209D (37) in 

9.9% yield. 

 

Unfortunately, the optical rotation for the final product did not conform to the 

reported data, thus casting doubt on either the purity of the product or on the 

stereochemical integrity of the sequence.  We chose to reattempt the total 

synthesis of (−)-indolizidine 209D in order to clarify the stereochemical integrity 

of this pathway, to optimize the route and to fully characterize the 

intermediates. This would provide us with ample opportunity to familiarise 

ourselves with the methodology and the laboratory techniques required to 

complete the synthesis of monomorine I and its diastereomers at a later stage. 

Repeating this synthesis in a systematic way would also ultimately allow for the 

publication of the total synthesis of (−)-indolizidine 209D. 
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Scheme 2.14: The total synthesis of (−)-indolizidine 209D (37) by Michael and Yillah.31 
Reagents and conditions: i) P(OEt)3, 100°C; ii) heptanal, NaH, Et2O, RT, 1 hr.; iii) BuLi, 
THF, -78°C; iv) H2 (7 atm.), 5% Pd-C, AcOH, 20 hr.; v) Cl(CH2)3COCl, NaHCO3, CHCl3, 
RT; vi) KOBut, ButOH; vii) P2S5,CHCl3, RT, 8 hr.; viii) MeI, THF, then (279), Et3N, 
CH2Cl2, 72 hr.; ix) LiAlH4, THF, 15 hr.; x) PPh3, imidazole, I2, CH3CN/toluene (2:1), 
reflux, 6 hr.; xi) H2 (7 atm.), PtO2, MeOH;  xii) Na(Hg), Na2HPO4. 
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2.3.2 Monomorine I and diastereomers 
Interest in the next target, monomorine I, at Wits started in the mid-90s when 

Penelope Cheesman undertook her Masters degree.128 She started to 

investigate the total synthesis of monomorine I, but unfortunately she failed to 

complete it. However, she did perform numerous investigations leading to 

several key precursors of monomorine I and thereby verified that the 

“enaminone route” was potentially viable. Shown below are the key steps she 

achieved, although she was unable to purify or fully characterize the final two 

products (see Scheme 2.15).128  

 

Starting from the racemic lactam (284), the carbonyl was thionated to give 

thiolactam (285) in 81% yield. Alkylation of the thiolactam (285) with ethyl 

crotonate proceeded to give (286) in a disappointing yield of 23% and as a 

mixture of diastereomers. Following the sulfide contraction and formation of the 

key intermediate, vinylogous urethane (287), the cyclisation reaction took place 

and separable diastereomers (288) were isolated in a 1:1 ratio. Unfortunately 

the following two steps, reduction of the enaminone and decarboxylation, were 

carried out on minimal material and not enough of the desired products were 

recovered to give conclusive characterization. There was however, 

spectroscopic evidence that compound (289) and indolizidinone (290) had been 

obtained. The final step in the synthesis, defunctionalisation of the keto group, 

was never attempted.  
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Scheme 2.15: Progress towards the total synthesis of monomorine I by Cheesman and 
Michael.128 Reagents and conditions: i) P4S10, THF, Na2CO3; ii) NaH, THF, ethyl 
crotonate, 12 hr., then reflux for 5 hr.; iii) a) Ethyl bromoacetate, CH3CN, 0°C, 12 hr.; 
b) PPh3, Et3N, 2hr.; iv) a) NaOH, H2O, reflux; b) Ac2O, MeCN, 60°C; v) LiAlH4, THF, 
5 hr.; vi) a) KOH, reflux 2 hr;. b) HCl, reflux 1 hr. 
 

Although Cheesman was close to achieving the target, the mixture of 

diastereomers was a disadvantage, as was the need for a final 

defunctionalisation. We chose not to optimise this approach, but rather to 

investigate a new approach via vinylogous sulfonamides.  

 

In general, indolizidines are particularly appropriate target molecules for total 

synthesis when exploiting enaminone reactivity. By nucleophilic attack of the 

enaminone at an appropriately placed electrophilic centre on the R group, one 

can create the C-7/C-8 bond (see Figure 2.4). When comparing this ring 

closure to all previous syntheses of monomorine I it was clear that this 

approach was novel. Furthermore, different levels of stereoselectivity can be 

attained by controlling the stereochemistry at C-3 and C-5 prior to cyclisation. 
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Figure 2.4: An enaminone for a potential C-7/C-8 ring closure to form an indolizidine. 

 

Once the double bond has been incorporated into the second ring, there is the 

opportunity for stereoselective reduction, potentially guided by the steric effects 

of the other ring substituents. This reduction would be diastereofacially 

selective, with the hydrogen atoms delivered to the less hindered face, and is 

therefore only useful if that is the desired isomer (Figure 2.5).   

 

N

R1
R2

steric hindrance

H2  
 
Figure 2.5: Potentially diastereofacially selective reduction of the double bond. 

 

The aim of this second total synthesis was to exploit novel methodology in the 

synthesis of 3,5-disubstituted indolizidines and to incorporate the key 

intermediate vinylogous sulfonamide to expand the scope of the “Wits 

approach”.   

 

Our proposed synthetic route (see Scheme 2.16) begins with the preparation of 

the primary amine (291) and the bifunctional electrophile (292). The amine 

(291) and the keto-ester (292) should condense to give the lactam (293). 

Reduction of the exocyclic double bond to give (294) should offer an 

opportunity for diastereoselective control. Thionation of lactam (294) could 

proceed in the presence of phosphorus pentasulfide or Lawesson’s reagent to 

give thiolactam (295). The sulfone reagent (BrCH2SO2Ar) was not a suitable 
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substrate for Eschenmoser sulfide contraction, due to the limited reactivity of 

α-halosulfones towards nucleophilic substitution.174 Bordwell and Brannen174 

attribute this effect to the inductive and field effects of the sulfonyl oxygen 

atoms. Instead, an “activated” sulfone (279) has been selected which would 

allow deprotonation and condensation with the iminium salt of thiolactam (295) 

in a manner analogous to the synthesis of (−)-indolizidine 209D. The 

deacylation should proceed spontaneously. Reduction of ester (296) under 

standard conditions should give the corresponding alcohol (297), ready for 

alkylative ring closure to form the bicyclic skeleton (298). Finally, reduction of 

the double bond using hydrogen and palladium-on-carbon should allow 

diastereoselective control and provide only one diastereomer of (299). 

Desulfonylation under standard conditions should afford monomorine I (27), our 

target molecule. Should the diastereoselectivity favour one of the other isomers, 

the synthesis will still be that of a natural product (26, 28 or 29) and will still be 

complementary to the numerous reported syntheses in the literature (refer to 

Figure 1.6).  
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Scheme 2.16: Proposed synthetic route for the total synthesis of monomorine I and/or 
its isomers.  

 
To perform the enantioselective synthesis of monomorine I and/or its 

diastereomers, the methodology developed by Davies et al.158 will be 

incorporated into the preparation of amine (291) to provide the amine as a 

single enantiomer and hence continue the chiral synthesis with a single 

enantiomer rather than a racemate (see Chapter 3, section 3.2.2 for a more 

detailed discussion of Davies’ methodology and how it has been used in 

stereoselective aza-Michael addition reactions). 
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2.3.3 Accessing tricyclic alkaloids 
The tricyclic alkaloids are rarely detected in Nature and occur in minor and 

trace amounts when they do. However, there was evidence of their potent 

biological activity that warrants further investigation. Due to their structural 

complexity of tricyclic alkaloids, there are far fewer reported total syntheses of 

them compared to the bicyclic alkaloids. Very little work on accessing tricyclic 

alkaloids formally incorporating the indolizidine and quinolizidine systems has 

been done in the Wits laboratories. A fortuitous result from Howard, Orlek and 

co-workers134, 175 led to a hydrojulolidine derivative (305) during studies into the 

total synthesis of lupinine (see Scheme 2.21). Vinylogous urethane (300) was 

alkylated to form a mixture of chlorides (301) and (302). Following a Finkelstein 

reaction, compound (302) formed the iodide (303), which underwent alkylative 

cyclisation to form the tricyclic product (304). Reduction of the enamine gave 

the hydrojulolidine derivative (305). 

 

 
 

Scheme 2.21: The fortuitous synthesis of a hydrojulolidine derivative (308) by Orlek 
and co-workers.134, 175 
 

As was mentioned at the end of Chapter 1, 3,5-disubstituted indolizidine 

alkaloids show a structural relationship to certain tricyclic alkaloids, as their 
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tricyclic system formally incorporates a 3,5-disubstituted indolizidine within the 

skeleton. One such tricyclic alkaloid was alkaloid 205B (47). 

 

 
 
The basic tricyclic skeleton of these alkaloids could potentially be accessed by 

closing the two side chains of the 3,5 disubstituted indolizidine (178) to form the 

tricyclic system (179). One possible method would be ring closing metathesis 

(RCM) as shown in Figure 2.6.  

 

 
 
Figure 2.6: Proposed synthetic connection between 3,5-disubstituted indolizidines 
(178) and tricyclic alkaloids (179). 
 

Our idea for forming tricyclic alkaloids via RCM was closely related to the 

method employed by Smith III and Kim (see Scheme 1.19).122 We hope to 

prepare the 3,5-disubstituted indolizidine (178) using the same methodology 

applied for synthesis of monomorine I and then use ring closing metathesis to 

form the final ring. Initially, our aim was to present a model study that would 

support this synthesis and thus prove its viability. If the model study proved 

successful then we could build the tricyclic scaffold of an alkaloid such as 205B. 

 

Holmes and co-workers176 have performed an extensive investigation of RCM 

using β-, γ- and δ-lactams (for example, see Scheme 2.22). They reacted 
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pyrrolidine (306) with allyl alcohol using Mitsunobu conditions and isolated the 

N-allyl derivative (307) in 95% yield. Using mild reducing conditions one of the 

carbonyls was reduced to give (308) in 51% yield. The second allyl group was 

introduced using trimethylallylsilane in the presence of boron triflouride etherate 

to give (309) in 81% yield. The metathesis reaction was catalysed by the 

Grubbs I catalyst and gave the bicyclic lactam (310) in 84% yield. They have 

successfully performed the final step in our proposed synthesis using the 

ruthenium alkylidene known as the Grubbs I catalyst, which is stable and 

exhibits tolerance to a diverse range of molecules. 
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Scheme 2.22: Synthesis of bicyclic molecules from lactams using RCM by Holmes and 
co-workers.176 Reagents and conditions: i) CH2CHCH2OH, PPh3, DEAD, THF; ii) 
NaBH4, HCl, EtOH, -10°C; iii) CH2CHCH2SiMe3, BF3.OEt2, CH2Cl2; iv) 5 mol% Grubbs 
I, CH2Cl2. 
 

Our proposed model study was designed to determine if the initial reaction 

conditions in the synthesis of monomorine I would be mild enough to allow for 

the incorporation of alkene side-chains. We also wanted to explore the ease 

with which these alkene side-chains undergo RCM (see Scheme 2.23). Starting 

from the acyl chloride (311), a reaction with allylmagnesium bromide (312) 
should provide us with the allylketo-ester (313). Condensation of the keto-ester 

(313) with allylamine should proceed in an analogous manner to our proposed 

monomorine condensation reaction and allow access to lactam (314). By 

selecting a chemoselective reducing agent, for example a silane in 

trifluoroacetic acid, it should be possible to selectively reduce out the exocyclic 
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double bond and produce (309). Lactam (309) would be a promising candidate 

for RCM as the alkenes are terminal and the ring strain would be minimal. 

Cyclisation would produce the bicyclic product (310). 

 

 
Scheme 2.23: Proposed model synthesis for the RCM approach. 

 

In order to extend the model study to form the third ring of the desired targets, 

the allylamine would have to contain an ester side chain, which would ultimately 

be used to form the third ring (see Scheme 2.24). Lactam (315) should undergo 

RCM in an analogous manner to the model lactam (313) and following 

formation of the vinylogous sulfonamide should form the bicyclic structure 

(316). The bicyclic vinylogous sulfonamide (316) could be reacted in an 

analogous manner to the monomorine I synthesis, effecting ring closure to 

access the tricyclic compound (317). 

 
 
Scheme 2.24: Proposed synthesis for the formation of the tricyclic skeleton. 
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2.3.4 Summary of aims 
• To repeat Yillah’s synthesis of (−)-indolizidine 209D (37) while verifying 

the experimental procedures and fully characterizing all intermediates 

and (−)-indolizidine 209D (37), paying particular attention to the optical 

rotation values and hence prove the stereochemical integrity of this 

pathway. 

• To synthesize racemic monomorine I (27) and/or its diastereomers (26, 

28 + 29) using vinylogous sulfonamides for the key cyclisations. 

• To utilize Davies’ methodology for the enantioselective synthesis of 

monomorine I (27) and/or its diastereomers (26, 28 + 29). 

• To explore potential ways of accessing indolizidine-based tricyclic 

systems, such as 205B (47), using model systems. 
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CHAPTER 3 
THE ATTEMPTED TOTAL SYNTHESIS OF (−)-INDOLIZIDINE 

209D 
 
3.1 Introduction 
 
The chemistry employed by Ibrahim Yillah during his PhD in the 

enantioselective synthesis of (−)-indolizidine 209D (37)31 was analogous to our 

proposed novel synthesis of monomorine I (27). Unfortunately, the optical 

rotation Yillah obtained for  (−)-indolizidine 209D (37) did not conform to the 

reported data, thus casting doubt on either the purity of the product or on the 

stereochemical integrity of the sequence. Owing to the incomplete 

characterization of some of his intermediates and (−)-indolizidine 209D (37), 

and in particular, the poor correspondence of his reported optical rotation 

values with the literature, Yillah’s work remains unpublished.  

 

We chose to reattempt the total synthesis of (−)-indolizidine 209D (37) in order 

to clarify the stereochemical integrity of this pathway, to optimize the route, and 

to fully characterize the intermediates. This would also provide us with ample 

opportunity to familiarize ourselves with the methodology and with the 

laboratory techniques required in order to complete the synthesis of 

monomorine I (27) and/or its diastereomers at a later stage. Repeating this 

synthesis in a systematic way would also ultimately allow for the publication of 

the total synthesis of (−)-indolizidine 209D (37). 

 

The basic principle behind Yillah’s synthetic route was the use of the vinylogous 

sulfonamide to assist cyclisation in the formation of the indolizidine skeleton. 

Using standard transformations the appropriate vinylogous sulfonamide can be 

prepared which would in turn provide access to the bicyclic system via 

alkylative ring closure. Stereoselective reduction of the vinylogous sulfonamide 

and finally desulfonylation should afford (−)-indolizidine 209D (37). 
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In order to use vinylogous sulfonamides in a stereoselective synthesis, the first 

stereogenic centre must be introduced prior to the cyclisation reaction. Yillah 

chose to follow the methodology of Davies et al.158 to introduce the 

stereochemistry by using a chiral amine to direct the formation of the 

stereocentre. Their methodology incorporates the optically pure N-benzyl-N-

(1R)-1-phenylethylamine (214) as a chiral amine nucleophile. Not only was this 

type of reaction well documented, but it had already been successfully used in 

the total synthesis of indolizidines (−)-167B (see Scheme 2.6) and (−)-209B 

(see Scheme 2.5) by Gravestock in our laboratories at Wits.139 

 

The conjugate addition of the chiral amine to an alkenoate, or Michael acceptor, 

proceeded with a high degree of stereoselectivity, especially if the alkenoate 

contained a t-butyl ester group, provided that the alkenoate was a single 

geometric isomer. The standard literature procedure for producing exclusively 

the trans alkenoate was by means of a Horner-Wadsworth-Emmons variation of 

the Wittig reaction. This was where our synthesis started. 

 
3.2 Horner-Wadsworth-Emmons reaction; the Michael acceptor 
 
t-Butyl 2-(diethoxyphosphoryl)acetate (272), was prepared in quantitative yield 

starting from t-butyl bromoacetate (271) and heating at reflux with triethyl 

phosphite for twelve hours (see Scheme 3.1). The phosphonate structure was 

confirmed by 1H-NMR spectroscopy, which clearly showed a doublet at 2.88 

ppm which can be assigned to the methylene group adjacent to the carbonyl, 

coupling to the spin-active phosphorus atom with a 3JP-H of 21.5 Hz. The t-butyl 

signal at 1.48 ppm as well as the ethoxy signals at 4.17 and 1.35 ppm allowed 

conclusive assignment of the t-butyl 2-(diethoxyphosphoryl)acetate (272). The 
1H-NMR, 13C-NMR and IR spectra were all in agreement with the literature 

values.154 
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Scheme 3.1: Formation of the Michael acceptor. Reagents and conditions: i) P(OEt)3, 
110°C, 24 hr.; ii) NaH, heptanal, Et2O, RT, 1 hr. 
 

The next reaction, the Horner-Wadsworth-Emmons reaction, proceeded by 

reacting t-butyl 2-(diethoxyphosphoryl)acetate (272) with sodium hydride in 

diethyl ether at 0°C to produce the corresponding stabilized anion. Careful 

addition of freshly distilled heptanal in diethyl ether from a dropping funnel, 

followed by warming the mixture to ambient temperature and stirring for two 

hours, afforded t-butyl (E)-non-2-enoate (273) exclusively as the trans isomer in 

quantitative yield (see Scheme 3.1). The geometry of the double bond was 

confirmed by the trans vicinal coupling constant observed between the alkene 

hydrogens. The hydrogen in the α-position was observed at 5.73 ppm as a 

doublet of triplets (J 15.6 and 1.5 Hz) and the hydrogen in the β-position was 

observed at 6.86 ppm as a doublet of triplets (J 15.6 and 6.9 Hz). Large vicinal 

coupling constants between 12 and 18 Hz are characteristic of trans-alkenes 

(318). The corresponding cis-alkenes (319) give vicinal coupling constants 

between 8 and 12 Hz (see Figure 3.1).  None of the cis isomer was observed in 

the 1H-NMR or 13C NMR spectra. 

 

 
Figure 3.1: Characteristic coupling constants for trans and cis vicinal coupling in 
alkenes. 
  

The singlet observed at 1.48 ppm integrating for nine hydrogens, combined with 

the aliphatic signals between 2.16 and 0.88 ppm which integrated for thirteen 

hydrogens, confirm the presence of the t-butyl ester and the hexyl side chain 
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respectively. The 13C-NMR spectrum clearly indicates the ester carbonyl group 

at 166.1 ppm and the ester C-O group at 79.9 ppm. The characteristic alkene 

signals at 148.1 and 122.9 ppm confirm the presence of the alkene functional 

group. In addition, the FTIR spectrum confirmed the presence of an ester 

carbonyl group with the stretching absorption band at 1715 cm-1. Finally, mass 

spectroscopy failed to reveal a parent ion, however, there was a clear peak 

corresponding to the loss of the t-butoxy group at 139. 

 

3.3 Davies methodology: Conjugate addition reaction 
 
The next step was the conjugate addition reaction of the chiral amine (214) to 

our trans alkenoate (273) (see Scheme 3.2). This proceeded by the reaction of 

N-benzyl-N-(1R)-1-phenylethylamine (214) with n-butyllithium in 

tetrahydrofuran, cooled to −90°C in a liquid nitrogen/acetone bath, and stirred 

for thirty minutes to ensure complete deprotonation of the amine. The t-butyl 

(E)-non-2-enoate (273) was then added by means of a dropping funnel over 

forty-five minutes and the mixture was stirred for an additional four hours at 

−90°C before the reaction was quenched with saturated ammonium chloride 

solution. The product, t-butyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino} 

nonanoate (274), was isolated in yields as high as 82%. However, the reaction 

appeared to be extremely sensitive to the quality of the n-butyllithium and the 

ratio of n-butyllithium to the amine. The isolated yields decreased rapidly with 

older stock solutions of n-butyllithium, or when the ratio of n-butyllithium to 

amine was greater than 1:1. The product was stable at ambient temperature for 

at least a week and thereafter it slowly decomposed. 
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Scheme 3.2: Conjugate addition reaction. Reagents and conditions: i) a) n-BuLi, THF, 
-90°C, 30 min.; b) (273), -90°C, 4 hr. 
 

Full characterization of the product confirmed its structure. Careful examination 

of the 13C-NMR spectrum revealed only one set of signals, indicating the 

presence of only one diastereomer. Another encouraging observation was the 

optical rotation value recorded for t-butyl (3R)-3-{benzyl[(1R)-1-

phenylethyl]amino}nonanoate (274), as this agreed favourably in sign and 

magnitude with similar compounds (see Table 3.1). The optical rotation 

obtained by Yillah was at least twice the magnitude of the analogous 

compounds and was significantly bigger than the value we obtained.  

 

N

R

O O

 
R-side chain Optical Rotation Concentration Solvent  

C3H7 [α]D30 +7.3 1.24 EtOH139 

C5H11 [α]D25 +5.1 1.07 EtOH139 

C6H13  (274) [α]D
20 +4.5 1.00 CH2Cl2 

C6H13   (274) [α]D20 +13.8 1.38 CH2Cl231 

C7H15 [α]D25 +5.3 1.03 CHCl3177 

 
Table 3.1: Comparison of optical rotation data for analogous aminoesters. 
(Concentration measured in g/100 mL). 



 

 89

The 1H-NMR and 13C-NMR spectra were in close agreement with similar 

compounds reported in the literature. Table 3.2 shows selected 1H NMR and 
13C NMR spectral data for our conjugate adduct (274) with a hexyl side chain in 

comparison to the published pentyl and heptyl analogues. The spectra obtained 

by Yillah were virtually identical to the spectra we obtained and therefore are 

not shown in Table 3.2. Diastereotopic pairs of signals were observed for H-2 

and H-6 as they were the methylene groups nearest to the stereogenic centres. 

No other signals exhibited diastereotopic splitting. 

 

5 N
6

7

3
2 R

1

O O

4

 
Signal R = C5H11 

139
 / ppm R = C6H13  (274) / ppm R = C7H15 

177 / ppm 

H-2A 1.85 (dd, J 14.6, 7.8) 1.86 (dd, J 14.5, 9.2) 1.87 (dd, J 14.5, 9.2) 

H-2B 1.96 (dd, J 14.6, 3.6) 1.96 (dd, J 14.5, 3.7) 1.95 (dd, J 14.5, 3.8) 

H-3 3.40 – 3.28 (m) 3.35 – 3.24 (m) 3.30 (m) 

H-5 3.84 (q, J 7.0) 3.86 – 3.74 (m) 3.89 – 3.77 (m) 

H-6A 3.50 (d, J 15.0) 3.48 (d, J 15.0) 3.48 (d, J 15.0) 

H-6B 3.82 (d, J 15.2) 3.86 – 3.74 (m) 3.89 – 3.77 (m) 

H-7 1.35 (d, J 7.0) 1.32 (d, J 6.9) 1.33 (d, J 7.0) 

C-1 172.4 172.2 172.3 

C-2 37.7 37.9 38.0 

C-3 53.6 54.0 54.2 

C-4 35.8 33.5 33.6 

C-5 58.3 58.4 58.5 

C-6 50.1 50.1 50.2 

C-7 20.4 20.5 20.5 

 
Table 3.2: Comparison of selected NMR spectral data (in CDCl3) for analogous 
conjugate adducts. (J-values were measured in Hz). 
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The rationalization of the stereochemical outcome of this reaction has been well 

documented, and according to Davies and co-workers178 the basic principle 

behind it was a combination of steric and stereoelectronic effects. According to 

the proposed model, the lowest energy transition state (320) is when the lithium 

atom chelates to the carbonyl group of the ester and to the lone pair of 

electrons on the nitrogen (see Figure 3.2). The methyl group places steric strain 

on the amine, forcing it to assume a “butterfly” conformation, with the benzyl 

groups parallel to one another and pointing away from the alkene. The bulky 

ester group assists in positioning the amine with the methyl group on the 

opposite side. The chelation of the lithium locks the Michael acceptor in position 

and hence the nitrogen favours si-face addition. The methyl group controls the 

orientation of the amine relative to the Michael acceptor hence controlling the 

stereochemical outcome.179 

 

ButO

O C6H13

[320]

N

H

H

H

Li+

 
 
Figure 3.2: Rationalized stereochemical transition state (320) showing the nitrogen 
lone pair and the carbonyl oxygen chelating to the lithium atom.179 
 

According to Davies et al.,158 the use of a secondary amine is essential for the 

high diastereomeric excess. The use of the primary amine, 

α-methylbenzylamine, gave yields in the order of 20 – 30% and de’s of 0 – 4%. 

Low temperature, -78°C to -90°C, is also essential for maintaining de’s greater 

than 95%, while an increase in temperature to 15 °C can lead to a decrease in 

the de to around 66%.158 Finally, decreased diastereomeric excess values have 

been observed with the use of o-methoxybenzylamines due to the lithium 
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chelating to the methoxy group.158 Davies and co-workers have successfully 

demonstrated the use of this methodology in the asymmetric synthesis of 

Sedum alkaloids,180 β-amino acids,158 2-aryl-4-aminotetrahydroquinoline-3-

carboxylic acid derivatives,181 and β-pyridyl-β-amino acid derivatives182 to name 

but a few. 

 

3.4  Debenzylation reactions 
 
Yillah’s thesis indicated that stirring t-butyl (3R)-3-{benzyl[(1R)-1-

phenylethyl]amino}nonanoate (274) in acetic acid with 10% palladium on 

activated carbon under seven atmospheres of hydrogen pressure would 

remove both benzyl groups in excellent yields to give the primary amine (275) 

(see Scheme 3.3).  

 

 
 
Scheme 3.3: Debenzylation reaction by Yillah.31 Reagents and conditions: i) H2 
(7 atm.), 10% Pd-C, AcOH, RT, 20 hr.  
 

We, however, discovered that the reaction conditions were much more delicate 

than expected and we frequently isolated either the mono-debenzylated 

species exclusively, or a mixture of mono- and fully debenzylated species. If 

mono-debenzylation took place the α-methylbenzyl group was always the 

benzyl group to remain. The same chemoselectivity has been noted by Davies 

and co-workers183, 184 when reducing (321) to (322) with the use of reagents 

such as ceric ammonium nitrate and by Yillah31 with the use of palladium black 

(see Scheme 3.4).   
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Scheme 3.4: Chemoselective reduction. Reagents and conditions: R = i-Pr, R’ = CH3 
i) CAN (2.1 eq.), MeCN-H2O (5:1), RT,  85% yield,184 or R = t-Bu, R’ = C6H13 i) Pd-
black, HCOOH-MeOH (1:20), RT, 12 hrs.31   
 

We obtained inconsistent results with regards to chemoselectivity (see Scheme 

3.5), and when the reactions were repeated under “the same” conditions 

different product mixtures were obtained. Upon closer examination, the 

chemoselectivity appeared to be dependent on which batch of catalyst was 

used for the reaction. Initially, in our case, using palladium catalysts already 

present in the laboratory, the fully debenzylated species (275) was prepared 

with a high degree of success. However, all the palladium catalysts purchased 

throughout the course of this project favoured the formation of the mono-

debenzylated species (323) and often little to none of the desired product (275) 

was obtained. 

 

The results for our debenzylation reactions varied from 99% yield to 0% yield 

(see Table 3.3). The 5% palladium on carbon was obtained on two different 

occasions from the local company, Palaborwa Mining Company (PMC). The 

first batch (2006) worked well, provided that the catalyst loading was 

quantitative, making it an expensive option. When the solvent system was 

altered to methanol and acetic acid (3:1) the product was isolated as the 

acetate salt. In this instance the salt was probably isolated due to incomplete 

removal of the acetic acid in vacuo prior to column chromatography. The 

second batch from PMC (2009), using quantitative catalyst loading, afforded 

53% of the mono-debenzylated species (323) and none of the desired product. 
The 10% palladium-on-carbon supplied by Fluka gave mixtures of the partially 

and fully debenzylated products, unless the catalyst loading was above 25%, in 

which case only the fully debenzylated species was obtained. The equivalent 

catalyst from Sigma-Aldrich gave low yields or none of the desired product, and 



 

 93

the equivalent catalyst from Alfa only ever produced the partially debenzylated 

product. Even Pearlman’s catalyst, activated palladium hydroxide on carbon, 

required a loading of 25% in order to fully debenzylate the product, and the 

yields were only moderate. When Pearlman’s catalyst was used in conjunction 

with ethanol, the only product isolated was t-butyl nonanoate, presumably 

formed from the reduction of the retro-Michael addition product, t-butyl (E)-non-

2-enoate (273). Unfortunately, platinum dioxide removed the benzyl groups, but 

went on to catalyse additional transformations and none of the desired product 

was isolated.  
 

 
 
Scheme 3.5: Our observed chemoselectivity for the debenzylation of (274). Reagents 
and conditions: i) 5% Pd-C (PMC, 1.0 eq.), AcOH, H2 (7 atm.), RT; ii) 10% Pd-C 
(Sigma, 0.25 eq.), AcOH, H2 (7 atm.), RT; iii) 5% Pd-C (PMC, 0.25 eq.), AcOH/MeOH 
(1:3), H2 (7 atm.), RT;  iv) 10 – 20% Pd(OH)2-C (Sigma, 0.2 eq.), EtOH, H2 (7 atm.), 
RT. 
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Supplier Catalyst Eq. Solvent (323) (275) (324) (325) 

PMC (’06) Pd-C 5% 1.0 AcOH 0% 99% 0% 0% 

PMC (’06) Pd-C 5% 0.25 AcOH/ 

MeOH (1:3) 

0% 0% 55% 0% 

PMC (‘06) Pd-C 5% 0.25 AcOH 0% 56% 0% 0% 

Fluka Pd-C 10% 0.10 AcOH 63% 36% 0% 0% 

Fluka Pd-C 10% 0.10 AcOH 46% 54% 0% 0% 

Fluka Pd-C 10% 0.25 AcOH 0% 100% 0% 0% 

Sigma Pd-C 10% 0.25 AcOH 0% 32% 0% 0% 

Sigma Pd-C 10% 0.25 AcOH 56% 0% 0% 0% 

Alfa Pd-C 10% 0.1 AcOH 42% 0% 0% 0% 

Alfa Pd-C 10% 0.2 EtOH 21% 0% 0% 0% 

Sigma Pd(OH)2-C 0.1 AcOH 30% 0% 0% 0% 

Sigma Pd(OH)2-C 0.25 AcOH 0% 61% 0% 0% 

PMC (‘09) Pd-C 5% 1.0 AcOH 53% 0% 0% 0% 

Sigma Pd(OH)2-C 0.20 EtOH 0% 0% 0% 53% 

 
Table 3.3: Effect of catalyst supplier, type, equivalents and solvent on debenzylation.  
 

When the free amine, t-butyl (3R)-3-aminononanoate (275), was isolated its 

optical rotation was [α]D20 -13.4 (c 0.98, CH2Cl2), which corresponds well in 

magnitude and sign to the value reported by Gravestock for t-butyl (3R)-3-

aminooctanoate [α]D26 -17.7 (c 1.19, EtOH). Yillah’s reported value for (275) 

was [α]D20 -23.4 (c 0.98, CH2Cl2) nearly twice our value. The 1H-NMR and 
13C-NMR spectra correspond reasonably well with those reported by Yillah, with 

the analogous compound synthesized by Gravestock and the one synthesized 

by Davies (see Table 3.4). The biggest discrepancy between them was in the 

position of the NH2 signal: For the hexyl analogue the NH2 signal occured at 

5.20 ppm, for the pentyl analogue the NH2 signal occured at 1.84 ppm and the 

heptyl analogue had no reported signal for the NH2 substituent. The most 

obvious evidence of the success of the reaction was the loss of the aromatic 

signals in the 1H-NMR and 13C-NMR spectra and the appearance of a weak but 

broad NH2 signal at 3420 cm-1 in the FTIR spectrum. 
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Signal R = C5H11 

139 / ppm R = C6H13 (275) / ppm R = C7H15 
177 / ppm 

NH2 1.84 (br, s) 5.20 (br, s) - 

H-2A 2.39 (dd, J 15.6, 4.2) 2.40 (dd, J 16.0, 4.2) 2.35 (dd, J 15.5, 4.0) 

H-2B 2.18 (dd, J 15.6, 8.7) 2.34 (dd, J 16.0, 7.8) 2.15 (dd, J 15.5, 8.0) 

H-3 3.21 – 3.09 (m) 3.29 – 3.18 (m) 3.10 (br, s) 

C-1 172.0 171.5 172.0 

C-2 43.6 41.7 43.9 

C-3 48.4 48.3 48.3 

C-4 37.3 35.9 37.5 

 
Table 3.4: Comparison of selected NMR spectral data (in CDCl3) for analogous primary 

amines. (J-values were measured in Hz). 

 

The acetate salt, (R)-1-tert-butoxy-1-oxononan-3-aminium acetate (324), was 

isolated as a creamy-white solid and was fully characterized. Its melting point 

was 69 - 73 °C and its optical rotation was [α]D20 -10.0 (c 1.00, CH2Cl2), with the 

same sign as the parent amine. The most significant difference between the 

free amine (275) and the salt (324) was the presence of a broad signal at 

7.17 ppm in the 1H-NMR corresponding to the NH3
+ group. The acetate group 

was observed at 1.96 ppm. The 13C-NMR spectrum showed an additional 

carbonyl peak at 177.3 ppm corresponding to the acetate ion. 

 

The partially debenzylated species, t-butyl (3R)-3-[N-(1-phenylethyl)amino] 

nonanoate (323), was fully characterized and its optical rotation was 

[α]D20 +20.4 (c 0.91, CH2Cl2). Yillah’s optical rotation for the same molecule was 

significantly different in sign and magnitude, with a value of [α]D20 -38.3 (c 1.27, 

CH2Cl2). It was clear from the 1H-NMR spectrum that the α-methylbenzyl group 

was still present, as aromatic signals at 7.38 – 7.17 ppm integrating for five 

hydrogens were observed. The α-methyl group showed up as a doublet 

(J 6.5 Hz) at 1.33 ppm integrating for three hydrogens, and finally the benzylic 

CH was observed at 3.89 ppm as a quartet (J 6.5 Hz) integrating for one 
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hydrogen. The mono-debenzylated product (323) was recovered unchanged 

after reacting it with 10% palladium hydroxide on carbon in absolute ethanol 

under seven atmospheres of hydrogen pressure for three days. 

 

A second attempt at removing the remaining α-methylbenzyl group was with 

ceric ammonium nitrate. There are examples in the literature182 - 184 of removing 

one benzyl group, usually, but not exclusively, when the benzyl group has at 

least one methoxy substituent. t-Butyl (3R)-3-[N-(1-

phenylethyl)amino]nonanoate (323) and ceric ammonium nitrate were dissolved 

in acetonitrile/distilled water (1:5) and stirred at ambient temperature overnight. 

The crude material was extracted and purified by column chromatography to 

give back unreacted starting material. 

 

The final method we utilized for the attempted removal of both of the benzyl 

groups was to react t-butyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}nonanoate 

(274) in methanol with eight equivalents of ammonium formate and 0.37 

equivalents of 10% palladium on carbon (purchased from Alfa) under nitrogen 

for three hours. The methanolic vapours proved extremely flammable in this 

particular reaction and the utmost care was required to prevent ignition.  Using 

this method the fully debenzylated t-butyl (3R)-3-aminononanoate (275) was 

isolated in 74% yield as a clear oil. Unfortunately, this result was not 

reproducible and a further four attempts produced the mono-debenzylated 

species (323) or the fully reduced t-butyl nonanoate (325) as the major product 

(see Table 3.5). The first attempt was the only reaction where the methanolic 

vapours ignited. 
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% Yield of isolated products Reaction 

(323) (275) (325) 

1 0% 74% 0% 

2 40% 30% 0% 

3 0% 12% 67% 

4 0% 12% 88% 

5 0% 10% 85% 

 
Table 3.5: Debenzylation reactions using ammonium formate and activated palladium. 

 

Another literature procedure,185 reported the use of formic acid to selectively 

remove the α-methylbenzyl group from a similar amine without hydrolysing the 

t-butyl ester. We attempted this reaction in the hope that if we could remove the 

α-methylbenzyl group using formic acid, then we should be able to remove the 

second benzyl group using palladium-on-carbon. After heating (274) at reflux in 

formic acid for three hours, the reaction was stopped, the formic acid was 

removed in vacuo, and the crude material was purified by column 

chromatography. The product isolated from the column was (3R)-3-

{benzyl[(1R)-1-phenylethyl]amino} nonanoic acid (326)  which was obtained in 

92% yield (see Scheme 3.6). 

 

 
 
Scheme 3.6: Attempted debenzylation of (274). Reagents and Conditions: i) HCOOH, 
reflux, 3 hr. 
  

The carboxylic acid (326) was optically active, with an optical rotation of 

[α]D20 -26.9 (c 1.08, CH2Cl2). 1H-NMR and 13C-NMR spectra were largely similar 

to the spectra obtained for (274), with the exception of the loss of the t-butyl 

signals and the appearance of broad OH signal between 10 - 12 ppm. The 
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carbonyl signal shifted from 172.2 ppm to 164.2 ppm, within the characteristic 

region for a carboxylic acid. 

 

The unpredictability of these debenzylation reactions resulted in an excessive 

delay in the completion of the synthesis and thwarted several attempts to “push 

material through” to attempt later steps. 

 

3.5 Formation of the lactam and cyclopropane by-products 
 
With the primary amine in hand, the next step was the formation of the lactam 

ring by reacting the free amine with chlorobutyryl chloride over two steps (see 

Scheme 3.7). The reaction conditions, optimized by Yillah and Gravestock, 

involved reacting the amine with chlorobutyryl chloride in chloroform in the 

presence of sodium bicarbonate. Then, with or without purifying the 

intermediate amide, cyclisation was effected by the reaction of the amide with 

potassium t-butoxide in t-butanol. 

 

[275]

NH2

C6H13

O

ButO

i

[276]
ButO

O HN

C6H13

O

Cl

[277]
ButO

O N

C6H13

O
ii

100% 49%

 
Scheme 3.7: Formation of the lactam ring. Reagents and conditions: i) Cl(CH2)3COCl, 
NaHCO3, CHCl3, RT; ii) KOBut, ButOH. 
 

We proceeded by reacting t-butyl (3R)-3-aminononanoate (275) with 1.2 

equivalents of chlorobutyryl chloride and with 1.5 equivalents of sodium 

bicarbonate in chloroform at ambient temperature for twelve hours. For 

characterization purposes the intermediate amide, t-butyl (3R)-3-[N-(4-

chlorobutanoyl)amino]nonanoate (276), was purified and isolated as a 

odoriferous brown oil of low UV activity on TLC plates. The initial isolated yield 

was quantitative and thereafter the intermediate was not purified prior to the 

next step. Its optical rotation was [α]D20 +10.5 (c 1.00, CH2Cl2), slightly higher 

than the value reported by Gravestock for t-butyl (3R)-3-[N-(4-
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chlorobutanoyl)amino]octanoate, [α]D25 +6.6 (c 1.14, EtOH). Yillah’s reported 

optical rotation was [α]D20 -11.3 (c 1.25, CH2Cl2), differing in sign from the value 

we obtained.  

 

The 1H-NMR spectrum for (276) showed a broad NH peak at 6.22 ppm, 

characteristically deshielded by the carbonyl group to a downfield position. The 

NH peak appeared as a doublet (J 8.7 Hz) coupling to the adjacent hydrogen 

on C-3 (see Figure 3.3). H-3 appeared as a multiplet at 4.28 - 4.16 ppm 

integrating for one hydrogen atom. The other diagnostic signal was the 

methylene group adjacent to the chlorine atom, H-13, which appeared as a 

triplet at 3.61 ppm. The aliphatic signals and the t-butyl ester signals did not 

show significant changes from those observed in amine (275). 

 

 
 

Figure 3.3: Numbering of amide (276) for assignment of spectroscopic data. 

 

FTIR spectroscopy diagnostically showed both a broad NH peak centred at 

3289 cm-1, and two carbonyl groups; the one for the ester appeared at 

1725 cm-1, and the one for the amide appeared at 1645 cm-1. 13C-NMR 

spectroscopy also showed the two carbonyl groups C-10 at 171.4 ppm and C-1 

at 171.2 ppm and the methylene group deshielded by the chlorine atom, C-13, 

at 44.4 ppm. Yillah’s reported spectra for (276) were in close agreement with 

the spectra we obtained. 
 

In the presence of freshly sublimed potassium t-butoxide and t-butanol the 

amide, t-butyl (3R)-3-[N-(4-chlorobutanoyl)amino]nonanoate (276), was 

deprotonated and cyclised to form the corresponding lactam, t-butyl (3R)-3-(2-

oxo-1-pyrrolidinyl)nonanoate (277). The t-butanol was used to prevent 
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exchange of the ester functionality, and the t-butoxide was used as it was 

previously found to be sufficiently basic to promote the cyclisation. Gravestock 

reported yields of 82% and 57% for t-butyl (3R)-3-(2-oxo-1-

pyrrolidinyl)octanoate,  and  t-butyl (3R)-3-(2-oxo-1-pyrrolidinyl)hexanoate  
respectively. Yillah reported a yield of 73%, whereas our highest yield for the 

formation of t-butyl (3R)-3-(2-oxo-1-pyrrolidinyl)nonanoate (277) was 49%. 

 

The lactam was optically active, [α]D20 +9.5 (c 1.00, CH2Cl2), with comparable 

magnitude and sign to Gravestock’s intermediate lactam t-butyl (3R)-3-(2-oxo-

1-pyrrolidinyl)octanoate which had an optical rotation of  [α]D24 +12.4 (c 1.29, 

EtOH). Yillah obtained an optical rotation of [α]D20 +18.6 (c 1.99, CH2Cl2), twice 

the magnitude that we obtained. 

 

The most significant changes in the 1H-NMR spectrum of (277), compared to 

(276), were the disappearance of the N-H peak, and the slight upfield shift of 

the H-13 signal. FTIR spectroscopy showed two carbonyl groups; the ester 

stretching vibration at 1724 cm-1 and the amide stretching vibration at 1686 cm-1 

as is characteristic for a lactam. The N-H band was no longer visible. Low 

resolution mass spectroscopy showed the parent ion at 297 as well as 

fragmentation corresponding to the loss of the t-butyl group at 241 and loss of 

the lactam group at 212.  

 

The 1H-NMR and 13C-NMR spectra correspond well with the analogous 

compounds synthesized by Gravestock (see Table 3.6). The observed geminal 

coupling constants for H-13AB were slightly larger in our lactam compared to 

those observed by Gravestock. Yillah reported the signals for H-13AB as 

doublets of triplets both with coupling constants of 9.6 and 7.1 Hz. All the other 

signals were virtually identical, except for the C-4 signals which deviated from 

each other as the effect of the alkyl chain length comes into play. 
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Signal R = C3H7 / ppm R = C5H11 

139 / ppm R = C6H13  (277) / ppm 

H-2 2.55 – 2.18 (m) 2.51 – 2.31 (m) 2.42 – 2.34 (m) 

H-3 4.51 – 4.39 (m) 4.52 – 4.33 (m) 4.53 – 4.36 (m) 

H-11 2.55 – 2.18 (m) 2.51 – 2.31 (m) 2.42 – 2.34 (m) 

H-12 1.99 (quin., J 7.5) 2.06 – 1.91(m) 1.99 (quin., J 7.6) 

H-13A 3.38 (dd, J 9.4, 6.9) 3.36 (dd, J 9.3, 6.9) 3.38 (dd, J 15.7, 7.1) 

H-13B 3.26 (dd, J 9.4, 6.9) 3.28 (dd, J 9.3, 6.9) 3.26 (dd, J 15.7, 7.9) 

C-1 170.3 170.1 170.2 

C-2 39.4 39.2 39.3 

C-3 48.5 48.6 48.8 

C-4 34.3 31.9 32.2 

C-10 174.9 174.6 174.8 

C-11 31.4 31.9 31.1 

C-12 18.3 18.1 18.3 

C-13 42.5 42.3 42.4 

 
Table 3.6: Comparison of selected NMR spectral data (in CDCl3) for homologous 
lactams. (J-values were measured in Hz). 
 

The reason for our poor yields seems to be the occurrence of a retro-Michael 

addition, as we managed to isolate t-butyl (E)-non-2-enoate (273) in several 

instances. Interestingly, in one instance, we also isolated 

N-(cyclopropanecarbonyl)cyclopropanecarboxamide (327). This result can be 

accounted for by the addition of two equivalents of chlorobutyryl chloride to the 

free amine (275), and subsequent cyclisation of the butyryl chloride groups by 

deprotonation of all three α-positions of the carbonyl groups (328) by the strong 

base, potassium t-butoxide (see Scheme 3.8). 
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Scheme 3.8: Proposed mechanism for the formation of carboximide (327) –all three 
steps are shown in (328), as the sequence was unknown. Reagents and conditions: i) 
Cl(CH2)3COCl, NaHCO3, CHCl3, RT, 12 hr.; ii) KOBut, ButOH, RT, 72 hr. 
 

N-(Cyclopropanecarbonyl)cyclopropanecarboxamide (327) was isolated in 45% 

yield as white, crystalline needles of low solubility.  The X-ray diffraction crystal 

structure (see Figure 3.4) revealed the identity of the molecule and showed 

ordered packing dominated by hydrogen bonding. The symmetric imide packed 

in chains, typical of the trans-trans isomer, rather than the dimers 

characteristically displayed by the cis-trans isomer. These chains stack in a 

ladder-like arrangement (see Figure 3.5), with parallel layers at approximately 

90° to each other. The parallel chains were linked by hydrogen bonds between 

the carbonyl oxygens and the imide nitrogen. Van der Waals interactions 

between the cyclic residues also contributed towards stabilizing the crystal 

structure. 

 

 
Figure 3.4: The molecular structure of carboximide (327). Displacement ellipsoids are 
drawn at the 50% probability level. 
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Figure 3.5: Crystal packing of carboximide (327), viewed along the c-axis.  
 

Owing to the symmetry of the molecule the 1H-NMR spectra shows four signals 

only. The imide signal occurs as a sharp singlet at 8.65 ppm, shifted heavily 

downfield due to the presence of two carbonyl groups. The CH signal was 

observed as a multiplet integrating for two hydrogens at 2.28 – 2.25 ppm, while 

the other two methylene signals were equivalent but diastereotopic and occur at 

1.14 – 1.11 ppm and 0.99 – 0.93 ppm, respectively, with each signal integrating 

for four hydrogens. There was one corresponding 13C-NMR spectral signal for 

the methylene groups which occured at 10.3 ppm. The signal at 175.3 ppm 

corresponds to the carbonyl and the signal at 15.0 ppm corresponds to the CH 

carbon. The FTIR spectrum showed the carboximide carbonyl at 1710 cm-1 and 

the NH stretching vibration as a broad signal at 3257 – 3161 cm-1.  

   

The discovery of this unusual side reaction led to an honours project by Caitlin 

Zipp, who undertook an alternative synthesis of N-(cyclopropanecarbonyl)cyclo 

propanecarboxamide (327) (see Scheme 3.9) and analogous symmetric and 

asymmetric carboximides.186, 187 Starting from the commercially available acid 

chloride (329), amide (330) was prepared in 63% yield. Amide (330) was then 

deprotenated with sodium hydride and reacted with one equivalent of the acid 

chloride (329) to produce the desired imide (327) in 7% yield. Interestingly, of 
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all the carboximides she synthesized, N-(cyclopropanecarbonyl)cyclopropane 

carboxamide (327) was the most difficult to prepare with an overall yield of 

4%.187 

 

 
 
Scheme 3.9: The alternative synthesis of carboximide (327). Reagents and conditions: 
i) NH4OH (25% w/w), 12 hr.; ii) a) NaH, THF, b) (329), reflux, 12 hr. 
 

In view of the considerable quantities of the monobenzylated amine (323) which 

had accumulated during the numerous debenzylation attempts, we decided to 

investigate whether converting it into a tertiary amide would make it more 

susceptible to debenzylation. t-Butyl (3R)-3-[N-(1-phenylethyl)amino]nonanoate 

(323) was therefore heated at reflux in chloroform with chlorobutyryl chloride in 

the presence of sodium bicarbonate (see Scheme 3.10). After purification by 

column chromatography (R)-t-butyl 3-(4-chloro-N-(R)-1-phenylethyl) 

butanamido)nonanoate (331) was isolated in 11% yield, and starting material 

was recovered.  The low yields can be accounted for by the decreased 

nucleophilicity of the secondary amine compared to the corresponding primary 

amine.  

 

 
 
Scheme 3.10: Formation of the tertiary amide (331). Reagents and conditions: 
i) Cl(CH2)3COCl, NaHCO3, CHCl3, RT. 
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Full characterization of compound (331) revealed that the α-methylbenzyl group 

was still present, as was the t-butyl ester and the hexyl side chain. In addition to 

these signals, the 1H-NMR spectrum showed signals at 4.34 ppm, 2.49 ppm 

and 2.39 – 2.20 ppm corresponding to the chlorobutyryl side chain; H-13, H-12 

and H-11, respectively (see Figure 3.6). The NH peak from the starting material 

was no longer present. The 13C-NMR spectrum showed four new carbon 

signals at 177.6 ppm (C-10), 68.4 ppm (C-13), 27.7 ppm (C-11) and 22.1 ppm 

(C-12), corresponding to the chlorobutyryl side chain. The other signals in the 

carbon spectrum were very similar to the corresponding signals in the starting 

material. 
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Figure 3.6: Numbering of amide (331) for assignment of spectroscopic data. 

 

The FTIR spectrum showed both the ester and the amide carbonyl groups were 

present at 1728 cm-1 and 1605 cm-1, respectively. No NH stretching vibration 

was observed. The product was optically active as expected, with an optical 

rotation of [α]D20 +20.0 (c 1.00, CH2Cl2). 

 

We attempted to debenzylate the tertiary amide (331) by reacting it with 10% 

palladium on carbon in the presence of acetic acid and seven atmospheres of 

hydrogen, as the debenzylated product (276) could be recycled back into the 

synthesis. Unfortunately, only starting material was recovered and hence the 

reaction was abandoned (see Scheme 3.11). 
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Scheme 3.11: Attempted debenzylation of (331). Reagents and conditions: i) H2 
(7 atm.), 10% Pd-C, AcOH, RT, 20 hr. 
 

We also attempted to debenzylate the tertiary amide (331) by reacting it with 

ceric ammonium nitrate in acetonitrile/water (1:5) at ambient temperature for 

twelve hours. After purification, t-butyl (3R)-3-[N-(1-phenylethyl)amino] 

nonanoate (323) was isolated in 100% yield. Clearly the chlorobutyryl side 

chain was more labile than the α-methylbenzyl group. 

 

To investigate if this benzylated species (331) would also undergo a retro-

Michael addition in the presence of a strong base, we reacted (R)-t-butyl 3-(4-

chloro-N-(R)-1-phenylethyl)butanamido)nonanoate (331) with potassium 

t-butoxide in the presence of t-butanol at ambient temperature for twelve hours 

(see Scheme 3.12). After purification, (R)-N-(1-phenylethyl)cyclopropane 

carboxamide (332) was isolated as a white crystalline solid in 56% yield with 

fine needles unsuitable for XRD.  

 

  
 
Scheme 3.12: Retro-Michael addition of (331). Reagents and conditions: i) KOBut, 
ButOH, RT, 12 hr. 
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The product (332) was characterized by 1H-NMR spectroscopy which showed 

the α-methylbenzyl group intact and the cyclopropane as three signals at 1.38 –

1.24 ppm for the CH group, and the diastereotopic signals at 0.97 – 0.86 ppm, 

and 0.74 – 0.61 ppm for the equivalent methylene groups. The NH signal 

appeared as a doublet (J 7.2 Hz) at 6.37 ppm, coupling to the adjacent CH 

group.  13C-NMR spectroscopy revealed the α-methylbenzyl group as before 

and the new amide peak at 172.7 ppm and the cyclopropane signals at 

21.8 ppm and 7.1 ppm.  FTIR spectroscopy showed the amide carbonyl 

stretching vibration at 1636 cm-1 and the NH band at 3330 cm-1. Optical rotation 

gave an exceptionally high value, with [α]D20 +130.4 (c 0.79, CH2Cl2). 

 

3.6 Thionation reactions 
 
Now that we had succesfully prepared the lactam, the next step in our synthesis 

was the functional group interconversion of the lactam (277) into the thiolactam 

(278). 

 

Thionation reactions can be chemoselective for lactams and amides even in the 

presence of esters or ketones.188 The conditions selected for the transformation 

from the lactam (277) to the corresponding thiolactam (278) employed these 

chemoselective conditions. Two different methods were used. The first method 

was a modified version of the Brillon procedure,189 as it was one of the most 

facile methods available for effecting thionation of lactams (see Scheme 3.13). 

The Brillon method uses sodium bicarbonate together with phosphorus 

pentasulfide in dry tetrahydrofuran stirred at ambient temperature for seventy-

two hours. In the modified version the sodium bicarbonate was omitted 

completely and chloroform was used as the solvent. Purification by column 

chromatography gave the thiolactam, t-butyl (3R)-3-(2-thioxo-1-

pyrrolidinyl)nonanoate (278), in 52% yield.  

 



 

 108

 
 
Scheme 3.13: Thionation reaction. Reagents and conditions: i) P2S5, CHCl3, RT, 8 hr.; 
OR i) Lawesson’s Reagent, CH2Cl2, RT, 72 hr. 
 

The moderate yield led us to investigate a second method, one that employed 

Lawesson’s reagent (332) as the thionating agent (see Figure 3.7). The lactam 

t-butyl (3R)-3-(2-oxo-1-pyrrolidinyl)nonanoate (277) was dissolved in 

dichloromethane together with Lawesson’s reagent (333) and stirred at ambient 

temperature for seventy-two hours. Following extraction and purification, the 

desired thiolactam (278) was obtained in 63% yield. Owing to the increased 

efficiency of the second method, Lawesson’s reagent was employed for all 

subsequent thionations. 

 

 
 
Figure 3.7: Lawesson’s reagent, used to thionate carbonyl groups. 

 

Another variation on the thionation reaction was the Curphey procedure, which 

used hexamethyldisiloxane as an additive in the presence of phosphorus 

pentasulfide.188 It has been shown that this improves the yields to values  

comparable to those obtained with Lawesson’s reagent.188 This version of the 

reaction was attempted, but unfortunately the isolated yield of the thiolactam 

(278) was 30%, far lower than the yields obtained using Lawesson’s reagent. 

 

There was a slight change in the optical rotation of the thiolactam (278) 

[α]D20 +7.4 (c 0.88, CH2Cl2) compared to the corresponding lactam (277) 

[α]D20 +9.5 (c 1.00, CH2Cl2). When our values were compared to those obtained 

by Gravestock for his thiolactams the value differed significantly in magnitude 
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but shared the same sign. For t-butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)octanoate 

Gravestock obtained a value of [α]D30 +17.2 (c 0.90, EtOH), and for t-butyl (3R)-

3-(2-thioxo-1-pyrrolidinyl)hexanoate he obtained a value of [α]D30 +18.7 (c 1.39, 

EtOH). Yillah obtained an optical rotation of [α]D20 -9.8 (c 0.82, CH2Cl2) for 

(278), similar magnitude but opposite rotation to our value. 

 

On thionation, the key changes in the 1H-NMR spectrum were the shift of H-3 

from 4.4 to 5.4 ppm, of H-13AB from 3.4 and 3.3 ppm in the lactam (277) to 3.7 

and 3.6 ppm in the thiolactam (278) (see Figure 3.8). H-11 shifted from 2.4 to 

3.0 ppm and H-2A shifted from 2.4 to 2.6 ppm in the thiolactam. All other 

signals were approximately equivalent to the corresponding lactam signals. In 

the 13C-NMR spectrum, the most significant shift was that of C-10 which shifted 

from the amide region of 174.8 ppm to 201.7 ppm, an appropriate region for a 

thiocarbonyl group. C-3 also shifted downfield, from 48.8 to 53.3 ppm as did 

C-13, from 42.4 to 49.0 ppm. 

 

  
 

Figure 3.8: Numbering of thiolactam (278) for assignment of spectroscopic data. 

 

The FTIR spectrum showed the absence of the strong lactam carbonyl 

stretching vibration at 1686 cm-1 and instead the thiocarbonyl stretching 

vibration could be seen as a strong signal at 1310 cm-1. 

 

At this point Gravestock’s syntheses diverged along a synthetic path involving 

vinylogous urethanes, so our thiolactam was the final molecule for which we 

could compare the NMR data in a meaningful way. Table 3.7 highlights the key 

signals in the 1H-NMR and 13C-NMR spectra comparing t-butyl (3R)-3-(2-thioxo-

1-pyrrolidinyl)nonanoate (278), with t-butyl (3R)-3-(2-thioxo-1-pyrrolidinyl) 
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octanoate and t-butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)hexanoate. The thiolactam 

we prepared shows almost identical 1H-NMR and 13C-NMR spectral data to 

those thiolactams prepared by Gravestock (see Table 3.7). The spectroscopic 

data reported by Yillah for (278) were virtually the same as the data that we 

obtained. 

 

O 1

O
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N

R
4

10

S
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Signal R = C3H7 

139 / ppm R = C5H11 
139 / ppm R = C6H13  (278) / ppm

H-2 2.55 (dd, J 14.3, 6.1) 

2.44 (dd, J 14.2, 8.8) 

2.60 – 2.38 (m) 2.55 (dd, J 14.4, 6.0) 

2.43 (dd, J 14.4, 9.0) 

H-3 5.46 – 5.31 (m) 5.36 (quintet, J 7.5) 5.36 (quintet, J 7.5) 

H-11 3.00 (dt, J 7.8, 1.5) 3.04 – 2.96 (m) 3.00 (t, J 7.5) 

H-12 2.03 (quintet, J 7.5)  2.11 – 1.93 (m) 2.03 (quintet, J 7.5) 

H-13A 3.71 (dt, J 10.8, 7.2) 3.71 (dt, J 10.7, 7.2) 3.71 (dt, J 10.7, 7.5) 

H-13B 3.55 (dt, J 10.7, 7.2) 3.56 (dt, J 10.7, 7.1) 3.56 (dt, J 10.7, 7.5) 

C-1 169.6 169.5 169.5 

C-2 38.9 38.8 38.8 

C-3 53.1 53.3 53.3 

C-4 34.4 32.1 32.2 

C-10 201.9 201.7 201.7 

C-11 45.1 45.0 45.1 

C-12 20.0 20.0 20.0 

C-13 49.1 49.1 49.0 

 

Table 3.7: Comparison of selected NMR spectral data (in CDCl3) for analogous 
thiolactams. (J-values were measured in Hz). 
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3.7  Formation of the vinylogous sulfonamide 
 
In order to form the vinylogous sulfonamide we needed to perform a modified 

Knoevenagel reaction between the thiolactam (278) and 

1-[(4-methylphenyl)sulfonyl]acetone (279). First we therefore had to prepare 

1-[(4-methylphenyl)sulfonyl]acetone (279).  

 

Following the method of Makosza and Golinski,190 sodium-p-toluenesulfinate 

(334) was dissolved in DMSO together with chloroacetone (335) and heated to 

90°C for four hours (see Scheme 3.14). Following extraction and purification by 

column chromatography, 1-[(4-methylphenyl)sulfonyl]acetone (279) was 

isolated  in 96% yield, as an odoriferous, pink solid with a low melting point (49 

– 51ºC). 

 

 
 
Scheme 3.14: Preparation of 1-[(4-methylphenyl)sulfonyl]acetone (279). Reagents and 
conditions: i) DMSO, 90°C, 4 hr. 
 

Full characterization of product (279) was in agreement with the literature 

values.190 The 1H-NMR spectrum revealed a 1,4-disubstituted aromatic ring 

showing two doublets each integrating for two hydrogens at 7.76 and 7.37 ppm, 

respectively. The aromatic methyl group occurred at 2.45 ppm, the methylene 

signal was at 4.15 ppm and the aliphatic methyl group was at 2.39 ppm, which 

is the typical region for a methyl adjacent to a carbonyl group. The 13C-NMR 

spectrum indicated the presence of a ketone at 196.6 ppm, as well as the 

characteristic aromatic signals at 145.9, 136.2, 130.4, and 128.6 ppm. The 

FTIR spectrum showed strong stretching bands at 1712 cm-1 and 1359 cm-1 for 

the ketone group and the sulfonyl group respectively. 

 

We employed two sets of conditions for the preparation of the vinylogous 

sulfonamide where we varied the base used to promote the reaction. The first 
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step in both methods was the formation of the methyl iodide salt (336) by 

reacting t-butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)nonanoate (278) with methyl 

iodide in tetrahydrofuran under inert atmosphere and ambient temperature for 

forty-eight hours (see Scheme 3.15).  
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Scheme 3.15: Proposed mechanism for vinylogous sulfonamide formation and the 
base-catalysed deacylation. Reagents and conditions: i) a) MeI, THF, 72 hr.; b) (279), 
Et3N, CH2Cl2, RT, 96 hr. 
 

This reaction was performed under strictly anhydrous conditions and the flask 

was covered in tinfoil to protect the methyl iodide from exposure to light. Once 

the α-thioiminium salt formation was complete, as judged by TLC, the excess 

methyl iodide and the tetrahydrofuran were removed in vacuo and a premixed 
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solution of 1-[(4-methylphenyl)sulfonyl]acetone, triethylamine and 

dichloromethane was carefully added and the reaction was left stirring for a 

further 96 hours under inert conditions. Following purification by column 

chromatography two products were obtained: the acylated product t-butyl (3R)-

3-{2-[1-(p-toluenesulfonyl)-2-oxopropylidene]-1-pyrrolidinyl}nonanoate (337) in 

27% yield and the deacylated product, t-butyl (3R)-3-{2-[(E)-(p-

toluenesulfonyl)methylene-1-pyrrolidinyl} nonanoate (280), in 28% yield. 

Unreacted starting material was recovered as the lactam, t-butyl (3R)-3-(2-oxo-

1-pyrrolidinyl)nonanoate (277), in 25% yield, due to the hydrolysis of the 

α-thioiminium salt. The spontaneous in situ deacetylation in the presence of 

base can be accounted for by the mechanism shown in Scheme 3.15. 

 

In the second method, triethylamine was replaced by DBU (1,8-

diazabicyclo[5.4.0]undecene-7) and the desired product, t-butyl (3R)-3-{2-[(E)-

(p-toluenesulfonyl)methylene-1-pyrrolidinyl}nonanoate (280), was obtained in 

13% yield, while the acylated product, t-butyl (3R)-3-{2-[1-(p-toluenesulfonyl)-2-

oxopropylidene]-1-pyrrolidinyl}nonanoate (337), was obtained in 38% yield. 

Owing to the lower yields obtained in this variation, triethylamine was used for 

all subsequent reactions. In both methods the vinylogous sulfonamide (280) 

was obtained almost exclusively as the (E)-isomer – negligible amounts of the 

(Z)-isomer were observed in the 13C-NMR spectra. 

  

A recent study has shown that using sodium iodide as an additive during the 

formation of the thioiminium salt should decrease reaction times.152 In addition, 

the use of polar, aprotic solvents such as acetonitrile or chloroform increases 

the efficiency of the salt formation.152 However, when we attempted these 

conditions we experienced a reduction in yield. 

 

The optical rotations for t-butyl (3R)-3-{2-[(E)-(p-toluenesulfonyl)methylene-1-

pyrrolidinyl}nonanoate (280) and t-butyl (3R)-3-{2-[1-(p-toluenesulfonyl)-2-

oxopropylidene]-1-pyrrolidinyl}nonanoate (337) were [α]D20 +11.6 (c 0.69, 

CH2Cl2) and [α]D20 +44.0 (c 1.00, CH2Cl2), respectively. Yillah obtained optical 

rotations of [α]D20 -41.5 (c 0.27, CH2Cl2) and [α]D20 -59.5 (c 0.56, CH2Cl2) for 
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(280) and (337), respectively. These values were completely different in sign 

and magnitude to the values we obtained. 

 

Both products were fully characterized and conclusively revealed the 

incorporation of the tosyl group into the molecule, as well as the loss of the 

thiocarbonyl signals. Notably, a signal characteristic of an alkene was visible at 

5.00 ppm in the 1H-NMR spectrum for t-butyl (3R)-3-{2-[(E)-(p-

toluenesulfonyl)methylene-1-pyrrolidinyl}nonanoate (280). This signal was a 

singlet integrating for one hydrogen and corresponds to (H-14). The acylated 

product (337) did not have this signal, but it did contain an additional methyl 

group at 2.34 ppm and an additional carbonyl signal at 190.7 ppm in the 
13C-NMR spectrum.   

 

FTIR spectroscopy showed both an ester at 1724 cm-1, an alkene at 1569 cm-1, 

and a sulfonyl group at 1288 cm-1 for t-butyl (3R)-3-{2-[(E)-(p-

toluenesulfonyl)methylene-1-pyrrolidinyl}nonanoate (280). The acylated product 

(337) contained two carbonyl groups, 1727 cm-1 for the ester and 1687 cm-1 for 

the α-β unsaturated ketone, as well as the sulfonyl group at 1297 cm-1, and the 

alkene at 1616 cm-1.   

 

When comparing the key differences in the 1H-NMR and 13C-NMR spectra 

between the acylated and deacylated products (see Table 3.8) H-3 was 

identical, occurring at 3.93 ppm for both compounds, whereas H-2, H-11, H-12 

and H-13 were significantly shifted downfield in the acylated molecule owing to 

the electron withdrawing effect of the α,β-unsaturated ketone. The 13C-NMR 

spectrum showed significant differences for the alkene carbons, C-10 and C-14, 

which occur at 161.5 and 87.7 ppm for the deacylated product (280) and at 

174.9 and 103.7 ppm for the acylated product (337). Again this illustrates the 

increased deshielding due to the α,β-unsaturated system. C-2 and C-3 of the 

acylated product (337) were also shifted downfield, experiencing decreased 

electron density, whereas C-11 and C-12 were shifted upfield in the acylated 

product (337).  
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Signal (280) / ppm (280) 31 / ppm (337) / ppm (337) 31 / ppm 

H-2 1.78 (dd, J 14.7)  3.36 – 3.23 (m) 2.95 (dd, J 15.2)  

2.48 – 2.40 (m) 

3.64 – 6.54 (m) 

H-3 3.93 – 3.58 (m) 3.86 (q, J 7.9) 3.94 (tt, J 8.7) 3.96 (q, J 7.5) 

H-11 2.90 (t, J 7.7) 3.00 (t, J 7.1) 3.40 (dt, J 15.3)  

3.03 (dt, J 15.3) 

2.90 (td, J 7.6) 

H-12 1.45 – 1.32 (m) 2.46 – 2.39 (m) 2.12 – 1.83 (m) 1.44 – 1.50 (m) 

H-13 3.18 (dt, J 16.1)  

3.18 (dt, J 16.1) 

2.46 – 2.39 (m) 3.66 – 3.49 (m) 3.64 – 3.54 (m) 

H-14 5.00 (s) 5.07 (s) - - 

C-1 169.8 169.75 169.7 174.80 

C-2 32.1 46.27 36.9 37.95 

C-3 52.2 48.84 58.5 49.16 

C-4 31.6 31.59 32.3 36.98 

C-10 161.5 161.55 174.9 169.78 

C-11 39.0 38.99 37.8 32.34 

C-12 26.1 32.08 20.1 31.52 

C-13 47.0 52.25 49.1 58.53 

C-14 87.9 87.83 103.7 103.88 

C-22 - - 190.7 190.89 

 
Table 3.8: Comparison of selected NMR spectral data (in CDCl3) for vinylogous 
sulfonamides. (J-values measured in Hz, only the first coupling constant is shown). 
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3.8 Attempted deacetylation reactions 
 
We attempted two acid-catalyzed deacetylation reactions on t-butyl (3R)-3-{2-

[1-(p-toluenesulfonyl)-2-oxopropylidene]-1-pyrrolidinyl}nonanoate (337), the first  

heated (337) at reflux in neat trifluoroacetic acid for twelve hours, and the other 

heated at reflux in toluene and trifluoroacetic acid for five hours, while 

monitoring by TLC. Neither method produced any of the desired product, even 

the t-butyl ester survived the harsh reaction conditions.  Analysis of the 1H-NMR 

spectrum indicated some sort of decomposition, with the loss of the tosyl group. 

These two procedures were modified from the work of Ban and co-workers;154 

please refer to the literature for the proposed mechanism of the acid-catalysed 

deacetylation. 

 
Owing to the unsuccessful deacetylation reaction, the product could not be 

recycled back into the synthetic sequence and this unfortunately meant a 

serious reduction in overall yield. 

 

3.9 Reduction to the alcohol 
 
In the next step, the t-butyl ester group of t-butyl (3R)-3-{2-[(E)-(p-

toluenesulfonyl)methylene-1-pyrrolidinyl}nonanoate (280) was reduced to the 

corresponding alcohol, t-butyl (3R)-3-{2-[(E)-(p-toluenesulfonyl)methylene-1-

pyrrolidinyl}nonan-1-ol (281), under standard reduction conditions using lithium 

aluminium hydride in tetrahydrofuran at ambient temperature for twelve hours 

(see Scheme 3.16). After purification by column chromatography, the alcohol 

(281) was isolated in 92% yield.  
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Scheme 3.16: Reduction of the ester (280) to the alcohol (281). Reagents and 
conditions: i) LiAlH4, THF, RT, 15 hr. 
 

Full characterization revealed the disappearance of the t-butyl group and the 

appearance of the hydroxy group. The 1H-NMR spectrum showed a broad new 

peak at 2.17 ppm corresponding to the OH and an additional methylene signal 

was observed at 3.20 ppm as a triplet (J 6.7) corresponding to H-1 (see Figure 

3.9). The 13C-NMR spectrum showed the absence of the t-butyl peaks at 

81 ppm and 28 ppm, and the loss of the ester carbonyl at 170 ppm. C-1 was 

observed as a new signal at 45.9 ppm, deshielded by the adjacent hydroxy 

group. For the 1H-NMR spectrum, Yillah did not report an O-H signal, he 

reported H-1 at 3.55 – 3.51 ppm (0.30 ppm higher than our value) and H-3 at 

3.55 – 3.51, whereas we observed H-3 at 3.75 – 3.62 ppm. The values Yillah 

reported for the 13C-NMR spectrum were similar to the values we obtained. 
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Figure 3.9: Numbering of alcohol (281) for assignment of spectroscopic data. 

 

FTIR spectroscopy revealed a broad stretching vibration at 3474 cm-1 

corresponding to the O-H bond and the ester carbonyl stretching vibration was 
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no longer observed.  The alcohol had significant optical activity, [α]D20 -25.0 

(c 0.30, CH2Cl2), which was opposite in sign compared to the preceding ester. 

Yillah obtained an optical rotation of [α]D20 -5.3 (c 1.25, CH2Cl2) for the same 

molecule. High resolution mass spectrometry showed the parent ion of (281) 

with a mass of 379.2176, in close agreement with the calculated value of 

379.2181. 

 
3.10 Cyclisation reaction 
 
The next step in the synthesis was the key step, the novel cyclisation reaction. 

This reaction makes use of the vinylogous sulfonamide’s nucleophilicity to 

facilitate intramolecular ring closure. The alcohol (281) was first converted into 

an iodide (338), which was a better leaving group, using Appel-type reaction 

conditions;191 triphenylphosphine, iodine and imidazole, a mild organic base 

(see Scheme 3.17). The alcohol (281) was heated at reflux in toluene together 

with the triphenylphosphine, iodine and imidazole and once the intermediate 

iodide (338) was formed the vinylogous sulfonamide spontaneously facilitated 

cyclisation. Following work-up and purification, the bicyclic product, (5R)-5-

hexyl-1,2,3,5,6,7-hexahydro-8-indolizinyl 4-methylphenyl sulfone (282), was 

isolated in 96% yield as a pale yellow oil that discoloured to blue in the 

presence of light.  
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Scheme 3.17: Mechanism for the key cyclisation reaction. Reagents and conditions: 
i) PPh3, imidazole, I2, toluene, reflux, 6 hr. 
 

Yillah employed slightly different reaction conditions, using acetonitrile/toluene 

(2:1) as the solvent. He isolated the desired product in 83% yield. His reported 

spectra were in close agreement with the spectra we obtained. 

 

The bicyclic product, (5R)-5-hexyl-1,2,3,5,6,7-hexahydro-8-indolizinyl 

4-methylphenyl sulfone (282), retained its optical activity, although again the 

sign changed from the negative value obtained for the alcohol (281) to 

[α]D20 +9.4 (c 0.85, CH2Cl2). Yillah reported the optical rotation of (282) as 

[α]D20 +31.0 (c 0.36, CH2Cl2). The most significant change in the 1H-NMR 

spectrum was the loss of the alkene proton at 5.09 ppm and the disappearance 

of the triplet at 3.20 ppm corresponding to C-7 (see Table 3.9).  
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Signal (281) / ppm (282) / ppm 

H-1 3.08 – 2.96 (m) 

2.97 – 2.84 (m) 

3.13 (t, J 7.2) 

H-2 1.86 (quintet, J 7.4) 1.91(quintet, J 7.2) 

H-3 3.62 – 3.44 (m) 3.19 (t, J 7.1) 

H-5 3.75 – 3.62 (m) 3.49 (quintet, J 6.9) 

H-6 1.71 (q, J 6.7) 1.80 – 1.51 (m) 

H-7 3.20 (t, J 6.7) 1.80 – 1.51 (m) 

H-8 5.09 (s) - 

C-1 31.4 32.1 

C-2 20.8 29.3 

C-3 59.0 51.2 

C-5 51.6 53.9 

C-6 34.7 31.4 

C-7 45.9 31.7 

C-8 86.2 92.4 

C-8a 162.6 155.1 

 
Table 3.9: Comparison of selected NMR spectral data (in CDCl3) for alcohol and 
bicyclic products. (J-values measured in Hz). 
 
The 13C-NMR spectrum showed several significant changes, most notably C-8 

and C-8a shift from 86.2 and 162.6 ppm to 92.4 and 155.1 ppm, respectively. 

This was because of the change in electronic environment due to the inductive 

effect of the closed ring system.  

 

FTIR spectroscopy revealed the loss of the O-H stretching vibration as no band 

was visible in the region of 3000 – 3500 cm-1 characteristic of this bond. The 
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spectrum showed alkene stretching vibrations at 1593 cm-1, sulfonyl stretching 

vibrations at 1291 cm-1, and aliphatic stretching vibrations. High resolution mass 

spectrometry gave a molecular ion at 361.2071, in very close agreement with 

the calculated value for the compound with the 32S isotope (361.2075).  

 
3.11 Conclusion 
 
Unfortunately, the final two steps in the synthesis were never attempted (see 

Scheme 3.18). Although the preceding step was successful, not enough of the 

product (282) was available for the next reaction.  

 

 
 

Scheme 3.18: Final two steps in the synthesis; reduction and desulfonylation. 
Reagents and conditions: i) H2 (7 atm.), PtO2, MeOH; ii) Na(Hg), Na2HPO4. 
 

Although the plan was to go back to the beginning of the synthesis and push 

material through the initial steps so that the final two steps could be optimized 

and completed, the debenzylation reaction repeatedly failed to remove both 

benzyl groups. After numerous attempts at removing both benzyl groups the 

conclusion was reached that the palladium catalysts currently available were 

not sufficiently active to perform the reaction. It was most frustrating to be 

thwarted by a reaction which initially worked exceptionally well; we have 

however, come to accept that with the current difficulties experienced with the 

debenzylation reaction it has become necessary to explore alternative 

reactions. There are other chiral amines that could be used in place of N-

benzyl-N-(1R)-1-phenylethylamine (214), which can be removed under different 

reaction conditions. For example, the dimethoxy equivalent can be cleaved 

under oxidative conditions by ceric ammonium nitrate. 
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Although the total synthesis was not completed, the synthesis was thoroughly 

explored, we did gain enough experience with this type of chemistry to continue 

with the racemic synthesis of monomorine I and it isomers, and the optical 

rotation results that were obtained have values that align well with the 

analogous compounds synthesized by Gravestock. It was clear that many of 

the optical rotations recorded by Yillah did not correspond in sign or magnitude 

to those obtained by Gravestock and Davies for similar compounds. Full 

characterization of all the intermediate compounds was obtained and the 

reaction conditions were altered to improve the efficiency of the reactions. 

Novel side reactions were identified and explored and alternative debenzylation 

reactions were attempted. 
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CHAPTER 4 
THE TOTAL SYNTHESIS OF MONOMORINE I AND  

5-epi-MONOMORINE I  
 
4.1  Introduction  
 

Once the synthesis of (−)-indolizidine 209D was well underway (barring 

unforeseen difficulties), the completion of the synthesis was imminent, we 

began investigations into the total synthesis of monomorine I and/or its 

diastereomers. Initially the synthesis of the racemic alkaloid was investigated, 

as the use of a chiral auxiliary made the enantioselective route more expensive 

to execute. For conciseness, however, results pertaining to the racemic and 

enantioselective alternatives are presented in parallel throughout this chapter. 

 

For convenience, a pictorial summary of the strategy to be followed is repeated 

below (see Scheme 2.16). 
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Scheme 2.16: Proposed synthetic route for the total synthesis of monomorine I and/or 
its isomers.  
 
4.2  Preparation of the ketoester and amine precursor 
 
4.2.1 Preparation of the ketoester 
Our desired starting material, the ketoester ethyl 4-oxooctanoate (292), was a 

known compound and a review of the literature revealed many different 

strategies for preparing (292) and analogous 1,4-ketoesters. Four of the 

dominant strategies are outlined in Figure 4.1. Strategy A192 - 194 executes a 

three step synthesis from the cheap and readily available starting material ethyl 

acetoacetate (339). Strategy B uses methodology developed by Stetter et al.,195 

- 197 and involves an ionic reaction between ethyl acrylate (340) and 

valeraldehyde (341), catalysed by a thiazolium-based catalyst. The conditions 

for this reaction were fairly sensitive and a syringe-pump was required for the 

addition of the ethyl acrylate in order to prevent unwanted side reactions. 
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Strategy C198 - 204 was a Grignard reaction, starting with the fairly expensive 

ethyl 4-chloro-4-oxobutyrate (342). Great care must be taken to ensure that 

only single addition occurs. There were several additives and catalysts 

available to help prevent multiple additions, but ultimately it was low 

temperatures and short reaction times that minimized the unwanted by-

products. The advantage of strategy C was that it was a one-step synthesis. 

Strategy D205 started from the cheap and readily available succinic anhydride 

(343) and involved two standard transformations to get to the desired ketoester 

(292).  

 

Because ethyl 4-oxooctanoate (292) was the starting point for our proposed 

synthesis of monomorine I, we needed to prepare it in large quantities and high 

yields.  All four strategies were investigated in order to find the most efficient 

and economical method. 
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Figure 4.1: Four general routes to ketoester (292). 

  

Strategy A192 

Strategy A was a three-step synthesis starting from the cheap and readily 

available starting material ethyl acetoacetate (339). The first step was the 
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formation of the stabilized secondary enolate, followed by the addition of 

valeroyl chloride to form ethyl 2-acetyl-3-oxoheptanoate (344). The second step 

was the deacetylation to form ethyl 3-oxoheptanoate (345) (see Scheme 4.1), 

and the final transformation was a CH2 insertion reaction to give the desired 

ketoester (292) (see Scheme 4.2). 

 

  
 
Scheme 4.1: Strategy A, first approach. Reagents and conditions: i) NaH, THF, 
valeroyl chloride, RT, 12 hr.; ii) a) NH3 (gas), Et2O, 90 min. b) HCl; iii) Et2Zn, CH2Cl2, 
CH2I2, 0 °C − RT, 30 min. 
 

For the first step, ethyl acetoacetate (339) was carefully added to a cooled 

solution of sodium hydride in tetrahydrofuran. For a 180 mmol scale, a large 

flask (1 litre), vigorous stirring, and a low molarity of ethyl acetoacetate (0.40 M) 

were required in order to prevent a clumpy emulsion from forming. After the 

addition was complete, the solution was bright yellow in colour. Valeroyl 

chloride was added dropwise and the solution gradually turned opaque. The 

reaction was allowed to warm to ambient temperature and was quenched with 

distilled water twelve hours later. After extraction and purification by column 

chromatography, the desired product, ethyl 2-acetyl-3-oxoheptanoate (344), 

was isolated in 92% yield as a clear yellow oil. Presumably (344) was found 

entirely as the enol form, as only one set of spectral signals was observed. 
Characterization by 1H-NMR spectroscopy revealed that the enol hydrogen had 

shifted downfield to an astounding 17.80 ppm due to the combined effect of the 

hydrogen-bonded carbonyl groups. 13C-NMR spectroscopy showed three 

carbonyl groups at 167.2 ppm, 195.6 ppm and 198.8 ppm. The latter two 

signals were both in an appropriate region for ketone carbonyls but presumably 

the two enol tautomers were in equilibrium, giving the enol carbons ketone-like 
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character (see Figure 4.2). The signal for the central carbon, C-2, appeared at 

108.6 ppm. FTIR spectroscopy clearly indicated the presence of three carbonyl 

stretching vibrations at 1762 cm-1, 1710 cm-1 and 1670 cm-1 and no signal was 

observed for the enol OH. This may have been owing to excessive broadening 

of the O-H signal, because of hydrogen-bonding and the equilibrium, or 

perhaps the solvent-free conditions of the IR machine prevented the enol from 

forming.  
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Figure 4.2: Two of the enol tautomers of (344). 

 

For the second step, ethyl 2-acetyl-3-oxoheptanoate (344) was dissolved in dry 

diethyl ether and ammonia gas was bubbled through the solution for 

approximately ninety minutes. This was followed by an acidic work up with 

dilute hydrochloric acid, followed by extraction of the product into ethyl acetate. 

According to the literature,194 the acetyl group should selectively cleave, leaving 

ethyl 3-oxoheptanoate. After purification by column chromatography, we found 

that the major product was in fact ethyl acetoacetate (339) (84% yield) and the 

desired compound, ethyl 3-oxoheptanoate (345), was the minor product (16% 

yield). Clearly the reaction was favouring the removal of the wrong acyl group, 

opposite of what was observed in the literature.194 The 1H-NMR spectrum 

showed H-2 as a singlet, moderately shifted to 3.43 ppm, and only two carbonyl 

signals were observed by 13C-NMR spectroscopy at 202.9 ppm and 167.2 ppm 

in the characteristic regions for a ketone and an ester carbonyl respectively. 

FTIR spectroscopy confirmed the presence of only two carbonyl stretching 

vibrations at 1741 cm-1 and 1715 cm-1. 

 

Owing to the low yield of ethyl 3-oxoheptanoate (345) (16%) an alternative 

method was attempted. This method206 also made use of ethyl acetoacetate 
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(339) as a starting material and then employed a double deprotonation reaction 

prior to the addition of chloropropane. Firstly, sodium hydride was used to 

deprotonate the more acidic position, the methylene adjacent to both carbonyls, 

as the sodium cation could chelate to both the resulting enolate and the 

carbonyl group. Then, n-butyllithium was carefully added and the terminal 

methylene, adjacent to the ketone, was deprotonated. The lithium could not 

chelate to the carbonyl as the sodium had already blocked the position. 

Chloropropane was carefully added and, theoretically, only the terminal 

carbanion should react with it. The reaction was quenched with distilled water 

and after extraction and purification by column chromatography, ethyl 

3-oxoheptanoate (345) was isolated in 8% yield as a clear oil with a pleasant, 

fruity odour. The low yield was attributed to the inferior quality of the 

n-butyllithium reagent available at the time. The reaction was neither repeated 

nor optimized, since alternative approaches were already proving more 

promising (see Strategy C). 

 

 
 
Scheme 4.2: Strategy A, second approach. Reagents and conditions: i) a) NaH, THF; 
b) n-BuLi; c) chloropropane; ii) Et2Zn, CH2Cl2, CH2I2, 0°C − RT, 30 min. 
 

Having prepared some of the ethyl 3-oxoheptanoate (345), it was possible to 

attempt the exciting CH2 insertion reaction. The literature method193 we chose 

to follow used neat diethylzinc to perform this transformation. Due to the highly 

pyrophoric nature of the reagent, great care was taken to ensure dry and 

oxygen-free conditions for the reaction. Dry dichloromethane and diethylzinc 

were mixed in a flask under nitrogen and diiodomethane was carefully added. 

Exothermic bubbling commenced, after which the solution was cooled to 0°C. 

Ethyl 3-oxoheptanoate (345) was rapidly added and the reaction was left for a 

further thirty minutes. The reaction was quenched with ammonium chloride 

solution and the organic material was extracted into ethyl acetate. Following 

purification by column chromatography, the desired product ethyl 
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4-oxooctanoate (292), was isolated in 62% yield as a clear oil. Although the 

reaction was successful and fun to execute, the empty syringe invariably ignited 

after the addition of diethylzinc was complete and hence the reaction was most 

definitely not suitable for scale-up. 

 

Ethyl 4-oxooctanoate (292) was fully characterized and all spectroscopic data 

was in agreement with the literature.195, 207 In the 1H-NMR spectrum, the ethyl 

group was observed at 4.13 ppm and 1.25 ppm as a quartet and triplet, 

respectively. The three methylene groups, H-2, H-3 and H-5 (see Figure 4.3), 

were observed at 2.72 ppm, 2.62 – 2.45 ppm and 2.45 ppm, downfield due to 

deshielding by the adjacent carbonyls. 13C-NMR spectroscopy showed the 

ketone, C-4, at 209.5 ppm, and the ester, C-1, at 173.2 ppm, within the 

expected regions for these functional groups. 
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Figure 4.3: Numbering of ester (292) for assignment of spectroscopic data. 

 

Strategy A gave ethyl 4-oxooctanoate in 9% overall yield (see Scheme 4.1) 

over three steps, via ethyl 2-acetyl-3-oxoheptanoate (344). The two step 

variation of strategy A gave ethyl 4-oxooctanoate in 5% overall yield (see 

Scheme 4.2). This was not the most economic and efficient route for preparing 

our starting material. 

  

Strategy B195 - 197 

This method used the Stetter reaction, a one step ionic reaction, involving ethyl 

acrylate (340) and valeraldehyde (341) (see Scheme 4.3). The thiazolium-

based catalyst, 3-benzyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride, 

ethyl acrylate, triethylamine and dioxane were mixed together under inert 

conditions at ambient temperature. A mixture of valeraldehyde and a second 

portion of ethyl acrylate were added over ten hours using a syringe pump. The 
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reaction was stopped and the product was extracted into ethyl acetate and 

rinsed with dilute hydrochloric acid, sodium bicarbonate solution and distilled 

water.  After purification by column chromatography, the desired product, ethyl 

4-oxooctanoate (292), was isolated in a low yield of 16% and showed 

contamination by diethyl succinate. The low yield was attributed to the 

evaporation of the ethyl acrylate during the reaction as well as the sensitive 

nature of the reaction. 

 

 
 
Scheme 4.3: Strategy B, the Stetter reaction. Reagents and conditions: i) Thiazolium 
cat., (340), Et3N, dioxane; b) (340), (341), 10 hr., RT. 
 

The Stetter reaction was attempted several times further, but the yield did not 

improve. The physical set up of the system contributed significantly to the 

evaporation of the ethyl acrylate during the reaction and the decision was made 

to move on to strategy C rather than spending more time optimizing the 

conditions. 

 

Strategy C 

This method involves a standard organometallic reaction involving addition of 

either a cuprate198, 199 or an organolithium reagent to an acyl chloride (see 

Scheme 4.4).198, 200 - 204 The challenge of this reaction was controlling the single 

addition of the organometallic nucleophile by varying the temperature, time, and 

catalyst. Initially the reaction was attempted using a cuprate. Di-n-butylcopper 

lithium was prepared in situ by reacting copper iodide with n-butyllithium at 

-90°C for one hour. Ethyl 4-chloro-4-oxobutyrate (342) was added to the 

cuprate solution and the reaction mixture was warmed to ambient temperature 

and left stirring for a further twelve hours. Following work-up and purification by 

column chromatography, the desired product, ethyl 4-oxooctanoate (292), was 

isolated in 80% yield. On closer examination of the 1H-NMR spectrum, it 

became apparent that the sample was heavily contaminated with diethyl 

succinate (346), (approximately 30% of the sample), which eluted with an 
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identical Rf value in all the solvent systems tested. Diethyl succinate and ethyl 

4-oxooctanoate do however differ in boiling points,  with the former being 105°C 

and the latter 125°C at 15 torr and therefore could be separated by distillation if 

the scale of the reaction allowed it. For these reasons this reaction was 

abandoned.   

 

 
 
Scheme 4.4: Strategy C, organometallic reaction. Reagents and conditions: i) a) CuI, 
n-BuLi, THF, -90°C, 1 hr.; b) (342), RT, 12 hr. 56%. ii) n-BuMgCl, bis-
(N,N-dimethylaminoethyl)ether, THF, -90°C, 2.5 hr., 21%; iii) a) Bu3P, THF, -29°C, 
25 min.; b) n-BuMgCl, 10 min., 93%; iv) n-BuMgCl, Fe(acac)3, THF, 0°C, 10 min. 
100%. 
 

The second method200 - 202 uses the Grignard reagent, n-butylmagnesium 

chloride, premixed with the additive bis-(N,N-dimethylaminoethyl)ether, which 

reportedly coordinates to the magnesium to form a tridentate ligand and 

reduces the formation of by-products during the reaction.  This mixture was 

added to a solution of ethyl 4-chloro-4-oxobutanoate (342) in tetrahydrofuran at 

–90°C. After twenty minutes TLC indicated no formation of product and the 

reaction mixture was warmed to ambient temperature and stirred for an 

additional two hours. After work up and purification by column chromatography, 

ethyl 4-oxooctanoate (292) was isolated in a low yield of 21%. 

 

After reviewing the literature again,203, 204 tri-n-butylphosphine emerged as a 

potential additive for Grignard reactions to ketoesters. Ethyl 4-chloro-4-

oxobutanoate (342) was dissolved in tetrahydrofuran and cooled to –29°C in a 

xylene/liquid nitrogen slurry. Tri-n-butylphosphine was carefully added and the 

solution was stirred for twenty-five minutes. The n-butylmagnesium bromide 

solution was quickly added and the reaction was left stirring for ten minutes 

before it was quenched with dilute hydrochloric acid. Following extraction and 
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purification by column chromatography, ethyl 4-oxooctanoate (292) was 

isolated in 93% yield. This result seemed to indicate that short reaction times 

were of paramount importance in achieving high yields for this reaction. One of 

the reactions we had previously attempted using iron(III) acetoacetate as a 

catalyst had repeatedly given us yields in the region of 40 - 60%. Inspired by 

the high yield obtained with the tri-n-butylphosphine we set about repeating the 

Grignard reaction catalysed by the iron(III) acetoacetate.198 Ethyl 4-chloro-4-

oxobutanoate (342) was dissolved in tetrahydrofuran together with catalytic 

amounts of iron(III) acetoacetate. The solution was cooled to 0°C and then n-

butylmagnesium bromide solution was added dropwise from a dropping funnel. 

After ten minutes the addition was complete and the reaction was immediately 

quenched with dilute hydrochloric acid. The product was extracted into ethyl 

acetate and purified by column chromatography to give ethyl 4-oxooctanoate 

(292) in quantitative yield.  

 

Strategy D 

Strategy D starts with the readily available succinic anhydride (343) and also 

involves the addition of a cuprate199 or organolithium reagent,198 followed by 

esterification (see Scheme 4.5). First we attempted the Grignard reaction. 

n-Butylmagnesium bromide was prepared in situ by reacting bromobutane with 

magnesium turnings in dry tetrahydrofuran for one hour at 0°C under nitrogen. 

The Grignard reagent was slowly added to a solution of succinic anhydride 

(343) and a catalytic amount of iron(III) acetoacetate in tetrahydrofuran at 

ambient temperature. After an hour the reaction was quenched with a dilute 

hydrochloric acid solution and the product was extracted into diethyl ether. 

Following purification by column chromatography, 4-oxooctanoic acid (347) was 

isolated in 25% yield as a white crystalline solid. 5,5-Dibutyldihydro-2(3H)-

furanone (348) was isolated as a by-product in 11% yield. 
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Scheme 4.5: Strategy D, organometallic reaction with succinic anhydride. Reagents 
and conditions: i) n-BuMgCl, Fe(acac)3, THF, RT, 1 hr. 25%; ii) a) CuI, n-BuLi, THF, 
-90°C, 1 hr.; b) (343), RT, 3 hr., 34%;  iii) EtOH, H2SO4 (cat.), RT, 3 hr. 100%. 
 

4-Oxooctanoic acid (347) was fully characterized and showed the characteristic 

broad O-H signal at 12 – 10 ppm in the 1H-NMR spectrum. 13C-NMR 

spectroscopy showed the acid carbonyl signal at 179.1 ppm and the FTIR 

spectrum showed the broad O-H stretching vibration at 3550 – 3350 cm-1. The 

by-product, 5,5-dibutyldihyro-2(3H)-furanone, gave a simple 1H-NMR spectrum 

due to the symmetry of the molecule. The lactone signals appeared as triplets 

at 2.57 ppm and 2.02 ppm, and the butyl chain signals were observed at 1.66 – 

1.57 ppm, 1.40 – 1.26 ppm and 0.92 ppm. Only eight signals were observed in 

the 13C-NMR spectrum. FTIR spectroscopy showed a stretching vibration at 

1772 cm-1, characteristic of a lactone carbonyl group. 

  

Secondly we attempted the addition of di-n-butylcopper lithium to succinic 

anhydride (343) in tetrahydrofuran. The reaction mixture was stirred at ambient 

temperature for three hours and was then quenched with a saturated 

ammonium chloride solution. The crude product was extracted into diethyl 

ether, the solvent removed in vacuo, and the crude product was esterified 

directly by reacting it with acidified absolute ethanol for three hours at ambient 

temperature.205 Following work up and purification, ethyl 4-oxooctanoate (292) 
was obtained in 34% yield over the two steps. 

  

The iron (III) acetoacetate catalysed Grignard reaction used in strategy C198 

was clearly the most economic and efficient method for preparing the ketoester 

(292). It required only one step, ten minutes reaction time, relatively little 

solvent, 3% catalyst loading, and boasted a quantitative yield with no 
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contamination by by-products, provided that the reaction time was carefully 

monitored. 

 

4.2.2 Preparation of the racemic amine  
During the initial trouble-shooting phase in the development and optimization of 

the synthetic pathway, we wanted an inexpensive method to prepare the 

racemic amine, ethyl 3-aminobutyrate (291). One of the literature methods208 - 

210 for preparing β-amino esters was by reacting a β-ketoester with an ammonia 

source and reducing out the resulting imine or its enamine tautomer. We also 

intended to use methodology developed by Davies and co-workers,158 

incorporating a chiral auxiliary, to access the equivalent enantiopure amine. A 

comparable racemic pathway can be emulated using dibenzylamine for the 

aza-Michael reaction. These two potential pathways for accessing the racemic 

amine (291) are shown in Scheme 4.6.  
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Scheme 4.6: Two potential pathways for accessing racemic amine (291). Reagents 
and conditions: i) NH4CH3CO2, AcOH, reflux, 4 hr.; ii) NaBH4, AcOH; 
iii) a) dibenzylamine, n-BuLi, THF, -90°C, 30 min.;  b) (350), 2 hr.; iv) Pd/C, H2 (7 atm.), 
AcOH, 72 hr. 
 

When preparing the racemic amine, the nature of the side-chain of the ester 

group was inconsequential, as it would be reduced to the alcohol later in the 

synthesis. We therefore chose to attempt the method with the β-ketoester on 

both ethyl acetoacetate (339) (see Scheme 4.6) and on t-butyl acetoacetate 

(352) (see Scheme 4.7). First, ethyl acetoacetate was dissolved in benzene in a 

flask connected to a Dean-Stark apparatus. Acetic acid and ammonium acetate 
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were then added and the solution was heated at reflux for four hours. After 

cooling, the solvent was removed in vacuo and the residual oil was washed with 

sodium carbonate and extracted into ethyl acetate. The enamine, (Z)-ethyl 3-

aminobut-2-enoate (349A), was isolated by vacuum distillation in 91% yield as 

a low melting solid (28 – 30°C). The 1H-NMR spectrum indicated the product 

(349A) was in equilibrium with its imine tautomer (349B) in a 3:1 ratio 

respectively.  

 

The most significant peaks in the 1H-NMR spectrum included the NH2 signal, a 

broad singlet at 8.5 – 7.5 ppm, and the enamine H-2 signal at 4.52 ppm (see 

Figure 4.4). The only signal which displayed different chemical shifts for the two 

tautomers was the methyl group, H-4; in (349A) the signal was at 1.90 ppm and 

for (349B) the signal shifted to 1.66 ppm. The 13C-NMR spectrum showed 

doubling up of all the peaks for the tautomers. C-3 appeared at 159.9 ppm for 

the enamine, and 200.6 ppm for the imine. C-2 appeared at 83.1 ppm for the 

enamine, and at 49.5 ppm for the imine. 

 

 
 
Figure 4.4: Numbering of tautomers (349A) and (349B) of amine for assignment of 
spectroscopic data. 
 

The identical procedure was carried out with t-butyl acetoacetate (352). (Z)-t-

Butyl 3-aminobut-2-enoate (353) was isolated by vacuum distillation in 89% 

yield as a low-melting, white, crystalline solid (see Scheme 4.7). 

 

 
 
Scheme 4.7: Potential pathway for accessing racemic amine (354). Reagents and 
conditions: i) NH4CH3CO2, AcOH, reflux, 4 hr.; ii) NaBH4, AcOH. 
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With the increased molecular weight, the melting point of the t-butyl 

3-aminobut-2-enoate (35 – 37°C) was slightly higher than that of the ethyl 

equivalent. The 1H-NMR spectrum showed the NH2 signal at 8.5 – 7.5 ppm as a 

broad singlet, and the H-2 singlet at 4.46 ppm (see Figure 4.5). None of the 

imine tautomer was observed for this product (353). 

 

 
 
Figure 4.5: Numbering of amine (353) for assignment of spectroscopic data.  

 

Both of the enamines were subjected to various reducing conditions210 with 

sodium borohydride, sodium triacetoxyborohydride or platinum dioxide in the 

presence of hydrogen. After purification by column chromatography, none of 

the desired product was isolated under any of the conditions mentioned. 

Presumably, the failure to isolate the desired product was due to the high 

volatility and water solubility of the free amines (291) and (354) rather than the 

reaction conditions. No starting material was recovered from these reductions. 

 

Owing to the limited success of these initial attempts at preparing the racemic 

amine, we decided to move on to model the enantioselective method (see 

Scheme 4.8).158 Dibenzylamine was dissolved in tetrahydrofuran under inert 

conditions and the solution was cooled to −90°C in an acetone/liquid nitrogen 

slurry. n-Butyllithium was carefully added by syringe and the reaction mixture 

turned from clear to deep red. The mixture was allowed to stir for thirty minutes 

at −90ºC before a solution of ethyl crotonate in tetrahydrofuran was added from 

a dropping funnel over forty minutes. After a further two hours, the reaction was 

quenched and the crude product was extracted. Following purification by 

column chromatography, ethyl 3-(dibenzylamino)butanoate (351) was isolated 

in 74% yield as a clear and pungent oil (see Figure 4.6). The two benzyl groups 

were identified in the 1H-NMR spectrum at 7.65 ppm, 7.60 ppm and 7.53 ppm 

for the aromatic signals and the benzylic protons (H-5A and H-5B) were 



 

 137

observed as diastereotopic signals at 3.97 ppm and 3.78 ppm, respectively. 

The alkene signals associated with ethyl crotonate were absent. H-3 occurred 

as a multiplet at 3.70 – 3.58 ppm, and H-2 was diastereotopic, occurring at 2.96 

and 2.59 ppm as two double doublets with a geminal coupling constant of 13.9 

Hz. 13C-NMR spectroscopy showed a characteristic ester signal at 172.7 ppm, 

four signals in the aromatic region, an ethyl ester signal at 60.7 ppm, and 

signals for the carbons α to the nitrogen at 53.8 ppm (C-5) and 51.3 ppm (C-3).  
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Figure 4.6: Numbering of dibenzylamine (351) for assignment of spectroscopic data.  

 

Ethyl 3-(dibenzylamino)butanoate (351) was subjected to standard 

debenzylation conditions (see Scheme 4.8).158 It was dissolved in absolute 

ethanol together with a catalytic amount of hydrochloric acid and activated 10% 

palladium on carbon and placed in an hydrogenator under seven atmospheres 

of hydrogen pressure for seventy-two hours. After filtration through Celite® the 

partially debenzylated product, ethyl 3-(benzylamino)butanoate (355), was 

isolated in 71% yield. 
 

 
 
Scheme 4.8: Preparation of the racemic amine (291). Reagents and conditions; 
i) a) dibenzylamine, n-BuLi, THF, -90°C, 30 min.; b) (350), 3 hr.; ii) Various conditions 
(see Table 4.1). 
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The second debenzylation method we attempted was also in the hydrogenator, 

but this time acetic acid was used as the solvent.211 After filtration through 

Celite®, the crude product was purified by column chromatography. 

Unfortunately, most of the desired product, ethyl 3-aminobutanoate (291), 

remained fixed to the silica gel and was isolated in a mere 24% yield.  

 

Two other variations of the debenzylation were attempted. One used neat 

ethanol as a solvent, but neither of the products was isolated. The other used a 

hydrogen balloon and acidic ethanol for the reaction. The balloon pressure was 

approximately one atmosphere and in this instance both products were isolated 

in 15% yield (see Table 4.1). 

  

Pressure Catalyst Eq. (w/w) Solvent (355) (291) 

7.5 atm. Pd-C 10% 0.48 AcOH 0% 24% 

7.5 atm. Pd-C 10% 0.48 EtOH 0% 0% 

≈ 1 atm. Pd-C 10% 0.48 EtOH/HCl 

(15:1) 

15% 15% 

7.5 atm. Pd-C 10% 0.48 EtOH/HCl 

(15:1) 

71% 0% 

 
Table 4.1: Yields for debenzylations where the product was purified by column 
chromatography, resulting in reduced yields. 
 

It became clear that using 10% palladium on carbon and acetic acid as the 

solvent was a viable method for preparing amine (291), provided that we did not 

isolate or purify the amine, but rather used it directly in the next reaction. After 

the reaction had gone to completion the palladium was removed by filtering the 

reaction mixture through Celite®, which was rinsed thoroughly with 

dichloromethane, and the dichloromethane was removed in vacuo. The residual 

acetic acid was not removed in vacuo, as the higher temperatures required 

would result in further loss of the volatile product. The crude mixture was not 

purified by column chromatography, as that also led to reduced yields. The 

crude mixture of acetic acid and amine were used immediately in the 

condensation reaction. 
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Both the free amine (291) and the monobenzylated amine (355) were 

characterized by 1H-NMR spectroscopy (see Figure 4.7). The free amine 

showed the ethyl group as a quartet at 4.15 ppm and a triplet at 1.27 ppm. The 

NH2 signal appeared at 1.71 ppm as a broad singlet. The H-3 signal appeared 

as a multiplet at 3.42 – 3.34 ppm, and the H-2 group was diastereotopic, 

showing two double doublets at 2.41 and 2.29 ppm, with a geminal coupling of 

15.6 Hz. For the monobenzylated amine in addition to the same signals there 

were aromatic signals present at 7.40 – 7.21 ppm and a diastereotopic benzylic 

signal for H-5 at 3.84 and 3.76 ppm, both appearing as doublets with a geminal 

coupling of 13.0 Hz.  

 

 

11

10

O 1

O

2
3

4

NH2

[291]   
 
Figure 4.7: Numbering of amine (291) and benzylamine (355) for assignment of 
spectroscopic data. 
 

Now that the preparation of the racemic amine via our enantioselective model 

had proved viable and an inexpensive alternative remained elusive, we ceased 

to prepare the racemic amine. Instead we purchased it from Sigma-Aldrich as a 

90% pure racemic mixture, which was both expensive and unstable, requiring 

storage at −18°C.  

  

4.2.3 Davies’ methodology: enantiopure amine158  
The only difference between the synthesis of enantiopure ethyl (3R)-3-

aminobutanoate (356) and our model racemic synthesis was a methyl group at 

the benzylic position of the dibenzylamine. The stereochemistry of this methyl 

group was principal in directing the formation of the new stereogenic centre 

(see Chapter 3, Section 3.3 for a full explanation of the stereocontrol). 

 

The chiral amine, benzyl[(1R)-1-phenylethyl]amine (214), was dissolved in 

tetrahydrofuran and the solution was cooled to −90ºC (see Scheme 4.9). 

n-Butyllithium was added by syringe and the reaction turned from clear to deep 
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red. The mixture was stirred for thirty minutes to allow complete formation of the 

lithium amide and a solution of ethyl crotonate (350) in tetrahydrofuran was 

then added from a dropping funnel over forty minutes. After an additional two 

hours the reaction was quenched with an ammonium chloride solution and the 

product was extracted into dichloromethane. After column chromatography, the 

product, ethyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}butanoate (356), was 

isolated in 95% yield as a clear oil.  

 

 
 
Scheme 4.9: Preparation of the enantiopure amine (291). Reagents and conditions; 
i) a) benzyl[(1R)-1-phenylethyl]amine, n-BuLi, THF, -90°C, 30 min.; b) (350), 2 hr.; 
ii) Pd/C, H2 (7 atm), AcOH, RT, 72 hr. 
 

The dibenzylated product (356) was optically active, with an optical rotation of 

[α]D20 +7.6 (c 1.06, CH2Cl2). 1H-NMR spectroscopy showed the presence of two 

benzyl groups with aromatic signals between 7.42 ppm and 7.17 ppm 

integrating for ten hydrogen atoms. The benzylic CH2 appeared as a 

diastereotopic signal at 3.71 ppm and at 3.69 ppm, both as doublets with 

geminal coupling of 14.7 Hz. The benzylic CH appeared as a quartet at 

3.92 ppm coupling to the methyl group with a coupling constant of 7.0 Hz. H-3 

appeared as a multiplet at 3.50 – 3.40 ppm, and H-2 displayed diasterotopic 

splitting to give signals at 2.36 ppm and 2.10 ppm. Importantly, no doubling up 

of signals was observed in the 13C-NMR spectrum, indicating the presence of 

only one diastereomer. FTIR spectroscopy showed aromatic stretching 

vibrations at 3062 cm-1 and 3027 cm-1 and the ester carbonyl at 1732 cm-1. 

 

The next step was the removal of the benzyl groups to expose the amine 

functionality (see Scheme 4.9). This proved to be non-trivial. The first method 
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we attempted was a debenzylation in the hydrogenator using acetic acid as the 

solvent and 10% palladium on carbon as the catalyst.211, 212 After purification by 

column chromatography the desired free amine (291) was isolated in 35% yield 

and the monobenzylated species, ethyl (3R)-3-{[(1R)-1-phenylethyl]amino} 

butanoate (357), was isolated in 26% yield. 

 

We also attempted using the reputably better debenzylation catalyst, 

Pearlman’s catalyst (palladium hydroxide on carbon), in absolute ethanol, but 

isolated a fluffy, white, polymeric compound and none of the desired amine 

(see Table 4.2). 

 

Pressure Catalyst Eq. (w/w) Solvent (357) (291) polymer 

7.5 atm. Pd/C 10% 0.45 AcOH 26% 35% 0% 

7.5 atm. Pd-(OH)2/C 0.20 EtOH 0% 0% 100% 

7.5 atm. Pd-(OH)2/C 0.10 EtOH 0% 0% 100% 

 
Table 4.2: Yields for debenzylations where the product was purified by column 
chromatography, resulting in reduced yields. 
 

Owing to the difficulties in purifying the amine (291) we ceased attempting to 

isolate it. Using 10% palladium on carbon and acetic acid as the solvent was a 

reasonably viable method for preparing amine (291) and as the next reaction 

required acetic acid as well (see Section 4.3.1), we filtered the reaction mixture 

through Celite® to remove the palladium, rinsed thoroughly with 

dichloromethane, and removed the solvent in vacuo. The crude product, 

together with the residual acetic acid, was immediately used in the next 

reaction. The yields over the two steps were generally between 30 – 50% and 

the reaction results were fairly consistent for the first two and a half years of the 

project. It was only in the last year and a half, when the focus of the project 

turned to the enantioselective synthesis that the same reaction conditions failed 

to produce any of the fully debenzylated amine (291) and consistently yielded 

the monobenzylated amine (357). The sudden shift in results led us to the 

conclusion that the batch of palladium catalyst was of paramount importance. 

Although we continued to attempt the debenzylation with 5% and 10% 

palladium on carbon from at least four different suppliers (Aldrich, Fluka, Alfa 
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and PMC), varying the ratio (0.10 equivalents – 1.0 equivalents), the solvent 

(acetic acid, ethanol and methanol), the hydrogen pressure (1 atmosphere – 

8 atmospheres), and the reaction length (12 hours – 120 hours) the reaction 

failed to produce the fully debenzylated amine (291), and we finally had to 

admit defeat. We did not attempt to vary the temperature of the reaction as the 

hydrogenator was not equiped for high temperatures. 

 
Another debenzylation method we attempted on ethyl (3R)-3-{benzyl[(1R)-1-

phenylethyl]amino}butanoate (356) was with ammonium formate and palladium 

on carbon (0.37 eq.) in methanol. The reaction was left at ambient temperature 

for three and a half hours until no more starting material was observed by TLC. 

Following extraction and purification by column chromatography, the 

monobenzylated product (357) was isolated in 69% yield. None of the desired 

fully debenzylated product was obtained. 

 

We also attempted to remove the second benzyl group from (357) by reacting it 

with Pearlman’s catalyst, acetic acid and seven atmospheres of hydrogen 

pressure. The α-methylbenzyl group could not be removed, only starting 

material was recovered. 

 
There are examples in the literature of the complete debenzylation of (356) to 

give (291) by Fenwick and Davies211 and by Li et al.212 Li et al. observed that in 

the presence of Pearlman’s catalyst, ethanol and four atmospheres of hydrogen 

pressure for 48 hours, amine (356) underwent complete debenzylation to give 

(291) in 89% yield (see Scheme 4.10). They also claimed that in the presence 

of 10% palladium on carbon (0.125 w/w), ethanol, 5% hydrochloric acid, and 

one atmosphere of hydrogen pressure for an hour, amine (356) underwent 

monodebenzylation to give (357) in 94% yield.212 This chemoselectivity in the 

presence of acid was the opposite to the chemoselectivity reported by Fenwick 

and Davies.211  
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Scheme 4.10: Debenzylation by Li et al.212 Reagents and conditions: i) H2 (4 atm.), 
20% Pd(OH)2/C, EtOH, RT, 48 hr.; ii) H2 (1 atm.), 10% Pd/C, EtOH/HCl, RT, 1 hr. 
 

Cimarelli and Palmieri213 cleaved an α-methyl benzyl group from a β-amino 

ester (358) (see Scheme 4.11) using acidified methanol and Pearlman’s 

catalyst (67 mg/mmol) to give the primary amine (359), displaying none of the 

chemoselectivity reported by Li et al.212 
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Scheme 4.11: Debenzylation by Cimarelli and Palmieri.209 Reagents and conditions: 
i) Pd(OH)2/C (67 mg/mmol), MeOH-H2O-AcOH (20:2:05), H2 (3 atm.), RT, 12 hr. 
 

Fleck et al.214 have also reported the synthesis of (291) from (356). They 

required 80% (w/w) Pearlman’s catalyst in methanol under thirty psi of 

hydrogen pressure to remove both benzyl groups from (356). Interestingly, they 

were also the first group, using chiral lithium amides, to detect the by-product 

(360) in the aza-Michael addition (see Figure 4.8). The by-product (360) forms 

when excess of the lithium amide was present in the reaction mixture and it 

added to the ester as well as the α,β-unsaturated system.214  We never 

detected the by-product (360) during the synthesis of (356). 
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Figure 4.8: Reported by-product (360) of the aza-Michael addition reaction.214 

 

In another publication, Davies et al.158 reported the debenzylation reaction for 

amines analogous to amine (291) (see Scheme 4.12). For an ethyl analogue 

(361) of amine (356) Davies et al.158 reported complete debenzylation to give 

(362) in 95% yield in the presence of palladium on carbon, methanol and five 

atmospheres of hydrogen pressure. For the methyl analogue (363) they 

reported complete debenzylation in the presence of Pearlman’s catalyst, 

ethanol and five atmospheres of hydrogen pressure. Interestingly, their yield for 

the methyl analogue (364) using Pearlman’s catalyst was 68%, whereas their 

yield for the equivalent ethyl analogue (366) using palladium on carbon in acetic 

acid was 90%.158 Clearly, the methyl group plays a role in reducing the 

reactivity of (363), and possibly does the same to (356). 
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Scheme 4.12: Debenzylations by Davies et al.158 Reagents and conditions: i) Pd/C, 
H2 (5 atm.), MeOH; ii) R=Me a) Pd(OH)2/C, H2 (5 atm.), EtOH; R=Et b) Pd/C, 
H2 (5 atm.), AcOH. 
 



 

 145

In a recent publication by Davies et al.,180 the preparation of cyclic β-amino 

acids required a large amount of Pearlman’s catalyst (50% w/w) to remove 

α-methyl benzyl groups from various cyclic β-amino esters (e.g. 367) to give the 

corresponding secondary amine (e.g. 368) (see Scheme 4.13 for an example). 

This level of catalyst loading was significantly higher than in their previous 

publications.  

 

 
 
Scheme 4.13: Recent debenzylation by Davies et al.180, 181 Reagents and conditions: 
i) H2 (5 atm.), Pd(OH)2/C (50% w/w), EtOAc, RT, 12 hr. 
 

Another method for removing benzyl groups was with the reagent ceric 

ammonium nitrate (CAN). CAN was usually used for removing para-

methoxybenzyl groups, but there was literature evidence of CAN cleaving 

unsubstituted benzyl groups from tertiary amines. Davies and co-workers184 

successfully used CAN in acetonitrile and water to monodebenzylate (369) to 

give (370) in 54 – 90% yield depending on the R-group, and to 

monodebenzylate (372) to give (373) (see Scheme 4.14).182 CAN was unable to 

debenzylate the secondary amines (e.g. 370) to give primary amines (371). 

 

Formic acid displays the opposite chemoselectivity and has been used to 

selectively cleave α-methylbenzyl groups. For example (374) was selectively 

debenzylated to give (375) (see Scheme 4.14).185 Our limited success with the 

formic acid debenzylation during the attempted synthesis of (−)-indolizidine 

209D dissuaded us from attempting it on (356). Other methods in the literature 

include using dissolving metal conditions such as lithium and ammonia in 

ethanol to successfully removed α-substituted benzyl groups.215 - 217 
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Scheme 4.14: Chemoselective debenzylation by Davies and co-workers.184, 185 
Reagents and conditions: i) CAN (2.1 eq.), MeCN-H2O (5:1), RT; ii) a) HCOOH, 50°C; 
b) SOCl2, MeOH. 
 

We confirmed what Davies and co-workers184 reported and selectively cleaved 

an unsubstituted benzyl group from the tertiary amines (351) by reacting it for 

twelve hours with CAN. After work-up and purification, monobenzylated (355) 

was isolated in 81% yield.  

 

The amine that we did successfully isolate was fully characterized and 

Table 4.3 compares the key 1H-NMR and 13C-NMR spectroscopic signals and 

the optical rotation values with those of (356) and (357). 
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Signal (356) / ppm (357) / ppm (291) / ppm 

N-H - 2.07 (s) 1.71 (s) 

H-2 2.36 (dd, J 14.1) 

2.10 (dd, J 14.1) 

2.60 (dd, J 15.4) 

2.43 (dd, J 15.4) 

2.41 (dd, J 15.6) 

2.29 (dd,  J 15.6) 

H-3 3.50 – 3.40 (m) 3.10 (m) 3.38 (m) 

H-4 1.14 (d, J 6.7) 1.12 (d, J 6.5) 1.13 (d, J 6.4) 

H-5 4.03 – 3.95 (q, J 7.0) 4.03 (q, J 6.7) - 

H-6 1.35 (d, J 7.0) 1.44 (d, J 6.7) - 

H-11 3.71 (d, J 14.7) 

3.69 (d, J 14.7) 

- - 

C-1 172.8  177.0 172.4 

C-2 40.2 40.7 44.3  

C-3 50.5 48.7 44.1 

C-4 14.5 21.3 23.6 

C-5 60.5 56.2 - 

C-6 18.3  24.3 - 

C-11 50.0  - - 

[α]D20 +7.6 (c 1.06, CH2Cl2) +23.0 (c 1.65, CH2Cl2) +37.0 (c 1.20, 

CH2Cl2) 

 
Table 4.3: Comparison of selected NMR spectral data (in CDCl3) for tertiary, secondary 
and primary amines (356), (357) and (291). (J-values were measured in Hz). 
 

Interestingly, the chemical shifts and coupling constants for H-2, H-3, and H-4 

were extremely similar in all three compounds; however, C-2, C-3, and C-4 

have fairly different chemical shifts. The chemical shifts for C-2 and C-4 

increased as the benzyl groups were removed and the chemical shift for C-3 

decreased as the nitrogen lost the inductive effect of the benzyl groups. The 

optical rotation values for (356), (357) and (291) were compared with the 
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available literature values. For ethyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino} 

butanoate (356) we measured [α]D20 +7.6 (c 1.06, CH2Cl2), which compared 

favourably with the literature value of [α]D25 +4.9 (c 1.0, CHCl3), and compared 

well with the values reported for analogous aminoesters, which range from 

[α]D30 +7.3 to [α]D20 +4.5 (refer to Table 3.1 in Chapter 3).218 For ethyl (3R)-3-

{[(1R)-1-phenylethyl]amino}butanoate (357) we measured [α]D20 +23.0 (c 1.65, 

CH2Cl2) which was slightly lower than the reported value, [α]D25 +31.1 (c 1.0, 

CHCl3),218 but compared favourably with the measured value for the analogous 

aminoester (323), [α]D20 +20.4 (c 0.91, CH2Cl2). For ethyl (3R)-aminobutanoate 

(291) we measured [α]D20 +37.0 (c 1.20, CH2Cl2), which did not compare well 

with either of values reported in the literature [α]D20-7.5 (1.00, CH3OH)219 and 

[α]D20-10.6 (1.00 CH3OH),220 nor did it compare well to the value we measured 

for analogous amine, t-butyl (3R)-3-aminononanoate (275), [α]D20 -13.4 (c 0.98, 

CH2Cl2). Unfortunately, owing to the volatile nature of the amine, we were 

unable to repeat the optical rotation measurement. 

 

Although there are some inconsistencies in the literature with regards to 

chemoselectivity, there are still many publications reporting successful 

debenzylation reactions using Davies methodology. Unfortunately, our system 

has ceased to work and a new approach will have to be examined in the future. 

 

4.3  Preparation of N,5-disubstituted pyrrolidin-2-ones 
 
Now that the two precursors, ketoester (292) and amine (291), had been 

synthesized, the next objective was to condense them to give the key pyrrolidin-

2-one (293). Relevant results will be described in this section.  

 
4.3.1 Condensation reactions 
The first condensation reaction we tried was the two step method to form (377) 
demonstrated by Penny Cheesman128, 221 (see Scheme 4.15). Starting with 

4-oxooctanoic acid (347), we converted it into the corresponding acid chloride 

by stirring with oxalyl chloride for two hours at ambient temperature. The acid 

chloride (376) was then reacted with racemic ethyl 3-aminobutanoate (291) and 

triethylamine in dichloromethane for fourteen hours. Following purification by 
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column chromatography, ethyl 3-[(4-oxooctanoyl)amino]butanoate (377) was 

isolated as a white solid in 51% yield over the two steps.  
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Scheme 4.15: Proposed synthesis of lactam (293) by Cheesman.128 Reagents and 
conditions: i) oxalyl chloride, RT, 2 hr.; ii) (291), Et3N, CH2Cl2; iii) TFA. 
 

Before trying the ring closure, the ethyl 3-[(4-oxooctanoyl)amino]butanoate 

(377) was placed in an NMR tube with catalytic trifluoroacetic acid, in order to 

investigate whether the open chain form (377) was in equilibrium with the 

cyclised form (378). 1H-NMR spectral data were collected at frequent intervals 

and after twenty-four hours tiny peaks started appearing in the spectra at 

5.00 ppm, 2.05 ppm and 1.45 ppm, indicating the presence of the cyclised 

structure (378). These peaks had an intensity of approximately 5% of the open-

chain form. After a week no further increase in the intensity of these 1H-NMR 

spectral signals was observed.  

 

In order to drive the equilibrium forward the ethyl 3-[(4-

oxooctanoyl)amino]butanoate (377) was heated at reflux in toluene with five 

equivalents of acetic acid for seventy-two hours while the reaction was 

monitored by TLC. After three days the reaction was stopped; 100% conversion 
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had occurred and the cyclised, dehydrated product, ethyl 3-[(2E)-2-butylidene-

5-oxopyrrolidinyl]butanoate (293), was isolated in quantitative yield, exclusively 

as the E-isomer. 

 

The first product, ethyl 3-[(4-oxooctanoyl)amino]butanoate (377) was fully 

characterized and the N-H signal appeared as a doublet at 6.18 ppm, coupling 

to adjacent H-3 (see Figure 4.9). H-3 appeared as a multiplet at 4.28 – 4.21 

ppm, and H-2, H-6, H-7 and H-9 showed up as multiplets in the region 2.68 – 

2.31 ppm. The ethyl and butyl chains were also evident. The 13C-NMR 

spectrum had one ketone and two ester/amide carbonyls at 209.1 ppm, 

170.6 ppm and 170.1 ppm, respectively, and four signals at 41.5 ppm, 

41.1 ppm, 39.2 ppm and 36.6 ppm in the appropriate region for methylene 

carbons adjacent to carbonyl groups. The FTIR spectrum showed a broad band 

at 3306 cm-1 corresponding to the NH stretching vibration, and three carbonyl 

groups at 1731 cm-1, 1707 cm-1 and 1640 cm-1 corresponding to the ester, 

ketone and amide, respectively. The 1H-NMR and 13C-NMR spectra were fully 

assigned with the aid of COSY and HSQC spectra. 

 

 
 
Figure 4.9: Numbering of amide (377) for assignment of spectroscopic data. 

 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) was characterized 

by 1H-NMR spectroscopy and showed distinct differences from the ring-open 

form (377). The key difference was the appearance of the alkene signal at 

4.77 ppm, corresponding to H-4 (see Figure 4.10). The signal corresponding to 

H-10 was a multiplet at 4.45-4.37 ppm and the adjacent diastereotopic protons 

H-11 appeared as two double doublets at 3.04 ppm and 2.81 ppm. The 
13C-NMR spectrum showed only two carbonyl signals at 175.7 ppm and 

171.4 ppm, indicating the absence of the ketone. An enamine was clearly 

present, with signals at 138.7 ppm and 101.0 ppm and C-6 and C-7 had shifted 

upfield to 29.2 ppm and 21.6 ppm. FTIR spectroscopy also showed the 
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presence of only two carbonyl groups; the ester and the amide at 1735 cm-1 

and 1669 cm-1, respectively. Finally, there was no longer an NH peak at 

3000 cm-1. 
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Figure 4.10: Numbering of lactam (293) for assignment of spectroscopic data. 

 
In order to ascertain whether the alkene was exocyclic or endocyclic, both a 

COSY and a NOESY experiment were performed. These experiments showed 

short range and long range coupling between hydrogen atoms. C-H correlation 

experiments were also performed to assist with assignment (see Figure 4.11). 

Highlighted with coloured arrows are two examples: In blue, C-4 correlates to 

H-4, and in red, C-11 was diastereotopic and correlated to two signals, H-11A 

and H-11B. 
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Figure 4.11: C-H correlation experiment (in CDCl3) for lactam (293). 

 

It was clear from the 13C-NMR spectrum that the product was a single 

geometric isomer, as no doubling up of signals was observed. The next 

experiment we performed was a selective NOE irradiation, in order to establish 

whether the geometry of the double bond was E or Z. When irradiating H-4 at 

4.77 ppm, H-9 and H-11 showed a positive response, while H-6 and H-7 

showed no response. This indicated that the product was exclusively the E 

isomer, as H-4 was on the same side of the double bond as H-9 and H-11. 

 

Although Penny Cheesman’s proposed route to ethyl 3-[(2E)-2-butylidene-5-

oxopyrrolidinyl]butanoate (293) was successful,128, 221 we wondered whether the 

product could not be accessed directly by heating ethyl 4-oxooctanoate (292) 

with ethyl 3-aminobutyrate (291) to reflux in toluene. Our initial attempt proved 

successful and after seventy-two hours of heating to reflux in toluene we 

isolated ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) in 52% 

yield.222 For this first attempt, the ethyl 3-aminobutyrate was the crude material 

from the debenzylation reaction. When the reaction was repeated with the 

commercially available ethyl 3-aminobutyrate the yield dropped to an 
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unsatisfactory 21%. This led us to the fortuitous discovery that the acetic acid 

contaminating the crude amine was catalyzing the reaction. 

 

The reaction was attempted with catalytic p-toluenesulfonic acid which gave the 

product in 50% yield. After several investigations, both in the microwave 

reactor, and with various proportions of the reagents, it was found that five 

equivalents of acetic acid, two equivalents of the ester, and one equivalent of 

the amine heated at reflux for a minimum of seventy-two hours gave the 

optimum yield of 87%. The reaction was set-up in with a Dean-Stark apparatus, 

which assisted in removing water from the reaction flask and helped to drive the 

reaction forward. Our suggested mechanism for the acid-catalysed reaction is 

shown in Scheme 4.16. 
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Scheme 4.16: Suggested mechanism for the formation of (293). Reagents and 
conditions: i) AcOH, toluene, reflux, 72 hr. 
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When the reaction was repeated using the enantiopure amine, ethyl (3R)-

aminobutanoate (291), the optically active product, ethyl (3R)-[(2E)-2-

butylidene-5-oxopyrrolidinyl]butanoate (293), was isolated in 46% yield with an 

optical rotation of [α]D20 -10.0 (c 1.20, CH2Cl2). All other characterization was 

identical to the racemate. 

 

In our system, the presence of exclusively the E-isomer opened up possibilities 

for the stereoselective reduction of the alkene using a chiral reducing agent. In 

many instances it is the mixture of geometric isomers that prevents the use of 

chiral reducing agents, as they are only selective if exclusively one geometric 

isomer is present. We did not pursue this option as chiral reducing agents were 

prohibitively expensive and we wanted to complete the synthesis of both 

diastereomers as both intermediates should lead to natural products. 

  

4.3.2 Attempted enzymatic resolution 

At this stage, the opportunity to explore enzymatic resolution emerged. The 

principle behind enzymatic resolution is that the enzyme selectively catalyzes 

the reaction with one enantiomer only, leaving the other enantiomer untouched. 

There was literature precedent223 - 225 that CAL B (Candida antarctica lipase B) 

selectively catalyses the acylation of ethyl (3R)-aminobutyrate and not the 

reaction with ethyl (3S)-aminobutyrate. This would allow us to access the 

(+)-isomer of monomorine I and its diastereomers, the opposite of our current 

route. This also offers a cost effective way to resolve a racemate into its 

individual isomers. Working with enzymes requires special attention to the 

reaction conditions, as high temperatures can denature the enzyme and the 

effective pH range was limited.223 Only certain solvents are compatible with the 

enzymatic reaction and often the reaction mixture was heterogeneous.223  

 

The biochemistry department of the CSIR (Council for Scientific and Industrial 

Research) offered us their expertise and the use of their laboratories and 

enzymes in order to attempt this reaction. The reaction itself was straight 

forward (see Scheme 4.17), CAL B and ethyl 3-aminobutyrate (291) were 

mixed in ethyl butanoate for twenty-five hours at ambient temperature. The 

enzyme was removed by filtration through a sintered glass funnel and the 
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residue was rinsed with ethyl acetate. Here we deviated from the literature 

procedure.224  

 

 
 
Scheme 4.17: Enzymatic resolution of racemic (291). Reagents and conditions: i) CAL 
B, ethyl butanoate, RT, 25 hr. ii) (292), AcOH, toluene, reflux, 72 hr. 
 
In order to avoid difficulties with the volatility of the amine and the complications 

associated with column chromatography, Gedey et al.224 reacted the crude 

mixture with acetic anhydride, thus converting any remaining amine (291) into 

the corresponding amide which was easier to purify. The reaction ee’s were 

calculated using the amide (379). Our synthesis was not compatible with this 

method of isolation, as the free amine was necessary for subsequent reactions 

(see Scheme 4.17).  

 

Instead, we chose to react the crude mixture of ethyl butanoate, ethyl 

(3S)-aminobutyrate (291) and ethyl (3R)-butyramidobutanoate (379) together 

with ethyl 4-oxooctanoate (292) in the condensation reaction (see Scheme 

4.17) and hence isolate the stable product (293). The various products were 

separated by column chromatography and (293) was isolated in 33% yield over 

the two steps. The optical rotation of (293) was measured as [α]D20 +1.0 (c 1.00, 

CH2Cl2). This was a rather disappointing value, because although the positive 

sign indicates an excess of the S-enantiomer, the magnitude was a mere 10% 

of the magnitude of the R-enantiomer which gives the reaction an enantiomeric 

excess of only 10% (see Figure 4.12).b HPLC on a chiral column was ideally 

required to calculate ee’s accurately, but optimizing the HPLC conditions did 

not seem warranted in view of the low optical activity. This poor result was 

attributed to the incomplete resolution of the racemate, owing to short reaction 
                                                 
b Enantiomeric excess was calculated based on the formula: ee = ([α]obs/[α]max)  x 100 
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times or inactive enzymes. Owing to lack of experience with this type of 

reaction, and as the S-enantiomer of the chiral amine, benzyl[(1S)-1-

phenylethyl]amine, was also commercially available we chose not to optimize 

the enzymatic resolution. 

 

 
 

Figure 4.12: The configuration for both enantiomers of lactam (293). 

 
4.3.3 Diastereoselective reduction and optimization   
The next step in the synthesis was the first real opportunity for 

diastereoselectivity. The reduction of the exocyclic double bond introduces the 

second stereogenic centre into the molecule; and theoretically, the first 

stereogenic centre should offer a platform for stereoselectivity, even with achiral 

reagents.  

 

For the first reduction we attempted, ethyl 3-[(2E)-2-butylidene-5-

oxopyrrolidinyl]butanoate (293) was reacted with catalytic palladium on carbon 

in absolute ethanol under seven atmospheres of hydrogen pressure.226 After 

purification, ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate (294) was isolated 

as an inseparable mixture of diastereomers in a ratio of 2:3 in quantitative yield 

(see Scheme 4.18). The minor isomer, (the ‘cis‘ isomer), has been designated 

isomer A  (294A) and the major isomer, (the ‘trans‘ isomer), has been 

designated isomer B (294B).c The isomer ratio was determined by the relative 

                                                 
c The  terms ‘cis’ and ‘trans’ refer to the relative stereochemistry of the methyl and the 
butyl chains in the bicyclic products (298), (299) and the target compounds (26 – 29). 
Although, technically they are meaningless in the monocyclic products (294), (295), 
(296) and (297), they have been used in this thesis to distinguish the two 
diastereomeric pathways.  
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integration in the 1H-NMR spectrum of the hydrogen atoms at the two 

stereogenic centres, H-5 and H-10 (see Figure 4.13). The identification of the 

two isomers will be described later. 

 

 
 
Scheme 4.18: Diastereoselective reduction of (293). Reagents and conditions: 
i) Various conditions (see Table 4.4). 
 

The limited stereoselectivity with the palladium catalyzed reduction was owing 

to the free rotation around the N-C bond, which prevents the methyl group from 

blocking either face of the lactam ring. 
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Figure 4.13: Numbering of lactam (294) for assignment of spectroscopic data. 

 

Initially, prompted by the expense of the palladium, we decided to try a 

reduction with triethylsilane and titanium tetrachloride in dichloromethane.215 

The general protocol for the reaction was as follows: Ethyl 3-[(2E)-2-butylidene-

5-oxopyrrolidinyl]butanoate (293) was dissolved in freshly distilled 

dichloromethane and cooled to −90ºC. Titanium tetrachloride was added and 

the reaction mixture was stirred for five minutes. Triethylsilane was then added 

by syringe and the reaction was allowed to warm to ambient temperature and 

react for forty-eight hours. The reaction was quenched with a saturated 
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ammonium chloride solution and the product was extracted into 

dichloromethane. Purification by column chromatography gave ethyl 3-(2-butyl-

5-oxo-1-pyrrolidinyl)butanoate (294) as an inseparable mixture of 

diastereomers in 84% yield. Surprisingly, the ratio of isomers was 1:4, again 

favouring isomer B (294B). This increase in stereocontrol indicated that the 

reagents used were having an effect on the stereoelectronics or the steric 

hindrance experienced by the hydrogen source.  

 

Our first hypothesis for the observed stereocontrol was that the oxophilic 

titanium tetrachloride must be coordinating to the lactam carbonyl and the ester 

carbonyl and limiting the free rotation of the N-C bond. By coordinating to the 

ester and the lactam, the free rotation of the side chain was blocked and the 

stereocontrol increased. In order to examine this hypothesis a series of different 

protic and Lewis acids was employed to catalyze the reaction under identical 

conditions. Trifluoroacetic acid, aluminium trichloride, boron trifluoride etherate, 

tin tetrachloride and zirconium tetrachloride were all tested. All of them showed 

lower selectivity than the titanium tetrachloride (see Table 4.4), but all of them 

favoured isomer B (294B).  

 

Catalyst H-Source Ratio (A:B) Yield 

Pd-C 10% a H2 2:3 100% 

TFA b Et3SiH 2:3 94% 

AlCl3 b Et3SiH 3:4 100% 

BF3.Et2O b Et3SiH 4:5 90% 

SnCl4 b Et3SiH 2:3 80% 

TiCl4 b Et3SiH 1:4 84% 

ZrCl4 b Et3SiH 3:4 79% 

TiCl4 c Ph3SiH 1:5 85% 

Ti(OPri)4
 b Et3SiH - 0% 

La(F3CSO3)3
 b Et3SiH - 0% 

 
Table 4.4: Attempted diastereoselective reductions of (293). a) 50% (w/w) Pd-C 10%, 
H2 (7 atm.), EtOH, RT, 72 hr.; b) Lewis acid, Et3SiH, CH2Cl2, -90°C, 2 hr., increased to 
RT, 72 hr.; c) Lewis acid, Ph3SiH, CH2Cl2, -90°C, 2 hr. increased to RT, 72 hr. 
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Our second hypothesis was that the titanium tetrachloride was more effective 

than the other Lewis acids as it has a higher affinity for oxygen. Lanthanum has 

a higher affinity for oxygen than titanium, so we attempted the reaction using 

lanthanum trifluoromethanesulfonate. Interestingly, none of the desired product 

was isolated, but 85% yield of the open chain amide, ethyl 3-[(4-

oxooctanoyl)amino]butanoate (377) was isolated. 

 

Still presuming stereocontrol based on steric hindrance, we attempted two 

further reactions, one using titanium isopropoxide as a bulky Lewis acid, and 

the other using triphenylsilane as a bulky hydrogen source in place of 

triethylsilane. The titanium isopropoxide failed to catalyze the reaction and 

starting material was recovered. The triphenylsilane, however, improved the 

stereoselectivity to a ratio of 1:5.  

 

Pleased with the level of stereocontrol we had achieved in the absence of 

expensive chiral reagents, we ceased exploring physical reactions and turned 

our attention to explaining the observed results. The increased stereoselectivity 

observed with the bulky hydrogen source indicates steric hindrance as a major 

contributor. However, later in the synthesis (see Section 4.4.5) we were able to 

separate and characterize more advanced intermediates, convert them back 

into the lactams (294A) and (294B), and thus retrospectively assign the relative 

configuration of these lactams. The favoured diastereomer (294B) was 

confirmed as the trans isomer (R,R or S,S). This means that the hydrogen was 

added from the same face that the methyl group was “blocking”. 

  

A search of the Cambridge Structural Database (CSD Version 5.30, May 

2009)227 for all compounds containing titanium coordinated to two carbonyl 

oxygen atoms, and at least two chlorine atoms resulted in forty hits, with the 

coordination geometry around the titanium atom being octahedral in all cases. It 

seemed reasonable to assume a similar coordination with our molecule. 

Several attempts were made to model a potential transition state using 

Hyperchem228 that could explain the observed stereocontrol. Upon closer 

examination of a local energy minimum conformation it became apparent that 

with the titanium coordinating to both the ester and the amide it forms an eight-
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membered ring. This eight-membered ring puckers, pushing the methyl group 

out of the plane. The molecular dynamic / simulated annealing experiments 

were only performed on the R-enantiomer, as the S-enantiomer would mirror 

the result and hence favour the same selectivity. 

 

After repeating the molecular dynamic / simulated annealing ten times, two 

energy conformers were identified for the R-enantiomer (293). The first 

conformer was slightly lower in energy than the second conformer 

(2.4 kcal/mol) and of the ten simulated annealing experiments, eight of them 

produced the first conformer and two of them produced the second conformer. 

In the first conformer, the methyl group was forced down, opening up the top 

face for attack by the hydrogen (see Figure 4.14). When the hydrogen added 

the butyl group was pushed down and the new stereogenic centre formed with 

an R configuration.  

 

  
 
Figure 4.14: Two views of R-enantiomer (293) first low energy conformer coordinated 
to titanium tetrachloride, methyl group pointing down: addition from top face. 
 

In the second case, the low energy conformer produced by Hyperchem228 failed 

to provide us with a satisfactory steric-hindrance model. In the second low 

energy conformer for the R-enantiomer (293), the methyl group was forced up, 

pointing away from the alkene entirely (see Figure 4.15). In the conformer 

shown below neither face is particularly hindered and therefore the hydrogen 

could add from the top or the bottom to form either diastereomer. As yet the 

stereoelectronic effect of the coordinated Lewis acid has not been examined.  
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Figure 4.15: Two views of R-enantiomer (293) second low energy conformer 
coordinated to titanium tetrachloride, methyl group pointing up: addition from either 
face. 
 

Initially, the diasteromers were fully characterized as a mixture, however, later 

in the synthesis (see Section 4.4.5) we were able to separate and characterize 

more advanced intermediates, convert them back into the lactams (294A) and 

(294B), and thus a pure sample of each isomer was obtained and fully 

characterized.  The reduction of the alkene was indicated by the absence of the 
1H-NMR spectroscopic signal at 5.00 ppm. H-10 and H-5 were shifted downfield 

due to the nitrogen, and appeared as multiplets (refer to Figure 4.13). For the 

cis isomer they appeared at 3.97 – 3.94 ppm and 3.68 – 3.63 ppm, 

respectively, and for the trans isomer they appeared at 4.20 – 4.10 ppm and 

3.61 – 3.55 ppm, respectively. H-11, H-6 and H-7 all displayed diastereotopic 

splitting for the cis isomer, however, for the trans isomer H-11 appeared as a 

doublet, while H-6 and H-7 exhibited diastereotopic splitting. The 13C-NMR 

spectrum had no alkene signals, but did have an additional signal present at 

60.0 ppm for the cis isomer and 58.1 ppm for the trans isomer, corresponding 

to C-5. C-10 appeared at 46.8 ppm and 46.1 ppm for the cis and trans isomers 

respectively. FTIR spectroscopy showed two carbonyl signals, one at 1731 cm-1 

and one at 1679 cm-1, corresponding to the ester and amide, respectively.  

 

COSY (see Figure 4.16) and HSQC experiments were conducted to allow 

definitive assignment of all the signals. Figure 4.14 shows two short range 

interactions for (294A): The first interaction is shown in blue, H-13 couples to 

H-14, the second interaction is shown in red, H-10 couples to H-9, and the 

diastereotopic H-11B and H-11A.  
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Figure 4.16: COSY experiment (in CDCl3) for lactam (294A). 

 

We were able to repeat the reduction with the enantiopure ethyl (3R)-[(2E)-2-

butylidene-5-oxopyrrolidinyl]butanoate (293) and chose to use the palladium 

catalysed reduction, as it provided quantitative yield and both of the 

diastereomers, and hence could be used for the total synthesis of both 

monomorine I and its diastereomer. No optical rotation was recorded for the 

product as it was an inseparable mixture of diastereomers. All other 

characterization was identical to the racemate.  

 
4.4  Preparation and cyclisation of the vinylogous sulfonamide  
 

Now that we had successfully prepared the lactam (294), our synthetic strategy 

converged with the pathway used in the attempted synthesis of (−)-indolizidine 

209D. The next task was to prepare the vinylogous sulfonamide and form the 

bicyclic structure of the indolizidine. 
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4.4.1 Thionation reaction and separation of diastereomers 
The thionation reaction followed standard literature conditions229 using 

Lawesson’s reagent. Although commercial Lawesson’s reagent was more 

expensive than the phosphorus pentasulfide, it could conveniently be prepared 

from phosphorus pentasulfide and anisole. This reaction, while odoriferous, was 

relatively easy to execute and an ample supply of Lawesson’s reagent was 

available. A diastereomeric mixture of ethyl 3-(2-butyl-5-oxo-1-

pyrrolidinyl)butanoate (294) and Lawesson’s reagent were stirred in dry 

dichloromethane at ambient temperature under a nitrogen atmosphere for 

ninety-six hours (see Scheme 4.19). The solvent was removed in vacuo and the 

organic residue was purified by column chromatography to give ethyl 3-(2-butyl-

5-thioxo-1-pyrrolidinyl)butanoate (295) in 98% yield as a mixture of 

diastereomers with an identical ratio to the starting material (i.e. 2:3 favouring 

(295B) using the diastereomeric mixture obtained from the palladium 

reduction).  

 

Bu N S

OEtO[295A]

Bu N O

OEtO[294]

Bu N S

OEtO[295B]

+i
98%

 
 
Scheme 4.19: Thionation of lactam (294) to form separable thiolactam diastereomers. 
Reagent and conditions: i) Lawesson’s reagent, CH2Cl2, RT, 72 hr. 
 

The Rf values on silica gel TLC plates for isomer A and isomer B showed a 

maximum difference in a 10% ethyl acetate-hexane solution: Isomer A ran with 

an Rf of 0.25 and isomer B ran with an Rf of 0.22. While at least 80% of the 

collected fractions contained both isomers, repeated and exhaustive column 

chromatography allowed partial separation of the diastereomers. Sufficient 

racemic material was available to separate enough material to continue the 

synthesis separately with each racemic diastereomer. Without more precious 

enantiomerically pure intermediate (295), there was, unfortunately, insufficient 

material to allow for exhaustive chromatography, and the enantiopure 

diastereomers were used as a mixture for all subsequent steps. 
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 The racemic isomers were characterized separately. The most significant 

spectroscopic changes from the lactam (294) to the thiolactam (295) were the 

chemical shifts of H-5 and H-10, and the C-8 shift from the carbonyl region at 

174 ppm to the thiocarbonyl region of 200 ppm (see Figure 4.17). The individual 

isomers differed significantly in the chemical shift of H-5 and H-10. For the cis 

isomer H-5 appeared as a multiplet at 4.11-4.02 ppm and H-10 at 4.80 – 

4.72 ppm, while the trans isomer H-5 possessed a broader multiplet 4.11 – 3.95 

ppm and H-10 was further downfield at 5.30 – 5.10 ppm.  
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Figure 4.17: Numbering of thiolactam (295) for assignment of spectroscopic data. 

 

Table 4.5 shows a list of the significant 1H-NMR and 13C-NMR spectroscopic 

signals in each isomer and the corresponding signals in (278), the thiolactam 

isolated during the attempted synthesis of (−)-indolizidine 209D. With the 

exception of H-5, the observed signals for (278) were almost identical to those 

observed for (295A) and (295B).  
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Signal  (295A) / ppm  (295B) / ppm (278) / ppm 

H-4 1.90 – 1.60 (m) 1.85 – 1.68 (m) - 

H-5 4.11 – 4.02 (m) 4.11 – 3.95 (m) 3.71 (dt, J 10.7, 7.5) 

3.56 (dt, J 10.7, 7.5) 

H-6 2.25 – 2.04 (m) 

1.90 – 1.60 (m) 

2.20 – 2.04 (m) 

1.58 – 1.46 (m) 

2.03 (quintet, J 7.5) 

H-7 3.10 – 2.85 (m) 3.10 – 2.85 (m) 3.00 (t, J 7.5) 

H-9 1.52 (d, J 7.1) 1.41 (d, J 7.0) 1.64 – 1.55 (m) 

H-10 4.80 – 4.72 (m) 5.30 – 5.10 (m)   5.36 (quintet, J 7.5) 

H-11 3.53 (dd, J 6.3, 16.2) 

2.48 (dd, J 8.0, 16.2) 

2.79 (dq, J 7.5, 15.5) 2.55 (dd, J 14.4, 6.0) 

2.43 (dd, J 14.4, 9.0) 

C-4 33.7  34.2  - 

C-5 67.7  65.5  49.0 

C-6 26.1  26.4  20.0 

C-7 45.1  44.4  45.1 

C-8 200.9  201.9 201.7 

C-9 17.5  18.9  32.2 

C-10 51.3 51.0  53.3 

C-11 38.3  38.8  38.8 

C-12 171.6  170.9  169.5 

 
Table 4.5: Comparison of selected NMR spectral data (in CDCl3) for thiolactam (295A), 
(295B), (278). (J-values were measured in Hz). 
 

For the three 13C-NMR spectra, the signals for C-7, C-8, C-10, C-11, and C-12 

were virtually identical, while those for C-5, C-6, and C-9 differed significantly. 

The chemical shifts for C-5 were 67.7 ppm, 65.5 ppm and 49.0 ppm, for (295A), 

(295B) and (278), respectively. This highlights the deshielding effect of the butyl 

chain on C-5, and although these compounds were very similar, it clearly 



 

 166

indicated a difference in electronic structure between these three compounds 

which could have resulted in different degrees of reactivity in subsequent 

reactions. The same effect was seen for C-6, which has chemical shifts of 

26.1 ppm, 26.4 ppm and 20.0 ppm for (295A), (295B) and (278), respectively. 

Interestingly, the effects of the methyl group versus the hexyl chain on the 

chemical shift of C-10 were almost identical.  C-10 occurs at 51.3 ppm, 

51.0 ppm and 53.3 ppm for (295A), (295B) and (278), respectively, with only a 

slight increase in the deshielding effect for the hexyl chain.   

 

In the literature the examples of lactam thionations were in the absence of an 

exocyclic alkene. Although our lactam (293) contained an exocyclic alkene, we 

wondered whether our reaction sequence was flexible and decided to attempt 

the thionation reaction on (293) directly, as (380) would offer different levels of 

stereocontrol for the reduction of the double bond to form (294) (see Scheme 

4.20).  

 

C3H7

N O

OEtO
[293]

C3H7

N S

OEtO
[380]  

 
Scheme 4.20: Proposed thionation of (293). Reagent and conditions: i) Lawesson’s 
reagent, CH2Cl2, RT, 72 hr. 
 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) was dissolved in 

distilled dichloromethane at ambient temperature under a nitrogen atmosphere. 

Lawesson’s reagent was added, and the reaction was left stirring at ambient 

temperature for ninety-six hours. The solvent was removed in vacuo and the 

crude residue was purified by column chromatography. None of the desired 

thiolactam (380) was isolated. However, two other interesting products were 

isolated, ethyl 3-(2-butyl-1H-pyrrol-1-yl)butanoate (381) in 25% yield, and ethyl 

3-(2-butyl-5-sulfanyl-1H-pyrrol-1-yl)butanoate (382) in 19% yield. 
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Scheme 4.21: Thionation of (293) produced two unexpected pyrroles (381) and (382). 
Reagent and conditions: i) Lawesson’s reagent, CH2Cl2, RT, 72 hr. 
 

The thiolactam (380) must have formed and the exocyclic alkene 

spontaneously rearranged, favouring the stabilization of the aromatic pyrrole 

system in (382). The desulfurisation of (382) to form (381) was less easy to 

explain. Although this particular reaction had no further application in our 

synthesis, it does offer a novel way of preparing substituted pyrroles and would 

be an interesting reaction to investigate further in the future.  

 

Both products were characterized and showed the pyrrole signals in the 
1H-NMR spectrum at 6.62 ppm, 6.10 ppm, and 5.84 ppm for (381) and at 

6.28 ppm and 5.73 ppm for (382). The 13C-NMR spectral signals for the pyrrole 

ring were at 133.0 ppm, 115.2 ppm, 107.5 ppm, and 105.0 ppm for (381) and at 

134.4 ppm, 131.9 ppm, 111.4 ppm, and 104.1 ppm for (382). 

 
4.4.2 Condensation of thiolactam with β-ketosulfone 
In order to form the vinylogous sulfonamide, we needed to perform a modified 

Knoevenagel reaction between the thiolactam (295) and 1-[(4-

methylphenyl)sulfonyl]acetone (279). The preparation of 1-[(4-

methylphenyl)sulfonyl]acetone (279) is described in section 3.7 in Chapter 3.190  

 

We prepared the vinylogous sulfonamide (296) by reacting the thiolactam (295) 

with excess methyl iodide in tetrahydrofuran under an inert atmosphere.173 After 

twenty-four hours the starting material was no longer visible by TLC and the 

α-thioiminium salt (383) could be seen on the baseline. In this instance, the 

α-thioiminium salt did not precipitate from solution, but remained as a thick 

yellow oil. After the solvent and excess methyl iodide was removed in vacuo, a 

premixed solution of triethylamine and 1-[(4-methylphenyl)sulfonyl]acetone 
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(279) in dichloromethane were added to the α-thioiminium salt (383). The new 

reaction mixture was stirred for ninety-six hours at ambient temperature and 

was monitored by TLC. When the reaction had gone to completion, it was 

quenched with distilled water. The organic products were extracted into 

dichloromethane and purified by column chromatography. In our first attempt, 

none of the desired product was obtained, only the hydrolysis product of the 

α-thioiminium salt, ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate (294) was 

isolated in 81% yield (see Scheme 4.23). This indicated that the conditions 

used were not completely water-free.  

 

The reaction was repeated under strictly anhydrous conditions and two 

products were isolated, ethyl 3-((E)-2-butyl-5-(2-oxo-1-

tosylpropylidene)pyrrolidin-1-yl)butanoate  (384) in 45% yield, and the desired 

product, ethyl 3-((5E)-2-butyl-5-{[4-methylphenyl)sulfonyl]methylene} 

pyrrolidinyl)butanoate (296), in 25% yield (see Scheme 4.23). This mixture of 

acylated (296) and deacylated (295) vinylogous sulfonamides was expected, as 

a similar result was obtained during the attempted total synthesis of (−)-

indolizidine 209D (see Section 3.7). Two further variations of this synthesis 

were attempted; they followed the same general protocol, but employed a 

different solvent and/or base for the second part of the reaction (see Table 4.6). 

The method with the highest combined yield used triethylamine and 

dichloromethane and hence this was the method used for the individual 

diastereomers (see Table 4.6).  
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Bu N S

OEtO
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i ii
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[296B] -trans[384B] -trans

[294B] -trans[295B] -trans

+

 
 
Scheme 4.23: The formation of the α-thioiminium salt (383) and the two possible 
pathways, hydrolysis back to (294) or reaction with (279) to form (384). Reagents and 
conditions: i) MeI, THF, 48 hr.; ii) H2O; iii) (279), Et3N, CH2Cl2, RT, 96 hr.; iv) TFA, 
reflux, 30 min. 
 

Base/Solvent Isomer (296)  (384)  

Et3N/ CH2Cl2 A and B 25% 45% 

Et3N/ CH2Cl2 A 37% 37% 

Et3N/ CH2Cl2 B 23% 30% 

K2CO3/ DMF A and B 39% 0% 

DBU/ CH2Cl2 A and B 49% 0% 

 
Table 4.6: Comparison of yields for vinylogous sulfonamides (296) and (384) under 
reaction conditions at ambient temperature. 
 

Both the acylated diastereomers (384A) and (384B), and the deacylated 

diastereomers (296A) and (296B) were fully characterised. The key 1H-NMR 

and 13C-NMR spectroscopic signals for both isomers and both products are 

summarized in Table 4.7.  
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Signal (296A) cis (296B) trans (384A) cis (384B) trans 
H-4 1.95 – 1.82 (m) 2.00 – 1.79 (m) 1.80 – 1.63 (m)  

1.40 – 1.23 (m) 

1.79 – 1.63 (m) 

1.50 – 1.20 (m) 

H-5 3.73 – 3.68 (m) 3.68 – 3.62 (m) 4.25 – 4.10 (m) 4.22 – 4.15 (m) 

H-6 1.70 – 1.62 (m) 

1.62 – 1.51 (m) 

1.72 – 1.65 (m) 

1.59 – 1.51 (m) 

3.41 (dd) 

2.55 – 2.42 (m) 

2.78 (d) 

2.28 – 2.10 (m) 

H-7 2.92 – 2.80 (m) 

2.45 – 2.31 (m) 

2.68 – 2.52 (m) 3.76 (m)  

2.74 (dt) 
3.96 – 3.86 (m) 

2.73 – 2.55 (m) 

H-9 1.32 (d, J 6.9) 1.32 (d, J 6.9) 1.39 (d, J 7.2) 1.54 (d, J 6.7) 

H-10 3.98 – 3.91 (m) 4.05 – 3.90 (m) 4.03 (m) 4.38 – 4.31 (m) 

H-11 3.11 – 3.01 (m)  

2.92 – 2.80 (m) 

3.12 – 3.02 (m) 

2.88 – 2.75 (m) 

2.10 – 1.95 (m) 

1.80 – 1.63 (m) 

2.10 – 1.95 (m) 

1.79 – 1.63 (m) 

H-15 4.99 (s) 4.98 (s) - - 

H-22 - - 2.34 (s) 2.30 (s) 

C-5 62.5  61.4 55.7  60.3  

C-6 25.7  26.2 38.0  40.7 

C-7 38.2  38.6 35.0  38.6 

C-8 159.7 160.4  170.4 169.5  

C-9 17.5  18.0  27.5  18.5  

C-10 48.3  48.3  62.8  56.6 

C-11 33.8  34.1 25.4  24.7  

C-12 170.7  170.3 174.4  174.5 

C-15 87.4  87.4 104.4  104.9 

C-21 - - 189.9 189.3 

C-22 - - 22.3 21.2  

 
Table 4.7: Comparison of selected NMR spectral data (in CDCl3) for vinylogous 
sulfonamides. (Chemical shifts are reported in ppm. J-values were measured in Hz). 
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When comparing the two products (296) and (384), the most notable difference 

in the 1H-NMR spectra was the presence of the enamine signal (H-15) at 

4.99 ppm in (296), and the presence of the methyl signal (H-22) at 2.34 ppm in 

(384). The 13C-NMR spectra also differ significantly; C-21 and C-22 occurred at 

189.9 ppm and 22.3 ppm in the acylated product (384) and were absent in the 

deacylated product (296). The alkene signals C-8 and C-15 occurred at 

159.7 ppm and 87.4 ppm in the deacylated product (296), and at 170.4 and 

107.4 ppm in the acylated product (384), illustrating the electron withdrawing 

effect of the conjugation to the acyl group. H-5, H-6 and H-7 were also affected 

by the delocalization of charge in the acylated product (384) and were 

significantly deshielded compared to the deacylated molecule (296). H-11 was 

more deshielded in the deacylated product (296) than the acylated product 

(384). A similar trend was observed  in the 13C-NMR spectra, C-6 and C-10 

were more deshielded in the acylated product (384), while C-11 was more 

deshielded in the deacylated product (296). 

 

When comparing the diastereomers, the spectroscopic signals of greatest 

interest were the signals near the stereogenic centres, viz. C-5, C-6, C-9, and 

C-10. In the deacylated product (296), the spectra for each isomer were 

virtually indistinguishable. In the acylated product (384), the isomers were 

significantly different. For (384A), C-5, C-6, and C-7 occur at 55.7 ppm, 

38.0 ppm, and 35.0 ppm, whereas for (384B), the corresponding signals occur 

at 60.3 ppm, 40.7 ppm and 38.6 ppm, consistently 3 - 4 ppm further downfield. 

C-9 and C-10 show the reverse trend; in (384A) they occur at 27.5 ppm and 

62.8 ppm, respectively, whereas in (384B) they occur at 18.5 ppm and 

56.6 ppm, 6 - 9 ppm further upfield. 

 

The FTIR spectrum for the deacylated product (296) showed a single carbonyl 

group at 1731 cm-1 corresponding to the ester, whereas the acylated product 

(384) showed two carbonyl groups at 1731 cm-1 and 1680 cm-1, confirming the 

presence of the ketone group in addition to the ester functionality. 
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4.4.3 Deacetylation reactions154 

In order to maximize the overall yield, the acylated product (384) had to be 

deacetylated and cycled back into the synthesis as (296). We attempted two 

methods for deacetylating (384). The first method involved heating (384) to 

reflux in acetic acid and toluene, and the second method employed heating 

(384) to reflux in neat trifluoroacetic acid. Both methods were successful (see 

Table 4.8). Interestingly, in both methods, the ester did not hydrolyse but 

remained unaffected by the acidic conditions. This was an unexpected but 

extremely useful result, as it meant the product (296) could be cycled straight 

back into the main synthesis without any additional transformations (e.g. 

reducing the carboxylic acid to the corresponding alcohol or esterifying the 

carboxylic acid). 

 

Of the two sets of conditions employed, heating (384) to reflux in neat 

trifluoroacetic acid for thirty minutes proved to be more effective than heating to 

reflux in acetic acid and toluene for fourteen hours. The 1H-NMR spectrum of 

the additional material isolated by column chromatography from these reactions 

indicated that the prolonged heating to reflux led to decomposition of the 

vinylogous sulfonamide, as there were no longer aromatic peaks present in the 

spectra. The by-products were never fully identified. These two procedures 

were modified from the work of Ban and co-workers,154 please refer to the 

literature for the proposed mechanism of the acid-catalysed deacetylation. 

 

Conditions Isomer Yield of (296)  

AcOH, toluene, reflux 14 hr. A and B 45% 

TFA, reflux, 30 min. A 67% 

TFA, reflux, 30 min. B 54% 

 
Table 4.8: Deacetylation of (384), conditions and yields. 

 

4.4.4 Reduction of the ester 
Textbook conditions1, 173 were used to convert the ethyl ester into the 

corresponding alcohol. Ethyl 3-((5E)-2-butyl-5-{[(4-methylphenyl)sulfonyl] 

methylene}pyrrolidinyl) butanoate (296) was dissolved in tetrahydrofuran under 
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a nitrogen atmosphere. Lithium aluminium hydride was then added and the 

reaction mixture was left to stir at ambient temperature for twelve hours (see 

Scheme 4.25). Distilled water was added to quench the reaction and the 

solution was filtered through Celite® to remove residual lithium salts. Purification 

by column chromatography produced the desired product, 3-((5E)-2-butyl-5-

{[(4-methylphenyl)sulfonyl] methylene}pyrrolidinyl)-1-butanol (297), in 92% yield 

as a clear oil. When the reaction was repeated with single diastereomers, the 

yields decreased slightly to 87% and 78% for (297A) and (297B), respectively. 

 

 
 
Scheme 4.25: Reduction of the ethyl ester (296) to the corresponding alcohol (297). 
Reagents and conditions: i) LiAlH4, THF, RT, 15 hr. 
 

Both diastereomers of the alcohol (297) were fully characterized. Significantly, 

the 1H-NMR spectral signals at 4.09 ppm and 1.15 ppm, and the 13C-NMR 

spectral signals at 60.7 ppm and 14.0 ppm corresponding to the ethyl ester 

were absent from the spectra. The ester carbonyl group was absent from the 

FTIR spectrum, and a characteristic OH stretching vibration was observed in 

the region of 3481 cm-1.  

 

Table 4.9 shows the key signals for isomer (297A) (R,S and S,R) and isomer 

(297B) (R,R and S,S). The 1H-NMR spectra were virtually the same, with slight 

shifts observed in some of the signals. Notably, the signal for H-13 was 

observed at 5.07 ppm for the cis isomer (297A) and at 4.95 ppm for the trans 

isomer (297B). The 13C-NMR spectra showed slight variation in the chemical 

shifts of C-5, C-8, C-9, C-10, and C-11. This was expected as these were the 

carbon atoms at the stereogenic centres or adjacent to them.  
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Signal (297A) / ppm (297B) / ppm 

H-4 2.02 – 1.53 (m) 1.96 – 1.53 (m) 

H-5 3.74 – 3.60 (m) 3.72 – 3.58 (m) 

H-6 2.02 – 1.53 (m) 1.96 – 1.53 (m) 

H-7 3.04 (ddd) 

2.82 (dt) 

3.15 – 3.03 (m) 

2.81 – 2.69 (m) 

H-9 1.31 – 1.16 (m) 1.35 – 1.08 (m) 

H-10 3.74 – 3.60 (m) 3.72 – 3.58 (m) 

H-11 2.02 – 1.53 (m) 1.96 – 1.53 (m) 

H-12 3.74 – 3.60 (m) 3.72 – 3.58 (m) 

H-13 5.07(s) 4.95 (s) 

C-4 27.7 27.7 

C-5 60.3 61.3 

C-6 29.9 29.7 

C-7 33.9 34.0 

C-8 160.4 160.9 

C-9 17.2 18.1 

C-10 48.5 48.1 

C-11 36.6 36.1 

C-12 59.2 59.4 

C-13 86.1 86.2 
 
Table 4.9: Comparison of selected NMR spectral data (in CDCl3) for diastereomers of 
alcohol (297).  
 
4.4.5 Cyclisation reaction139, 230 
The next step was the key step, the ring closure to form the bicyclic skeleton. 

As illustrated in the attempted total synthesis of (−)-indolizidine 209D, this 

reaction makes use of the vinylogous sulfonamide’s nucleophilicity to facilitate 
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intramolecular ring closure. The initial investigations into this reaction were 

performed on the diastereomeric mixture of the alcohol (297). The alcohol (297) 

was heated at reflux in toluene together with triphenylphosphine, iodine, and 

imidazole. Once the intermediate iodide had formed, the vinylogous 

sulfonamide spontaneously facilitated cyclisation (see Scheme 4.26).   

 

 
 
Scheme 4.26: Formation of the bicyclic skeleton facilitated by the vinylogous 
sulfonamide. Reagent and conditions: i) PPh3, imidazole, I2, toluene, reflux, 3 hr. 
 

The first attempt at this reaction yielded starting material, but the subsequent 

attempt, using completely dry and inert conditions, yielded the diastereomeric 

mixture of the bicyclic product, 3-butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]-

1,2,3,5,6,7-hexahydroindolizine (298), in 85% yield as a sticky, pale-pink oil. 

These conditions were repeated using single diastereomers and for the cis 

isomer (R,S and S,R)  a yield of 78% was obtained whereas the trans isomer 

(R,R and S,S) yielded a less satisfactory 67%. The ring closure for the trans 

isomer (R,R and S,S)  was repeated and the yield did not improve. The reason 

for the lower yield may be owing to steric interference of the butyl group. 

 

Following slow evaporation from ethyl acetate and hexane, several tiny pink 

crystals of each of the diastereomers were isolated. These crystals were 

successfully characterized by X-ray diffraction and the crystal structure of each 

diastereomer was obtained.  This was an extremely exciting result, as it finally 

allowed for conclusive assignment of the relative stereochemistry of the two 

diastereomers. Diastereomer A, the minor diastereomer, showed a cis 

arrangement (R,S and S,R) of the butyl and methyl groups (see Figure 4.18), 

whereas isomer B, the major diastereomer, showed a trans arrangement (R,R 

and S,S) (see Figure 4.19). 
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Figure 4.18: The molecular structure of the cis isomer (R,S and S,R) of vinylogous 
sulfonamide (298A). Displacement ellipsoids are drawn at the 50% probability level.   
 
 

N
S

O

O

[298B]  
 
Figure 4.19: The molecular structure of the trans isomer (R,R and S,S) of vinylogous 
sulfonamide (298B). Displacement ellipsoids are drawn at the 50% probability level.   
 

In addition to X-ray diffraction, both isomers were fully characterized. Loss of 

the hydroxy-group was evident from the FTIR spectrum, which lacked the O-H 

stretching vibration, as well as from HRMS, which produced parent ions of 

347.1917 and 347.1921 for the cis isomer (298A) and trans isomer (298B), 

respectively. Both of these values agree well with the calculated value of 

347.1919. 1H-NMR spectroscopy showed the disappearance of the H-8 signal 

at 5 ppm, and both  the 1H-NMR and 13C-NMR spectra showed significant 

changes in their chemical shifts for the signals corresponding to H-7, H-6, H-5, 

and C-8, C-7, C-6, and C-5, respectively.  

 

Table 4.10 lists the key 1H-NMR and 13C-NMR spectroscopy signals for both 

isomers (298A) and (298B), and compares them with the bicyclic vinylogous 
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sulfonamide (282) formed during the attempted total synthesis of 

(−)-indolizidine 209D. As expected, the signals which displayed the greatest 

variation were the ones corresponding to C-3 and C-5, the substitution points. 

For the cis isomer (298A) they occur at 48.0 ppm and 64.6 ppm, respectively. 

For the trans isomer (298B) they occur at 45.5 ppm and 60.1 ppm, respectively, 

and for the monosubstituted (282) they occur at 51.2 ppm and 53.9 ppm, 

respectively. The n-butyl chain donated electron density, shifting the C-3 signal 

for (298A) and (298B) upfield relative to (282), whereas the effect of the hexyl 

group of (282) shifts C-5 further upfield relative to C-5 for (298A) and (298B), 

which have a methyl group attached to C-5. C-8 and C-8a were virtually 

identical for all three compounds. Notably, the signal corresponding to C-1 

occurred at 32.1 ppm in (282), but at 18.5 ppm and 17.1 ppm in (298A) and 

(298B).  For the 1H-NMR spectra, most of the signals were overlapping 

multiplets in the region of 3.50 – 1.00 ppm. Diastereotopic splitting was clearly 

observed in (298A) for H-1, H-2, H-6 and H-7, whereas in (298B) only H-2 and 

H-10 showed clear diastereotopic splitting. Compound (282) did not show clear 

diastereotopic splitting, however, it may have been obscured by the overlapping 

of signals.  

 

The bicyclic vinylogous sulfonamide isomers (298A) and (298B), had 

significantly different melting points; the cis isomer (298A) had a melting point 

of 122 – 123°C while the trans isomer (298B) had a melting point of 99 – 101°C 
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Signal (298A) / ppm (298B) / ppm (282) / ppm 

H-1 2.47 – 2.40 (m) 

2.30 – 2.19 (m) 

2.36 – 2.29 (m) 3.13 (t, J 7.2) 

H-2 2.11 – 2.00 (m) 

1.68 – 1.50 (m) 

2.04 – 1.96 (m) 

1.72 – 1.53 (m) 

1.91(quin., J 7.2) 

H-3 3.50 – 3.42 (m) 3.50 – 3.45 (m) 3.19 (t, J 7.1) 

H-5 3.43 – 3.34 (m) 3.50 – 3.45 (m) 3.49 (quin., J 6.9) 

H-6 1.85 – 1.75 (m) 

1.47 – 1.18 (m) 

1.72 – 1.53 (m) 1.80 – 1.51 (m) 

H-7 3.27 – 3.17 (m) 

2.93 (dt, 17.4, 8.1) 

3.11 – 3.01 (m) 1.80 – 1.51 (m) 

H-9 1.06 (d, J 6.6) 1.05 (d, J 6.6) 1.38 – 1.25 (m) 

H-10 1.15 – 1.08 (m) 1.72 – 1.53 (m) 

1.37 – 1.21 (m) 

- 

C-1 18.5 17.1  32.1 

C-2 27.5 27.3  29.3 

C-3 48.0 45.5  51.2 

C-5 64.6 60.1  53.9 

C-6 34.7  31.7 31.4 

C-7 29.7 30.1 31.7 

C-8 91.8  91.9 92.4 

C-8a 154.8  155.2 155.1 

C-9 21.2 21.4  25.6 

C10 27.0 26.9  - 

 
Table 4.10: Comparison of selected NMR spectral data (in CDCl3) for bicyclic 
vinylogous sulfonamides. (J-values were measured in Hz). 
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4.5  Completion of the synthesis 
 

Now that the bicyclic skeleton was formed, all that remained to do was the 

defunctionalization of the vinylogous sulfonamide. During the attempted total 

synthesis of (−)-indolizidine 209D, this was as far as we were able to proceed 

owing to lack of material. This meant the next two steps were optimized and 

investigated specifically for monomorine I and its isomers. 

 

4.5.1 Reduction of the vinylogous sulfonamide  
The next step, the reduction of the vinylogous sulfonamide (see Scheme 4.27), 

offered us a second opportunity for stereocontrol, as the bicyclic structure 

constrains free rotation. Using a platinum-catalysed reduction, we assumed that 

the hydrogen would stereoselectiviely favour cis-addition. 

 

 
 
Scheme 4.27: Reduction of the vinylogous sulfonamide (298) to give indolizidine (299). 
Reagents and conditions: i) H2 (7 atm.), PtO2, MeOH, 12 hr. 
 

The reduction was performed using platinum dioxide (Adams’ catalyst) together 

with 3-butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]-1,2,3,5,6,7-hexahydro 

indolizine (298) in acetic acid under seven atmospheres of hydrogen 

pressure.31  When the reaction was performed using the diastereomeric 

mixture, a yield of 84% for 3-butyl-5-methyl-8-[(4-methylphenyl)sulfonyl] 

octahydroindolizine (299) was obtained.  When the reaction was repeated with 

pure cis isomer (298A), a yield of 88% for (299A) was obtained, and when it 

was repeated with pure trans isomer (298B), a 72% yield of (299B) was 

obtained (see Figure 4.20). The orientation of H-8a was not explicitly proved, 

but was inferred from the subsequent desulfonylation (Section 4.5.2) and the 

assumed cis-hydrogenation. 
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The second method we attempted for the reduction of the double bond was 

using sodium borohydride in methanol at ambient temperature for four hours.171 

Following extraction and purification by column chromatography, the desired 

product (299) was obtained in 13% yield, and starting material was recovered in 

50% yield. 
 

 
 
Figure 4.20: Dominant relative stereochemistry of all four stereogenic centres for both 
isomers. 
 

Both isomers were fully characterized. The key spectroscopic changes 

compared to the preceding compounds were the appearance of H-8 and H-8a 

in the 1H-NMR spectra, and the significant shift of C-8a and C-8 from 

154.8 ppm and 91.8 ppm to 67.1 ppm and 59.5 ppm in the cis isomer (299A) 

and from 155.2 ppm and 91.9 ppm to 62.9 ppm and 47.0 ppm in the trans 

isomer (299B). The two isomers had virtually identical 1H-NMR spectra, both 

with overlapping multiplets in the region of 0.80 – 3.50 ppm (see Table 4.11).  

 

For the cis isomer, (299A), H-8 was visible as a triplet, coupling to H-7 only, 

whereas in the trans isomer, (299B), H-8 appeared as a multiplet, coupling to 

H-7 and H-8a. H-8a appeared at 2.58 – 2.48 ppm for the cis isomer (299A) and 

at 3.49 – 3.02 ppm for the trans isomer (299B). The 13C-NMR spectra for both 

isomers were largely the same, with the major differences occurring at the four 

stereogenic centres, C-3, C-5, C-8a, and C-8. For the cis isomer (299A), these 

signals were at 63.4 ppm, 61.6 ppm, 59.5 ppm, and 67.1 ppm, whereas for the 

trans isomer (299B), these signals were at 60.2 ppm, 56.5 ppm, 47.0 ppm, and 

62.9 ppm, respectively, with all four of the signals significantly upfield of the cis 

counterpart, indicative of the different stereoelectronics in each system.   
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Signal  (299A) / ppm  (299B) / ppm 

H-1 1.82 – 1.15 (m) 1.52 – 1.02 (m) 

H-2 1.82 – 1.15 (m) 1.52 – 1.02 (m) 

H-3 2.62 (m) 2.67 – 2.54 (m) 

H-5 3.33 (m) 3.49 – 3.02 (m) 

H-6 2.25 – 2.13 (m) 1.80 – 1.65 (m) 

H-7 2.25 – 2.13 (m) 2.07 – 1.98 (m) 

H-8 3.03 (t, J 7.5) 3.49 – 3.02 (m) 

H-8a 2.58 – 2.48 (m) 3.49 – 3.02 (m) 

H-9 0.91 (d, J 7.5) 0.99 – 0.81 (m) 

H-10 1.82 – 1.15 (m) 1.52 – 1.02 (m) 

C-1 29.0 28.5 

C-2 28.7 28.0  

C-3 63.4  60.2  

C-5 61.6  56.5 

C-6 39.2  33.0  

C-7 30.5  29.7  

C-8 59.5  47.0  

C-8a 67.1  62.9  

C-9 21.6  20.7 

C-10 27.7  27.8  

 
Table 4.11: Comparison of selected NMR spectral data (in CDCl3) for indolizidine 
isomers. (J-values were measured in Hz). 
 

During this stereoselective hydrogenation, the two unconstrained groups were 

the butyl chain, and the tolyl group. In an attempt to understand the 

stereoselective reduction of (298A) and (298B), the crystal structures of both 

were imported into Hyperchem,228 and various torsion angles involving the butyl 

chain were manually altered, such that the butyl chain was positioned above 
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the plane of the ring (see Figure 4.21 and 4.22). These conformations illustrate 

how the butyl group may have hindered the reduction of the double bond from 

the top face of the ring in both diastereomers. 
 

For (298A), the cis isomer, the modelled conformer (see Figure 4.21) clearly 

showed the top face of the molecule was sterically hindered by both the methyl 

and the butyl group. In the conformation shown, the tolyl group also contributes 

to blocking the top face. However, free rotation of the tolyl group around the 

S-C bond meant that any steric hindrance contribution was the same for both 

faces.  

 

 
Figure 4.21: Possible conformation for (298A), indicating the sterically hindered top 
face from two different views. 
 

Using Hyperchem,228 the following model was obtained for (298B), the trans 

isomer (see Figure 4.22), and in this case, the stereocontrol was not quite as 

complete. In the conformation shown, the methyl group and the butyl group 

blocked opposite faces, and the tolyl group, with free rotation, could block either 

face. The butyl chain, with more degrees of freedom than the methyl, appears 

to play a greater role in steric hindrance and blocked the top face, while the 

methyl group hardly blocked the bottom face at all. The overall stereochemical 

control for the trans isomer was significantly less than for the cis isomer. 
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Figure 4.22: Possible conformation for (298B), indicating the sterically hindered top 
face from two different views. 
 
4.5.2 Desulfonylation reaction 
4.5.2.1 Methods of desulfonylation  
Sulfones have been extensively used in natural product synthesis and the 

sulfone group is usually cleaved off after it has performed its function. Standard 

literature desulfonylation include reduction desulfonylation, alkylative 

desulfonylation and oxidative desulfonylation.231 The method we were most 

interested in was reductive desulfonylation. One of the methods in the literature 

used magnesium dissolved in ethanol or methanol. This method was devised 

by Carpino and co-workers232 and used by Chakraborty and Simpkins who 

desulfonylated (385) to form the spirocyclic product (386) (see Scheme 

4.28).233 

 

 
 
Scheme 4.28: Reductive desulfonylation by Chakraborty and Simpkins.233 Reagents 
and conditions: i) Mg, EtOH, 2-5 hr. 
 

For the final step in the total synthesis of (−)-indolizidine 209D, Yillah31 used  

the desulfonylation conditions of Trost,234 or Carretero and Dominguez;235 

which made use of a sodium amalgam reduction. This reaction was carried out 
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in methanol at ambient temperature for three to fifteen hours (see Scheme 

4.29). 

 

 
 
Scheme 4.29: Reductive desulfonylation by Yillah and Michael.31 Reagents and 
conditions: i) Na/Hg (6%), Na2HPO4,, 3 – 15 hr. 
 

The preferred desulfonylation method of Thomas Back’s research group56, 236 

was under Birch reduction condition, using sodium in liquid ammonia. As 

illustrated in his total synthesis of monomorine I, this reaction was effective 

despite its moderate yield (see Scheme 4.30).56 

 

N

H

C6H13

SO2Tol
N

H

C6H13

i

60%

[387] [37]  
 
Scheme 4.30: Reductive desulfonylation by Back and Nakajima.56 Reagents and 
conditions: i) Na, NH3 liq. 
 

Craig and Berry67 made use of a sodium naphthalenide solution to reductively 

cleave the sulfone group.67 These harsh conditions cleave the sulfone group 

within minutes at ambient temperature to give the indolizidine in moderate yield 

(see Scheme 4.31). 
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Scheme 4.31: Reductive desulfonylation by Craig and Berry.67 Reagents and 
conditions: i) Na+C10H8

- (3.5 eq.), THF, RT, 5 min. 
 
4.5.2.2 Desulfonylation  
The final step in the synthesis, reductive desulfonylation (see Scheme 4.32), 

took several attempts and different methods before it was successfully 

achieved. Initially, the method reported by Yillah31, 234 was attempted. A sodium 

amalgam was freshly prepared and added to a mixture of 3-butyl-5-methyl-8-

[(4-methylphenyl)sulfonyl]octahydroindolizine (299) and sodium hydrogen 

phosphate in methanol. This method was attempted several times and 

repeatedly starting material was recovered, even when the temperature and 

reaction time were modified.  

 

 
 
Scheme 4.32: Desulfonylation of (299A) to give monomorine I (27). Reagents and 
conditions: i) Na/Hg (6%), Na2HPO4,, 3 – 15 hr.; ii) Mg, EtOH, 2 – 5 hr.; iii) Na+C10H8

- 

(15 eq.), THF, RT, 15 min. 
  

The second method we attempted was that of Chakraborty and Simpkins,233 

reacting (299) with magnesium turnings in methanol at 50°C for three hours. 

When the reaction had gone to completion, as monitored by TLC, the crude 

product was purified by column chromatography and a diastereomeric mixture 

of monomorine I, 5-epi-monomorine I, and indolizidine 195B was isolated in a 

combined yield of 60%. Owing to the limited amount of material isolated, the 

diastereomers could not be separated, and isomers were characterized as a 
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mixture by 13C-NMR spectroscopy only (the 1H-NMR spectrum had completely 

overlapping signals between 0.80 ppm and 3.50 ppm and the individual isomers 

could not be distinguished). Fortunately, 13C-NMR spectrum has been reported 

in the literature for all the isomers of monomorine I, thus making the 

indentification of the various alternative isomers possible. 

 

The third method we attempted was that of Craig and Berry,67 using sodium 

naphthalenide in tetrahydrofuran for reductive desulfonylation. Following the 

exact conditions of Craig and Berry, a pure sample of the cis isomer of 3-butyl-

5-methyl-8-[(4-methylphenyl)sulfonyl]octahydroindolizine (299A) was mixed 

with three and a half equivalents of sodium naphthalenide for five minutes 

before the reaction was quenched and the product was purified by column 

chromatography. Racemic monomorine I was isolated as a pale oil in 23% yield 

based on consumed starting material. The reaction was repeated with the ratio 

of sodium naphthalenide to (299A) increased to 15:1, and the reaction time 

increased to fifteen minutes. After purification by column chromatography on 

silica gel through a Pasteur pipette, monomorine I was isolated in 73% yield. 

 

The same method was used with the trans isomer (299B), using a 1:8 ratio of 

3-butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]octahydroindolizine (299B) to 

sodium naphthalenide, and reacting at ambient temperature for fifteen minutes. 

Following purification by column chromatography through a Pasteur pipette, the 

5-epi-monomorine I was isolated in 71% yield as a pale oil that discoloured to 

turquoise over time. The final mixed fraction collected from the column showed 

some starting material, 5-epi-monomorine I and evidence of indolizidine 195B in 

the 13C-NMR spectrum, however, the quantities were insufficient for full 

characterization. The presence of indolizidine 195B together with 5-epi-

monomorine I was in agreement with the model proposed in Figure 4.19, which 

suggested the stereocontrol in the reduction of the double bond was not as 

complete as with the cis isomer, as the methyl and butyl groups blocked 

opposite faces of the molecule.  

 

The spectroscopic characterization of both monomorine I (see Figure 4.23) 

corresponded well to the literature values.93, 100, 103 Table 4.12 tabulates the 
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spectroscopic data we obtained for racemic monomorine I in comparison to 

those reported by Artis,103 Royer93 and Sonnet.100 Our spectral data were 

virtually indistinguishable to those obtained by Artis et al.103 and differred by at 

most 0.1 ppm from those obtained by Royer et al.93 The spectral data obtained 

by Sonnet et al.100 differred from ours by up to 1.1 ppm, viz. the signal 

corresponding to C-3, reported at 61.8 ppm by Sonnet in contrast to the 

62.90 ppm we observed. However, Sonnet’s data were the oldest in the 

literature (1975) and were obtained on a less sensitive instrument. 

 

 
Figure 4.23: The 13C-NMR spectrum (in CDCl3) that we obtained for monomorine I. 

 

Owing to the volatility of the molecule, high resolution mass spectrometry, 

under standard EI conditions, produced no parent ion; however, the milder 

method of chemical ionisation (APCI) gave a low resolution parent ion at 

195.37, which compares reasonably with the calculated value of 195.1987. 

FTIR spectroscopy showed the presence of a Bohlmann band237 at 2860 cm-1, 

indicating at least one hydrogen antiperiplanar to the nitrogen lone pair. 
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Signal (27) Artis et al.103 Royer et al.93 Sonnet et al.100 

C-1 30.91 30.90 31.1 31.8 

C-2 29.76 29.76 29.8 29.7 

C-3 62.90 62.91 63.0 61.8 

C-5 60.26 60.27 60.3 59.7 

C-6 35.84 35.83 36.1 36.4 

C-7 24.91 24.90 25.1 25.3 

C-8 30.34 30.33 30.5 30.9 

C-8a 67.17 67.16 67.3 67.6 

CH3 22.86 22.90 22.9 22.9 

CH2 39.73 39.73 39.8 39.8 

CH2 29.40 29.42 29.4 28.7 

CH2 22.90 22.90 23.0 23.2 

CH3 14.16 14.17 14.2 14.3 

 
Table 4.12: Comparison of spectroscopic data (in CDCl3) for monomorine I (27) with 
literature data. (All chemical shifts were measured in ppm). 
 

Table 4.13 displays the spectroscopic data we obtained for 5-epi-monomorine I  

(see Figure 4.24) compared to those obtained by Artis et al.,103 and by Sonnet 

et al.100  Our spectral data were in close agreement with those obtained by 

Artis,103 differing by up to 0.16 ppm. The spectral data obtained by Sonnet et 

al.100 again had one signal that differred by 0.90 ppm, the signal for C-6, 

reported at 30.1 ppm by Sonnet et al.100 in contrast to the 29.12 ppm we 

observed.  
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Signal (28) Artis et al.103 Sonnet et al.100 

C-1 32.34 32.44 33.2 

C-2 31.46 31.58 32.0 

C-3 55.49 55.39 55.4 

C-5 47.38 47.33 47.2 

C-6 32.21 32.37 33.1 

C-7 19.26 19.31 19.8 

C-8 29.12 29.25 30.1 

C-8a 59.21 59.13 58.7 

CH3 7.60 7.53 7.4 

CH2 28.82 28.80 28.44 

CH2 28.12 28.19 28.36 

CH2 23.08 23.10 23.5 

CH3 14.09 14.09 14.3 

 
Table 4.13: Comparison of spectroscopic data (in CDCl3) for 5-epi-monomorine I (28) 
with literature data. (All chemical shifts were measured in ppm). 
 
 

Despite the volatility of the molecule, high resolution mass spectrometry 

produced a parent ion at 195.1976 which compares well with the calculated 

value of 195.1987. FTIR spectroscopy for 5-epi-monomorine I also had a 

Bohlmann band237 at 2859 cm-1, as expected, indicating at least one hydrogen 

antiperiplanar to the nitrogen lone pair.  
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Figure 4.24: The 13C-NMR spectrum (CDCl3) that we obtained for 5-epi-monomorine I. 

 

Table 4.14 displays the spectroscopic data we obtained for indolizidine 195B 

compared to those obtained by Artis et al.,103 Takahata et al.84 and by Sonnet et 

al.100 The only spectral evidence of indolizidine 195B (26) was obtained in a 

mixed sample of monomorine I, 5-epi-monomorine I and indolizidine 195B. The 
13C-NMR spectrum was carefully examined, and by comparison to the literature 

we were able to discern the presence of all three diastereomers. We never 

succeeded in characterizing a pure sample of indolizidine 195B. Our spectral 

data were in close agreement with those obtained by Artis,103 differing by up to 

0.25 ppm. The spectral data obtained by Sonnet et al.100 had one signal that 

differred significantly from those obtained by Artis et al.,103 Takahata et al.84 and 

by us; the value Sonnet et al.100 obtained for C-3 was 56.6 ppm, which differred 

from ours by 2.3 ppm. The other signals obtained by Sonnet et al.100 agreed 

well with the values we obtained.  
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Signal (26) Artis et al.103 Takahata et al.84 Sonnet et al.100 

C-1 32.39 32.39 32.28 33.0 

C-2 26.33 26.32 26.32 26.8 

C-3 58.92 58.80 58.92 56.6 

C-5 51.91 52.00 52.09 51.8 

C-6 34.58 34.52 34.44 35.3 

C-7 24.73 24.72 24.71 24.9 

C-8 30.05 30.02 29.98 30.6 

C-8a 58.71 58.96 59.00 58.9 

CH3 20.46 20.45 20.39 20.9 

CH2 24.84 24.89 24.97 25.2 

CH2 29.27 29.18 29.14 29.6 

CH2 23.11 23.03 23.01 23.3 

CH3 14.19 14.24 14.20 14.3 

 
Table 4.14: Comparison of spectroscopic data (in CDCl3) for indolizidine 195B (26) with 
literature data. (All chemical shifts were measured in ppm). 
 

Thus the total synthesis of racemic monomorine I and 5-epi-monomorine I was 

successfully completed using new methodology involving a vinylogous 

sulfonamide-assisted cyclisation. Key to this synthesis were the two steps 

which contain a high degree of stereocontrol, the reduction of the exocyclic 

alkene, and the reduction of the vinylogous sulfonamide. 

 
4.6 Alternative approach via monobenzylated intermediates 
 

When the debenzylation reaction of the chiral amine (see Section 4.2.3) ceased 

to remove both benzyl groups, we accumulated a fair amount of the 

monodebenzylated amine (357). Owing partly to the need to circumvent the 

failing debenzylation reaction and partly to the fortuitous reaction described in 
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Section 4.6.1, we investigated a side-route to enantiopure monomorine I and its 

isomers, making using of monobenzylated intermediates. 

 

4.6.1  Condensation reaction 
Owing to the volatility of the free amine (291) subsequent to debenzylation, the 

amine was usually used directly in the condensation reaction without further 

purification. During the condensation reaction, a partially debenzylated amine 

(357) was accidentally reacted with the ketoester (292) and a novel product 

was isolated in 47% yield over the two steps (388) (see Scheme 4.33). Upon 

closer examination it became apparent that a retro-Michael addition had 

occurred, with the loss of ethyl crotonate (see Scheme 4.34) and the 

condensation reaction had taken place between (R)-α-methylbenzylamine and 

the ketoester (292). 
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Scheme 4.33: Condensation reaction between (357) and (292). Reagents and 
conditions: i) AcOH, toluene, reflux, 72 hr. 
 

Although this benzylated lactam (388) was not our intended product, it contains 

striking similarities to the desired lactam (293), and provided that the benzyl 

group could be removed at a later stage this could be an alternative route for 

the synthesis of indolizidine alkaloids.  

 

In order to prove the hypothesized retro-Michael addition, we condensed the 

ketoester (292) directly with (R)-α-methylbenzylamine by heating to reflux in 

toluene and acetic acid for seventy-two hours. Following purification, (R,E)-5-
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butylidene-1-(1-phenylethyl)pyrrolidin-2-one (388) was isolated in quantitative 

yield, thus confirming the occurrence of the retro-Michael addition. 

 

 
 
Scheme 4.34: Proposed mechanism for the acid catalyzed retro-Michael addition. 
Reagents and conditions: AcOH, toluene, reflux, 72 hr. 
 

The product (388) was optically active, with an optical rotation of [α]D20 +43.1 

(c 1.30, CH2Cl2). It was characterized by 1H-NMR and 13C-NMR spectroscopy 

and, analogous to the lactam (293), it was isolated exclusively as the E-isomer. 

The 1H-NMR and 13C-NMR spectra clearly showed the presence of the α-

methyl benzyl group with signals at 7.28 - 7.24 ppm integrating for five 

hydrogens, and a benzylic signal at 5.65 ppm integrating for one hydrogen (see 

Figure 4.25). The signal at 5.65 ppm was split into a quartet with a J value of 

7.2 Hz, coupling to a doublet at 1.71 ppm which integrated for three hydrogens. 

Another key signal was the triplet at 4.39 ppm, corresponding to the alkene 

hydrogen. 
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Figure 4.25: Numbering of lactam (388) for assignment of spectroscopic data. 



 

 194

The 13C-NMR spectrum showed the enamine carbons at 136.6 ppm and 

104.0 ppm (C-5 and C-4) as well as the lactam carbonyl (C-8) at 175.7 ppm. 

Signals corresponding to the propyl chain and the benzyl group were also 

present, as were C-6 and C-7. FTIR spectroscopy confirmed the presence of 

the lactam with a stretching vibration at 1666 cm-1, and low resolution mass 

spectroscopy showed a fragmentation pattern consistent with the assigned 

structure. High resolution mass spectrometry was not performed as the parent 

ion at 243 coincided with the reference peak used during the experimentation. 

 
4.6.2 Stereoselective reduction  
The next step was the stereoselective reduction of the exocyclic alkene (see 

Scheme 4.35). This reduction was analogous to the stereoselective reduction of 

lactam (293), but instead of the ethyl ester group, there was now a bulkier 

benzyl group. According to the proposed stereocontrol, the carbonyl of the ester 

could coordinate to the titanium tetrachloride (see Figure 4.14 and Figure 4.15), 

hence restricting free rotation and creating a face bias. However, the benzyl 

group of (388) does not coordinate to titanium and hence the selectivity should 

be markedly different.  

 

 
 
Scheme 4.35: Diastereoselective reduction of (388) to form lactam (389). Reagents 
and conditions: i) Various conditions (see Table 4.15). 
 

Three different reducing conditions were employed. The first was a palladium-

catalysed reduction in the presence of acetic acid and hydrogen under 

pressure, the second was with titanium tetrachloride and triethylsilane, and the 

third made use of titanium tetrachloride and the bulky hydrogen source, 

triphenylsilane (see Table 4.15). Interestingly, the greatest stereoselectivity was 

observed for the palladium-catalysed reduction, with a ratio of 7:1 for the 

diastereomers. The triethylsilane reduction was moderately stereoselective, 
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with a ratio of 3:1, and the triphenylsilane reduction was not selective at all, 

giving a 1:1 ratio of the isomers. This trend was exactly the opposite of what 

was observed with the reduction of lactam (293) (refer to Table 4.3), which 

supported the theory that the titanium must have coordinated to the ester 

carbonyl in order to facilitate the steric hindrance.  

 

Catalyst H-Source Ratio (A:B)  Yield 

Pd-C 10%  H2 7:1 89% 

TiCl4  Et3SiH 3:1 68% 

TiCl4  Ph3SiH 1:1 100% 

 
Table 4.15: Diastereoselective reductions of (388). a) 10% (w/w) Pd-C 10%, H2 
(7 atm.), AcOH, RT, 72 hr.; b) Lewis acid, Et3SiH, CH2Cl2, -90°C, 2 hr., increased to 
RT, 72 hr.; c) Lewis acid, Ph3SiH, CH2Cl2, -90°C, 2 hr. increased to RT, 72 hr. 
 

The outcome of the palladium-catalysed hydrogenation was slightly harder to 

explain. With lactam (293) the selectivity was 2:3, favouring the trans isomer 

(R,R or S,S). With lactam (388) the selectivity was 7:1, but as the benzyl group 

could freely rotate, there should not have been more steric hindrance on one 

face than the other. Unfortunately, owing to the nature of the lactam we were 

unable to form salts or grow crystals, and as a result the absolute 

stereochemistry of the major isomer remains unknown. Not knowing which 

diastereomer was favoured made it difficult to rationalize or model a scenario 

that could explain the observed outcome. The one big difference between the 

palladium-catalysed reduction of (293) and of (388) was the solvent; compound 

(388) was reduced in the presence of acetic acid rather than absolute ethanol. 

The acid may have encouraged imine formation and altered the puckering of 

the lactam ring. Alternatively, the acid may have stabilized different 

conformations of (388) which had greater steric hindrance than the 

conformation found in absolute ethanol. 

 

At this stage in the synthesis the diastereomers (389A) and (389B) were not 

separable, however we did successfully separate them at a later stage, and by 

hydrolysis back to the lactam, we were able to characterize each isomer 

individually. Both of them showed optical activity, isomer A (389A), the major 
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isomer, had an optical rotation of [α]D20 +15.7 (c 1.15, CH2Cl2), while isomer B 

(389B), the minor isomer, had a high optical rotation value of [α]D20 +131.6 

(c 0.98, CH2Cl2). 

 

In contrast to the preceding compound (388), the alkene signal at 4.39 ppm 

was no longer present and a new multiplet corresponding to H-5 was seen at 

3.73-3.67 ppm for isomer A (389A) and at 3.26-3.18 ppm for isomer B (389B) 
(see Figure 4.26). The signal corresponding to H-4 shifted upfield to the 

aliphatic region while the signals for H-6 and H-7 showed diastereotopic 

splitting. The 13C-NMR spectra for both isomers showed the absence of the 

enamine carbons and C-5 and C-4 were observed at 56.9 ppm and 33.9 ppm 

for isomer A (389A) and at 57.2 ppm and 34.7 ppm for isomer B (389B). FTIR 

spectroscopy indicated the presence of a lactam carbonyl at 1681 cm-1 and 

1674 cm-1 for (389A) and (389B) respectively, and HRMS produced a 

molecular ion of 245.1765, in close agreement with the calculated value of 

245.1780. 
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Figure 4.26: Numbering of lactam (389) for assignment of spectroscopic data. 

 

4.6.3 Thionation reaction and separation of diastereomers  
Following an analogous pattern to the monomorine I synthesis, thionation of 

lactam (389) should allow separation of the diastereomers. Two different sets of 

thionation conditions were attempted. The first thionation used phosphorus 

pentasulfide in dichloromethane stirring at ambient temperature for seventy-two 

hours. Following extraction and purification by column chromatography, the 

desired thiolactam (390) was isolated in 66% yield. During the second 

thionation, the lactam (389) was reacted with hexamethyldisiloxane, 
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phosphorus pentasulfide and dichloromethane at ambient temperature for 

seventy-two hours.188 Following purification, the desired product was isolated in 

quantitative yield. As expected, the isomers could be separated by careful 

chromatography (see Scheme 4.36). 

 

 
 
Scheme 4.36: Thionation of lactam (389) to form (390). Reagents and conditions: 
i) P2S5, HMDO, CHCl3, RT, 8 hr.  
 

Both isomers had unusually high optical rotation values, with isomer A (390A), 

the minor isomer, having an optical rotation of [α]D20 + 226.7 (c 0.75, CH2Cl2) 

and isomer B (390B), the major isomer, having an optical rotation of 

[α]D20 +383.6 (c 1.22, CH2Cl2).  

 

The key change in the 13C-NMR spectra for the thiolactam isomers in 

comparison to their precursor lactams was the shift of the carbonyl carbon (C-8) 

from 175.2 ppm and 175.0 ppm for (390A) and (390B), respectively, to the 

thiocarbonyl region of 201.8 ppm for both isomers. FTIR spectroscopy also 

showed the C-S stretching vibration at 1447 cm-1 and 1450 cm-1 for (390A) and 

(390B), respectively. When comparing the two isomers, their 1H-NMR spectra 

were fairly different (see Table 4.16). Notably, the quartet corresponding for H-

10 occurs at 6.30 ppm for (390A) and at 6.55 ppm for (390B). H-5 followed the 

same trend, occurring at 3.51 – 3.47 ppm for (390A) and at 4.05 – 3.99 ppm for 

(390B). Both isomers displayed greater diastereotopic splitting for H-6 than for 

H-7, due to the closer proximity to the stereogenic centre at C-5. Looking at the 

differences in their 13C-NMR spectra, (390A) had C-5 at 64.4 ppm and C-10 at 

55.6 ppm, whereas (390B) had C-5 at 63.8 ppm and C-10 at 53.7 ppm.  
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Signal (390A) / ppm (390B) / ppm 

H-4 1.67 – 0.96 (m) 1.05 – 0.77 (m) 

H-5 3.51 – 3.47 (m) 4.05 – 3.99 (m) 

H-6 2.02 – 1.88 (m)  

1.67 – 0.96 (m) 

2.18 – 2.05 (m) 

1.78 – 1.69 (m) 

H-7 3.12 – 3.00 (m) 3.16 – 2.95 (m) 

H-9 1.70 (d, J 7.2) 1.66 (d, J 7.2) 

H-10 6.30 (q, J 7.2) 6.55 (q, J 7.2) 

C-4 33.5  33.2  

C-5 64.4 63.8  

C-6 29.7 27.3  

C-7 43.7  43.6  

C-8 201.8 201.8 

C-9 16.4  15.1  

C-10 55.6  53.7  

 
Table 4.16: Comparison of selected NMR spectral data (in CDCl3) for thiolactam 
isomers (390A) and (390B). (J-values were measured in Hz). 
 
4.6.4 Preparation of the vinylogous sulfonamide  
At this stage none of the monobenzylated intermediates (388), (389), and (390) 
had shown any sign of solidifying to allow us to obtain crystal structures and 

conclusive evidence as to which diastereomer was favoured. We had hoped 

that the formation of the vinylogous sulfonamide would finally allow for strong 

enough intermolecular forces such as additional π-π stacking to aid 

crystallization of at least one of the isomers.  

 

In two separate reactions, each isomer of (R)-5-butyl-1-(1-

phenylethyl)pyrrolidine-2-thione (390) was dissolved in dichloromethane 
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together with sodium iodide and methyl iodide and stirred at ambient 

temperature for forty-eight hours to allow for complete salt formation.188 The 

solvent was removed and a premixed solution of triethylamine, 1-[(4-

methylphenyl)sulfonyl]acetone (279) and dichloromethane were added to the α-

thioiminium salt and left to react for a further ninety-six hours. Following work 

up and purification, the major product from both reactions was (R)-5-butyl-1-(1-

phenylethyl)pyrrolidin-2-one (389), the hydrolysis product of the salt. In the case 

of isomer A, a small amount of (R,E)-2-butyl-1-(1-phenylethyl)-5-

(tosylmethylene)pyrrolidine (391) and (E)-1-(5-butyl-1-((R)-1-phenylethyl) 

pyrrolidin-2-ylidene)-1-tosylpropan-2-one (392) was obtained as a mixture in 

10% yield (see Scheme 4.37). The low yield of the desired product may be due 

to the presence of moisture during the reaction or due to low reactivity of the 

substrate due to the bulkiness of the benzyl group. The product that was 

obtained showed no signs of solidifying. 

 

 
 
Scheme 4.37: Formation of vinylogous sulfonamides (391) and (392). Reagents and 
conditions: i) a) MeI, THF, 48 hr.; b) (279), Et3N, CH2Cl2, RT, 96 hr. 
 

Although the isolated product was a mixture of the acylated (392) and 

deacylated (391) vinylogous sulfonamides, use of a COSY spectrum made it 

possible to distinguish key signals from the two compounds and to assign them. 

Of particular importance was the presence of the vinyl signal at 4.89 ppm for 

(391) and the presence of additional methyl singlet at 2.40 ppm for (392).  
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When the NMR spectral data for (391) and (392) were compared with the 

spectral data for the analogous vinylogous sulfonamides (296A) and (384A) 

there were some strong correlations (see Table 4.17). The signals 

corresponding to H-4, H-5 and H-6 were further upfield in (391) and (392) 

compared with the corresponding signals in (296A) and (384A), while H-9 and 

H-10 for (391) and (392) were downfield shifted compared to (296A) and 

(384A) owing to the electron-withdrawing effect of the phenyl substituent. The 

signal corresponding to H-7 in both (391) and (392) matched well in chemical 

shift, but did not show the pronounced diastereotopic splitting of (296A) and 

(384A), respectively. The key signals were almost identical, with H-15 of (391) 

corresponding well with H-15 of (296A) and H-22 of (392) corresponding well 

with H-22 of (384A).  
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Signal (296A) / ppm (391) / ppm (384A) / ppm (392) / ppm 

H-4  1.95 – 1.82 (m) 1.75 – 1.04 (m) 1.80 – 1.63 (m)  

1.40 – 1.23 (m) 

1.75 – 1.04 (m)

H-5 3.73 – 3.68 (m) 3.40 – 3.32 (m) 4.25 – 4.10 (m) 3.51 (tt, J 8.9, 

2.8) 

H-6 1.70 – 1.62 (m) 

1.62 – 1.51 (m) 

2.07 – 1.81 (m) 3.41 (dd) 

2.55 – 2.42 (m) 

2.07 – 1.81 (m)

H-7 2.92 – 2.80 (m) 

2.45 – 2.31 (m) 

2.89 – 2.78 (m) 3.76 (m)  

2.74  (dt) 

3.16 – 3.01 (m)

H-9 1.32 (d, J 6.9) 1.61 (d, J 7.1) 1.39 (d, J 7.2) 1.70 (d, J 7.2) 

H-10 3.98 – 3.91 (m) 4.72 (q, J 7.1) 4.03 (m) 6.31 (q, J 7.2) 

H-11 3.11 – 3.01 (m)  

2.92 – 2.80 (m) 

- 2.10 – 1.95 (m) 

1.80 – 1.63 (m) 

- 

H-15 4.99 (s) 4.89 (s) - - 

H-22 - - 2.34 (s) 2.40 (s) 

  
Table 4.17: Comparison of selected NMR spectral data (in CDCl3) for vinylogous 
sulfonamides. (J-values were measured in Hz). 
 

4.6.5 Attempted debenzylations  
The synthetic pathway of the monobenzylated species (see Scheme 4.38 for 

the overall summary of the route) would only be useful in the synthesis of 

indolizidine alkaloids if the N-benzyl group could be removed at some stage in 

the synthesis. We attempted to debenzylate at three different stages: from the 

enamide (388), from the lactam (389), and from the thiolactam (390) (see 

Scheme 4.39)  
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Scheme 4.38: Synthetic pathway via monobenzylated intermediates. Reagents and 
conditions: i) AcOH, toluene, reflux, 72 hr.; ii) 50% (w/w) Pd-C 10%, H2 (7 atm.), EtOH, 
RT, 72 hr.; OR TiCl4, Ph3SiH, CH2Cl2, -90°C, 2 hr. increased to RT, 72 hr.; iii) P2S5, 
HMDO, CHCl3, RT, 8 hr.; iv)  a) MeI, THF, 48 hr.; b) (279), Et3N, CH2Cl2, RT, 96 hr. 
 

The first attempted debenzylation reacted the lactam (389) with 50% 

Pearlman’s catalyst in acetic acid under five atmospheres of hydrogen pressure 

for ninety-six hours. Following work-up and purification, only starting material 

was recovered in 85% yield.  

 

The second attempted debenzylation was performed on the thiolactam (390), 

together with Pearlman’s catalyst and acetic acid, under seven atmospheres of 

hydrogen pressure for seventy-two hours. Following work-up and purification, 

only starting material was recovered in 100% yield. 
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Scheme 4.39: Attempted debenzylation reactions. Reagents and conditions: i) Pd/C 
(10%), NH4HCO2, MeOH, RT, 3 hr.; ii) Pd(OH)2/C, H2 (5 atm.), AcOH, 96 hr.; iii) CAN 
(4 eq.), MeCN-H2O (5:1), RT, 12 hr. 
 
The third attempt was an ammonium formate reduction of the enamide (388), 

using methanol, ammonium formate and 10% palladium on carbon. The 

solution was stirred for three hours and then filtered through Celite® and the 

residue was purified by column chromatography. Again only starting material 

was recovered in 65% yield.  

 

The final two attempted debenzylations used ceric ammonium nitrate, as there 

was literature evidence that debenzylations of lactams was possible.216, 217 The 

standard procedure involved dissolving four equivalents of ceric ammonium 

nitrate in acetonitrile and water (1:5 ratio) and stirring at ambient temperature 

for twelve hours. This procedure was followed using lactam (389) and only 

starting material was recovered in 100% yield. When this procedure was used 

on the thiolactam (390), starting material was recovered in 61% yield, and the 

remaining material hydrolysed to reform lactam (389) in 39% yield. 
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From these five failed attempts, it became apparent that removing the benzyl 

group was not a trivial matter.  Unfortunately, this meant that it was impossible 

to cycle the material back into the synthesis of enantiopure monomorine I and 

5-epi-monomorine I.  Although we strongly suspect that this route favours the 

cis isomer (R,S) rather than the trans isomer (R,R), we were unable to obtain 

crystals of any of the intermediates and it remains speculation. If this route were 

optimised and debenzylation achieved, it could offer greater overall yields of 

monomorine I (the R,S isomer), as the diastereoselectivity was a pleasing 7:1. 

 
4.7 Conclusion 
 
The syntheses of (±)-monomorine I and (±)-5-epi-monomorine I were both 

successful. From where the synthetic path diverged, the key intermediates 

(295A) and (295B), respectively, the overall yield for monomorine I was 24% 

and for 5-epi-monomorine I the yield was 12%. The yield for the key 

intermediates (295A) and (295B), from ethyl 4-chloro-4-oxobutyrate, were 

dependent on which diastereoselective reduction was performed. Using the 

palladium-catalysed reduction, (295A) and (295B) were synthesized with an 

overall yield of 34% and 51%, respectively, and using the titanium tetrachloride 

and triphenylsilane reduction (295A) and (295B) were synthesized with an 

overall yield of 12% and 60%, respectively. Hence the utility of vinylogous 

sulfonamides in accessing 3,5-disubstituted indolizidine alkaloids was 

successfully demonstrated. Unfortunately, the synthesis of enantiopure 

monomorine I and 5-epi-monomorine I never reached completion as the 

debenzylation reactions repeatedly failed to give the desired result. Clearly our 

method of introducing the first chiral centre needs to be carefully re-examined 

and a new route determined. Frustratingly, the initial attempts at debenzylating 

the chiral amine were successful and only the latter attempts failed to work. 

After thorough investigation of this problem we can only conclude that the 

commercially available palladium catalysts were not of the same quality as the 

catalysts originally available in the laboratory, possibly because of a trace 

contaminant.  
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CHAPTER 5 
A MODEL STUDY FOR APPLYING RING-CLOSING 

METATHESIS IN THE SYNTHESIS OF INDOLIZIDINE-BASED 
ALKALOIDS 

 
5.1 Introduction  
 
Certain tricyclic alkaloids, for example coccinelline 205B (47), show a structural 

relationship to the 3,5-disubstituted indolizidines, as their tricyclic system 

formally incorporates a 3,5-disubstituted indolizidine within the skeleton (see 

Figure 5.1). The structural relationship between these two classes of alkaloids 

drew our interest as it offered an additional area for extending this PhD project. 

Ring-closing metathesis (RCM) was an obvious choice for forming the third ring 

as our research group has some experience with RCM reactions238, 239 and 

there was literature precedent for this type of chemistry.122 

 

[47]

3 N
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Figure 5.1: Structural relationship between 3,5-disubstituted indolizidine alkaloids 
(shown in blue) and the tricyclic alkaloid (47). 
 

We proposed a model study to explore the use of RCM in an analogous 

condensation reaction to the one we used during the total synthesis of 

monomorine I (see Scheme 4.16). Our proposed model study (see Scheme 

5.1) was designed to determine if the initial reaction conditions in the synthesis 

of monomorine I would be mild enough to allow for the incorporation of alkene 

side-chains.   
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Scheme 5.1: Proposed model synthesis for the RCM approach. Reagents and 
conditions:  i) Fe(acac)3, THF, 0°C, 10 min.;  ii) AcOH, toluene, reflux, 72 hr.; iii) TiCl4, 
Ph3SiH, CH2Cl2, -90°C, 2 hr., increased to RT, 72 hr. iv) 5 mol% Grubbs II, toluene. 
  
Holmes and co-workers176 have performed an extensive investigation of RCM 

using β-, γ- and δ-lactams. They have successfully performed the final step in 

our proposed synthesis using the ruthenium alkylidene known as Grubbs I to 

catalyse the RCM (see Scheme 5.2). 

 

 
 
Scheme 5.2: Synthesis of bicyclic molecules from lactams using RCM by Holmes and 
co-workers.176 Reagents and conditions: i) 5 mol% Grubbs I, CH2Cl2. 
 
In order to extend the proposed model study to form the tricyclic system, the 

allylamine would have to contain an ester side chain, which would ultimately be 

used to form the third ring (see Scheme 5.3). See Chapter 2 for a more detailed 

discussion. 
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Scheme 5.3: Proposed synthesis for the formation of the tricyclic skeleton. Reagents 
and conditions: i) 5 mol% Grubbs II, toluene; ii) Lawesson’s reagent,CH2Cl2, RT, 72 
hr.; iii) a) MeI, THF, 48 hr.; b) (279), Et3N, CH2Cl2, RT, 96 hr.; iv) TFA, reflux, 30 min.; 
v) LiAlH4, THF, RT, 15 hr.; vi) PPh3, imidazole, I2, toluene, reflux, 3 hr. 
 
5.2  Preparation of allylic ketoesters 
 
Our first challenge was to synthesize ketoester (313) which proved to be non-

trivial. The first method we attempted was the proposed Grignard reaction 

between ethyl 4-chloro-4-oxobutyrate (311) and allylmagnesium bromide (312), 

using iron(III) acetoacetate as a catalyst (see Scheme 5.4), which was 

analogous to our first step in the synthesis of monomorine I (see Section 4.2.1). 

Despite maintaining the reaction at –10°C and quenching it with dilute 

hydrochloric acid after a mere seven minutes, double addition of the 

allylmagnesium bromide occurred and ethyl 4-allyl-4-hydroxyhept-6-enoate 
(394) was isolated in 72% yield. 
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Scheme 5.4: Grignard reaction between (311) and (312) resulted in the di-addition 
product (394). Reagents and conditions:  i) Fe(acac)3, THF, -10°C, 7 min. 
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The alcohol (394) was characterized by 1H-NMR spectroscopy and showed the 

alkene signals at 5.84 ppm integrating for two hydrogens and at 5.18 – 5.07 

ppm integrating for four hydrogens. The ethyl ester signals were at 4.16 ppm 

and 1.26 ppm and the OH showed as a singlet at 1.56 ppm. The 13C-NMR 

spectrum confirmed the presence of the ester with a signal at 172.1 ppm and 

the alkene with signals at 133.5 ppm and 118.6 ppm, respectively. The carbon 

adjacent to the hydroxyl group was observed at 73.7 ppm. FTIR spectroscopy 

confirmed the presence of the ester and the alcohol functionalities with signals 

at 1716 cm-1 and at 3090 cm-1. 

 

This result confirmed that the increased reactivity of the allylmagnesium 

bromide compared to the butylmagnesium bromide used in the synthesis of 

monomorine I, meant an alternative method had to be employed. A variety of 

methods were attempted, all with limited success: Firstly, we tried substituting 

iron(III) acetoacetate by tributylphosphine, or we used allylzinc bromide instead 

of allylmagnesium bromide,240 or allyl(chloro)dimethylsilane. We also attempted 

going via the less reactive aldehyde instead of the acid chloride. All methods 

resulted either in multiple additions of the allyl group or more complex products 

that were not identified. Finally, we tried using a stannane nucleophile. 

 

Ethyl 4-chloro-4-oxobutyrate (311) was reacted with allyl tri-n-butyl tin (395) 

together with Wilkinson’s catalyst in dichloromethane in a sealed tube at 65°C 

for five hours (see Scheme 5.5). The solvent was removed in vacuo and the 

crude material was purified by column chromatography to give ethyl 4-oxohept-

6-enoate (313) in quantitative yield, slightly contaminated by tri-n-butyltin 

chloride. 

 

 
 
Scheme 5.5: Organometallic reaction for the formation of allylketoester (313). 
Reagents and conditions:  i) Wilkinson’s cat., CH2Cl2, 65°C, 5 hr. 
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Ethyl 4-oxohept-6-enoate (313) was characterized by 1H-NMR spectroscopy 

which revealed a terminal alkene at 5.98 – 5.88 ppm integrating for one 

hydrogen and at 5.16 ppm, integrating for two hydrogens. The 13C-NMR 

spectrum showed the ketone carbonyl at 206.4 ppm, the ester carbonyl at 

172.4 ppm and the alkene at 130.2 ppm and 118.7 ppm. 

 

Despite the high toxicity of the allyl tri-n-butyl tin, this was a pleasing result and 

we set about repeating it. The reaction was set up as before, and after five 

hours at 65°C, the reaction was left stirring at ambient temperature for twelve 

hours (see Scheme 5.6). The solvent was removed in vacuo and the crude oil 

was rinsed with acetonitrile and hexane to remove the residual tin. The 

acetonitrile fraction was rinsed a further two times, and the solvent was then 

removed in vacuo. The crude material was purified by column chromatography 

to give ethyl (5E)-4-oxohept-5-enoate (396) in 65% yield as a mixture of 

geometric isomers (cis:trans ratio 1:2). 

 

 
 
Scheme 5.6: Organometallic reaction for the formation of allylketoester (396). 
Reagents and conditions:  i) Wilkinson’s cat., CH2Cl2, 65°C, 5 hr., then cooled to RT, 
12 hr. 
 

It was clear from the NMR spectra that the alkene was no longer terminal and 

had shifted to the internal position in conjugation with the carbonyl; in the 1H-

NMR spectrum the alkene signals occurred at 6.90 ppm and 6.16 ppm as a 

doublet of quartets and a doublet, both integrating for only one hydrogen. The 

adjacent methyl group had two signals, a doublet at 1.91 ppm for the trans 

isomer and a doublet at 1.54 ppm for the cis isomer. The 13C-NMR spectrum 

confirmed the presence of both cis and trans isomers, as most of the signals 

were duplicated.  

 

This result was disappointing, as the double bond had clearly shifted to a more 

stable position after over-exposure to Wilkinson’s catalyst, despite the relatively 
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mild conditions. At a later stage we discovered that (313) spontaneously 

isomerizes to (396) after standing at ambient temperature for several days. 

   
5.3  Attempted condensation reactions 
 

More of ethyl 4-oxohept-6-enoate (313) was prepared, being careful not to let it 

react for too long or stand in the presence of Wilkinson’s catalyst. Immediately 

after purification (313) was set up to react with allylamine in toluene and acetic 

acid heated at reflux (see Scheme 5.7). Unfortunately, the conditions were too 

harsh and (313) isomerised to (396) prior to reacting with the amine. The amine 

appeared to react with the Michael acceptor rather than the ketone, and 

although the product of the reaction was not fully characterized, it was clear 

from the spectroscopic results that the ester and the ketone were still present, 

as was a terminal alkene. 
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Scheme 5.7: Attempted condensation reaction with (313) and allylamine. Reagents 
and conditions: i) AcOH, toluene, reflux, 72 hr. 
 

In order to confirm that the problem with the condensation reaction was due to 

the allylketoester (313), and not the allylamine, we attempted a condensation 

reaction between allylamine and ethyl 4-oxooctanoate (292) under our standard 

conditions: toluene and acetic acid heated at reflux for seventy-two hours. The 
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condensation reaction worked perfectly and (5E)-1-allyl-5-butylidenepyrrolidin-

2-one (398) was isolated in 55% yield (see Scheme 5.8).  

 

 
 
Scheme 5.8: Condensation reaction between ketoester (292) and allylamine. Reagents 
and conditions: i) AcOH, toluene, reflux, 72 hr. 
 

(5E)-1-Allyl-5-butylidenepyrrolidin-2-one (398) was fully characterized and, 

analogous to earlier condensation reactions, (398) was isolated as a single 

geometric isomer (see Figure 5.2). The key 1H-NMR spectral signals include 

the terminal alkene signals, H-10 and H-11 at 5.78 – 5.65 ppm and 5.17 – 

5.12 ppm, respectively, the internal alkene signal, H-4, at 4.66 ppm, and 

H-9 which occurred at 4.09 ppm as a doublet. The 13C-NMR spectrum had one 

carbonyl signal at 175.1 ppm and four alkene signals at 138.7 ppm, 131.8 ppm, 

116.7 ppm and 101.3 ppm. The HRMS produced a parent ion at 179.1325, in 

excellent correspondence to the required 179.1310. 
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Figure 5.2: Numbering of lactam (398) for assignment of spectroscopic data. 

 

Inspired by the successful condensation with allylamine, we decided to see if 

bicyclic structures could be formed by RCM using the exocyclic alkene that 

forms during the condensation. (5E)-1-Allyl-5-butylidenepyrrolidin-2-one (398) 
presented us with a poor candidate for RCM, as the ring strain involved in 

forming a four-membered ring would probably interfere with the metathesis. We 
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purchased butenylamine hydrochloride in order to prepare the analogous RCM 

precursor (399), which would be more suitable for RCM as it could form a five-

membered ring.d Butenylamine hydrochloride was thus condensed with 

ketoester (292) under our standard conditions; toluene and acetic acid heated 

at reflux for seventy-two hours (see Scheme 5.9). After purification by column 

chromatography, (5E)-1-but-3-enyl-5-butylidenepyrrolidin-2-one (399) was 

isolated as a yellow oil in 45% yield. The use of the readily available 

hydrochloride salt instead of the free amine did not seem to affect the reaction. 
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Scheme 5.9: Condensation reaction between ketoester (292) and butenylamine. 
Reagents and conditions: i) AcOH, toluene, reflux, 72 hr. 
 

(5E)-1-But-3-enyl-5-butylidenepyrrolidin-2-one (399) was characterized by NMR 

spectroscopy (see Figure 5.3). Again, the key signals in the 1H-NMR spectrum 

were for the internal and the terminal alkenes; H-11 at 5.85 – 5.71 ppm, H-12 at 

5.10 – 5.02 ppm and H-4 at 4.65 ppm. In contrast to (398), there was an 

additional methylene signal at 2.33 – 2.26 ppm corresponding to H-10.  

 

 
 

Figure 5.3: Numbering of lactam (399) for assignment of spectroscopic data. 

                                                 
d Pentenylamine hydrochloride would be a better precursor, as the condensation 
product could undergo RCM to form an indolizidine skeleton. However, it was 
prohibitively expensive for a purely speculative investigation. 
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Table 5.1 compares the three condensation products (389), (399) and (293) 

which had virtually indistinguishable signals for the lactam and butyl side-chain 

(H-3, H-4, H-6, H-7, C-4, C-5, C-6, C-7 and C-8). The nitrogen side chains 

showed obvious differences for C-9, C-10 and C-11 as the functionality 

changed. 

 

 
Signal  (398) / ppm  (399) / ppm (293) / ppm 

H-3 1.98 (q, J 7.2) 2.00 (q, J 7.2) 2.00 (q, J 7.3) 

H-4 4.66 (t, J 7.2) 4.65 (t, J 7.2) 4.77 (t, J 7.4) 

H-6 2.74-2.44 (m) 2.60 (t, J 7.2) 2.58 (t, J 8.0) 

H-7 2.74-2.44 (m) 2.50 – 2.44 (m) 2.42 ( t, J 8.0) 

H-9 4.09 (d, J 5.1) 3.53 (t, J 7.2) 4.45 – 4.37 (m) 

H-10 5.78 – 5.65 (m) 2.33 – 2.26 (m) 3.04 (dd, J 7.4, 15.7) 

2.81 (dd, J 7.3, 15.7) 

H-11 5.17 – 5.12 (m) 5.85 – 5.71 (m) - 

C-4 101.3 100.6 101.0 

C-5 138.7 139.0 138.7 

C-6 21.2 21.3 21.6 

C-7 28.7 28.9 29.2 

C-8 175.1 175.4 175.7 

C-9 42.1 39.0 45.2 

C-10 131.8 30.8 37.6 

C-11 116.7 134.9 171.4 

 
Table 5.1: Comparison of NMR spectral data (in CDCl3) for enamides (398), (399) and 
(293). (J-values given in Hz). 
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5.4  Ring-closing metathesis reactions 
 
RCM reactions are traditionally catalysed by Grubbs I, 1st generation catalyst or 

by Grubbs II, 2nd generation catalyst (see Figure 5.4). We chose to use Grubbs 

II for our attempted RCM reactions, as it exhibits tolerance to a diverse range of 

functionality.241, 242 

 

 
 

Figure 5.4: Grubbs I and Grubbs II. 

 

The two compounds we had prepared (398) and (399) were not the ideal 

candidates for RCM due to the internal alkene and potential ring strain. In spite 

of this, we decided to attempt RCM, as (398) and (399) were easy to prepare. 

We initially attempted the RCM in toluene at ambient temperature in the 

presence of Grubbs II. TLC indicated that no reaction was occurring and so we 

heated the solution to reflux for twelve hours (see Scheme 5.10). After 

purification by column chromatography none of the desired product (400) was 

obtained. However, a small amount of the starting material had isomerised to 

give us (E)-5-butylidene1-(prop-1-enyl)pyrrolidin-2-one (401) in 11% yield. No 

other products were isolated. 
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Scheme 5.10: Attempted RCM reaction on (398). Reagents and conditions: i) 5 mol% 
Grubbs II, toluene, reflux, 12 hr. 
 

(E)-5-Butylidene1-(prop-1-enyl)pyrrolidin-2-one (401) was fully characterized, 

and the spectroscopic data obtained were largely similar to the precursor (398). 

The key difference was the terminal alkene signal at 5.78 – 5.65 ppm and 5.17 

– 5.12 ppm was absent and instead an alkene signal integrating for two 

hydrogens was present at 6.09 – 5.96 ppm. The adjacent methyl group was 

observed as a doublet at 1.81 ppm integrating for three hydrogens. 

Interestingly, only one geometric isomer was observed. The 13C-NMR spectrum 

had four alkene signals at 139.2 ppm, 122.4 ppm, 121.3 ppm and 102.7 ppm.  

 

The butenyl alkene (399) was a marginally better candidate for RCM, as it 

would form a pyrrolizinone (402), with less ring strain than (401). However, 

internal alkenes, which are not as susceptible to RCM as terminal alkenes, 

could still cause problems (see Scheme 5.11). 

 

 
 
Scheme 5.11: Attempted RCM reaction of (399). Reagents and conditions: i) 5 mol% 
Grubbs II, toluene, reflux, 12 hr. 
 



 

 216

The reaction was attempted twice; once in toluene at ambient temperature for 

five days, from which only starting material was recovered, and once in a 

toluene solution heated at reflux for twelve hours, which decomposed all the 

starting material. 

 

5.5  Conclusion 
 
These results were extremely disappointing, as clearly the proposed model 

study (see Scheme 5.1) proved to be an invalid synthetic pathway. The work of 

Holmes and co-workers,176 Kim and co-workers242 and Smith III et al.122 has 

already shown the potential of RCM in the synthesis of bicyclic and tricyclic 

nitrogenous compounds, but in order to incorporate this methodology into our 

current synthetic strategy we would need to modify the allylketoester (313) into 

a more stable precursor that can withstand the condensation reaction (see 

Figure 5.5). The simplest modification would be to change the allyl chain into a 

terminal butenyl chain which would be less susceptible to isomerisation. The 

second major consideration would be to revise the synthetic route for accessing 

lactam (315) and hence extend the vinylogous sulfonamide methodology to 

include tricyclic alkaloids. Time did not allow for further investigations into this 

synthetic strategy but it certainly holds potential. 

 

  
 
Figure 5.5: Allylketoester (313) and lactam (315). 
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CHAPTER 6 
SUMMARY, FUTURE PROSPECTS, AND CONCLUSION  

 
6.1  Summary 
 
6.1.1 Attempted total synthesis of (−)-indolizidine 209D 
Our first aim at the start of this project was to repeat Yillah’s synthesis of 

(−)-indolizidine 209D,31 while verifying the experimental procedures and fully 

characterizing all intermediates as well as (−)-indolizidine 209D, particularly the 

optical rotation values. We succeeded in completing the first ten steps of the 

total synthesis (see Scheme 6.1), and obtained optical rotation values that 

correspond reasonably in sign and magnitude to the data obtained for the 

homologous synthesis by Gravestock139, 230 (see Table 6.1). Our data do, 

however, differ significantly from those obtained by Yillah (see Table 6.1).  

 

Compound Yillah31 
(R= C6H13) 
(c ≈ 1.0, CH2Cl2) 

Our data 
(R= C6H13)  
(c ≈ 1.0, CH2Cl2) 

Gravestock230  
(R= C5H11) 
(c ≈ 1.0, EtOH) 

(274) [α]D20 +13.8 [α]D20 +4.5  [α]D25 +5.1 

(275) [α]D20 -23.4 [α]D20 -13.4  [α]D26 -17.7 

(276) [α]D20 -11.3 [α]D20 +10.5  [α]D25 +6.6 

(277) [α]D20 +18.6  [α]D20 +9.5  [α]D24 +12.4 

(278) [α]D20 -9.8 [α]D20 +7.4  [α]D30 +17.2 

(280) [α]D20 -41.5 [α]D20 +11.6  - 

(281) [α]D20 -5.3 [α]D20 -25.0 - 

(282) [α]D20 +31.0 [α]D20 +9.4  - 

 

Table 6.1: Comparison of optical rotation data. ‘R’ refers to the alkyl side chain for 
compounds (274 - 282) and for the analogous compounds synthesized by Gravestock.  
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Scheme 6.1: The attempted total synthesis of (−)-indolizidine 209D. Reagents and 
conditions: i) P(OEt)3, 110°C, 24 hr.; ii) NaH, heptanal, Et2O, RT, 1 hr.; iii) a) (214), 
n-BuLi, THF, -90°C, 30 min.; b) (273), -90°C, 4 hr.; iv) H2 (7 atm.), 5% Pd-C (1.0 eq.), 
AcOH, 48 hr.; v) Cl(CH2)3COCl, NaHCO3, CHCl3, RT, 12 hr.; vi) KOBut, ButOH, RT, 
72 hr.; vii) Lawesson’s reagent,CH2Cl2, RT, 72 hr.; viii) a) MeI, THF, 72 hr.; b) (279), 
Et3N, CH2Cl2, RT, 96 hr.; ix) LiAlH4, THF, RT, 15 hr.; x) PPh3, imidazole, I2, toluene, 
reflux, 6 hr. xi) H2 (7 atm.), PtO2, MeOH;  xii) Na(Hg), Na2HPO4. 
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Our yields for the first ten steps in the synthesis compared favourably with 

those obtained by Yillah, with the exception of steps (iv), (vi) and (viii) (see 

Scheme 6.1). For steps (vi), and (viii), the low yield we observed in both cases 

was due to the formation of by-products that could not be cycled back into the 

synthesis. Step (iv), the debenzylation step, initially worked excellently (99% 

yield), but then it ceased to fully debenzylate (274), with the monodebenzylated 

product frequently isolated. This continuous failure of this reaction prevented us 

from making enough of the amine (275) to complete the synthesis. The problem 

was investigated and several alternative methods were attempted, but to no 

avail.  

 

In conclusion, we successfully completed ten out of the twelve steps in the 

synthesis of (−)-indolizidine 209D (37). We obtained optical rotation data that 

align well with similar molecules, we isolated several novel side-products, and 

most importantly, we gained sufficient experience with the methodology to 

continue with the synthesis of monomorine I and its isomers. 
 
6.1.2  Total synthesis of (±)-monomorine I 
Our second aim was to synthesize racemic monomorine I and/or its 

diastereomers using vinylogous sulfonamides for the key cyclisations. Basically, 

we wanted to extend the methodology used in the attempted synthesis of the 

5-monosubstituted indolizidine 209D (37) to include 3,5-disubstituted 

indolizidines such as monomorine I (27). The alkyl side-chain at the 3-position 

had to be introduced prior to the formation of the lactam ring, hence this 

synthesis only corresponds with the synthesis of indolizidine 209D after the 

formation of the lactam (294). Starting from achiral material, the first four steps 

in the synthesis were the basis for the synthesis of both monomorine I and its’ 

isomer 5-epi-monomorine I (see Scheme 6.2).  

 

Step (iii) was our first opportunity for stereocontrol, and by exploiting the 

functionality present we were able to adjust the stereoselectivity from (2:3) to 

(1:5), in both instances favouring the trans-isomer that was the precursor of 5-

epi-monomorine I. After the thionation reaction (step iv), the key intermediate 

diastereomers (295A) and (295B) were separated by column chromatography. 
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The overall yield for the monomorine I precursor, the cis-isomer (295A), was 

between 12 - 34%, depending on the conditions employed for step (iii).  
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Scheme 6.2: The synthesis of monomorine I precursor (295A). Reagents and 
conditions: i) n-BuMgCl, Fe(acac)3, THF, 0°C, 10 min.; ii) AcOH, toluene, reflux, 64 hr.; 
iii) 50% (w/w) Pd-C 10%, H2 (7 atm.), EtOH, RT, 72 hr.;  OR TiCl4, Ph3SiH, CH2Cl2, 
-90°C, 2 hr. increased to RT, 72 hr.; iv) Lawesson’s reagent,CH2Cl2, RT, 72 hr. 
 

Once the diastereomers (295A) and (295B) were separated, the synthesis of 

monomorine I was carried out independently of the 5-epi-monomorine I 

synthesis. Scheme 6.3 shows the total synthesis of racemic monomorine I from 

(295A). In general, all the yields for the cis-isomer were higher than for the 

trans-isomer, and the stereoselective reduction (step v) had greater 

stereocontrol than the equivalent step for the trans-isomer. (±)-Monomorine I 

was isolated as a single isomer, in 24% yield (from 295A). The spectroscopic 

data obtained compared well to the literature. Hence, monomorine I was 

synthesized via a novel ring closure in a reasonable number of steps and with 

an overall yield comparable to those observed in the literature (see Chapter 1).  
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Scheme 6.3: The synthesis of (±)-monomorine I. Reagents and conditions: i) a) MeI, 
THF, 48 hr.; b) (279), Et3N, CH2Cl2, RT, 96 hr.; ii) TFA, reflux, 30 min.; iii) LiAlH4, THF, 
RT, 15 hr.; iv) PPh3, imidazole, I2, toluene, reflux, 3 hr. v) H2 (7 atm.), PtO2, MeOH; 
vi) Na+C10H8

- (15 eq.), THF, RT, 15 min. 
 

6.1.3  Total synthesis of (±)-5-epi-monomorine I 
The route we pioneered to lactam (294) provided us with a synthetic pathway to 

both monomorine I and 5-epi-monomorine I (see Scheme 6.2), and to our 

delight, not only could we manipulate the diastereoselectivity, but we could also 

separate the thiolactam isomers by column chromatography. The overall yield, 

from ethyl 4-chloro-4-oxooctanoate, for the trans-isomer (295B) was between 

51-60%, depending on the conditions employed for the diastereoselective step 

(iii) (see Scheme 6.2). Once the diastereomers (295A) and (295B) were 

separated, the synthesis of 5-epi-monomorine I was carried out independently 

(see Scheme 6.4). In general, all the yields for the trans-isomer were lower than 

for the cis-isomer. In some of the steps the reason for the lower yield may be 

due to steric interference of the butyl group. The reduction (step v) had lower 

stereoselectivity than for the cis-isomer, and trace amounts of a third 

diastereomer, indolizidine 195B, were also detected after the final 
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desulfonylation (step vi). (±)-5-epi-Monomorine I was isolated in 12% yield (from 

295B) and the spectroscopic data obtained compared well to the literature.   
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Scheme 6.4: The synthesis of (±)-5-epi-monomorine I. Reagents and conditions: 
i) a) MeI, THF, 48 hr.; b) (279), Et3N, CH2Cl2, RT, 96 hr.; ii) TFA, reflux, 30 min.; 
iii) LiAlH4, THF, RT, 15 hr.; iv) PPh3, imidazole, I2, toluene, reflux, 3 hr. v) H2 (7 atm.), 
PtO2, MeOH; vi) Na+C10H8

- (8 eq.), THF, RT,15 min. 
 
6.1.4 Attempted enantioselective synthesis 
Our third aim for this project was to incorporate Davies’ methodology158 into our 

strategy, and hence complete the enantioselective synthesis of monomorine I 

and/or its diastereomers. Although the literature precedent was great,158, 180 - 182, 

184 and Davies’ methodology has been used in similar syntheses in the Wits 

laboratories,156 we were unable to achieve this aim. Analogous to the problems 

we experiences with the synthesis of indolizidine 209D, the benzylated amine 

(356) initially underwent complete debenzylation but later attempts at the 

reaction ceased to produce any of the desired amine (291). Instead we isolated 

the monobenzylated species (357) (see Scheme 6.5). After investigating 

several variations of the palladium-catalysed debenzylation, we concluded that 
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the quality of the catalyst was the reason that the reaction ceased to go to 

completion.  

  

 
 
Scheme 6.5: Preparation of the enantiopure amine (291). Reagents and conditions; 
 i) a) benzyl[(1R)-1-phenylethyl]amine, n-BuLi, THF, -90°C, 30 min.; b) (350), 2 hr., 
95%; ii) Pd/C, H2 (7 atm), AcOH, 72 hr. 
 
We were able to prepare enough of the amine (291) to attempt the synthesis of 

enantiopure (−)-monomorine I and (−)-5-epi-monomorine I. However, there was 

insufficient material to allow for the separation of the diastereomers (295A) and 

(295B), and as a result no optical rotation values were measured.    

 
6.1.5  Benzylated analogues 
While we were still investigating the debenzylation reaction, we accidentally 

condensed the monobenzylated amine (357) with the keto-ester (292). This led 

us to the fortuitous discovery of the enamide (388) which was remarkably 

similar to the compound we were trying to synthesize (293). We decided to 

explore the same synthetic methodology on the “benzylated analogues” (see 

Scheme 6.6) in the hope that the benzyl group could be removed at a later 

stage, and the material cycled back into the synthesis of the enantiopure 

indolizidines. The condensation reaction using (R)-α-methylbenzylamine rather 

than (357) gave superior yields and provided us with a shorter and more 

convenient method for introducing the chiral centre.  
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Scheme 6.6: The synthesis of monobenzylated analogues. Reagents and conditions: 
i) AcOH, toluene, reflux, 72 hr.; ii) 50% (w/w) Pd-C 10%, H2 (7 atm.), EtOH, RT, 72 hr.;  
OR TiCl4, Ph3SiH, CH2Cl2, -90°C, 2 hr. increased to RT, 72 hr.; iii) P2S5, HMDO, CHCl3, 
RT, 8 hr.; iv)  a) MeI, THF, 48 hr.; b) (279), Et3N, CH2Cl2, RT, 96 hr. 
 

Analogous to the monomorine I synthesis, the reduction at step (ii) was 

diastereoselective, with the highest selectivity being a 1:7 ratio of isomers. The 

thionation step (iii) also allowed separation of the isomers by column 

chromatography. We were only able to attempt step (iv) once, and unfortunately 

most of the material hydrolysed to the lactam (389), due to moisture present in 

the reaction. The product that was recovered was a mixture of (392) and (391) 

in 10% combined yield.   

 

For compounds (388), (389) and (390) we did attempt to remove the benzyl 

group using Pearlman’s catalyst with hydrogen, ammonium formate with 
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palladium on carbon, or ceric ammonium nitrate. No debenzylation was 

observed under any of the conditions we employed.  

 

The synthetic pathway for the monobenzylated analogues warrants further 

investigation as it had a higher degree of diastereoselectivity, higher yields, and 

fewer steps than the original pathway for the synthesis of (−)-monomorine I. 

 

6.1.6  Model study for ring-closing metathesis  
Our final aim for this project was to explore potential ways of accessing 

indolizidine-based tricyclic systems using model systems and ring-closing 

metathesis. We were hoping to extend our methodology to include more 

complex alkaloid systems such as the tricyclic alkaloid 205B, which 

incorporates the 3,5-disubstituted indolizidine skeleton into its structure.  

 

The results we obtained were extremely disappointing. We finally succeeded in 

preparing the allylketoester (313) when the alkene isomerised to the conjugated 

internal position, giving an intermediate that acts as a Michael-acceptor when 

heated with the allylamine. Clearly, the proposed model study (see Scheme 

6.7) proved to be an invalid synthetic pathway. The work of Holmes and co-

workers,176 Kim and co-workers,242 and Smith III et al.122 has already shown the 

potential of RCM in the synthesis of bicyclic and tricyclic nitrogenous 

compounds, but in order to incorporate this methodology into our current 

synthetic strategy, we would need to modify the allylketoester (313) into a more 

stable precursor that can withstand the condensation reaction. The simplest 

modification would be to change the allyl chain into a terminal butenyl chain 

which would not be as susceptible to isomerisation. Time did not allow for 

further investigations into this synthetic strategy but there is certainly potential. 
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Scheme 6.7: Proposed model synthesis for the RCM approach. Reagents and 
conditions:  i) Fe(acac)3, THF, 0°C, 10 min.;  ii) AcOH, toluene, reflux, 72 hr.; iii) TiCl4, 
Ph3SiH, CH2Cl2, -90°C, 2 hr., increased to RT, 72 hr. iv) 5 mol% Grubbs II, toluene. 
 
6.2 Future prospects 

 
6.2.1  A new chiral auxiliary 
The biggest difficulty faced during this project was the introduction of the chiral 

centre using Davies’ methodology, and in order to complete the total synthesis 

of (−)-indolizidine 209D, (−)-monomorine I and (−)-5-epi-monomorine I, it is 

mandatory that this hurdle is overcome.  The next few pages offer alternative 

methods for introducing the amine enantioselectively to the generic alkenoate 

(403), and then removing the chiral auxiliary to give the aminoester (406).  

 

Davies et al.211 have recently developed a novel chiral amine, 

(α-methylbenzyl)allylamine, which extended the scope of their strategy to 

include functional groups such as alkenes. The most important feature of this 

chiral amine is that it can be completely deprotected without using 

hydrogenation conditions (see Scheme 6.8). The allyl group can be selectively 

cleaved from compound (404), using Wilkinson’s catalyst, and the α-

methylbenzyl group can be selectively cleaved from compound (405) using 

dissolving metal conditions. The reported yields for a range of alkyl and alkenyl 
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R-groups were between 92 – 99% for the three steps, and the de’s were above 

98%.211 

 

 
Scheme 6.8: Aza-Michael addition by Davies et al.211 Reagents and conditions: 
i) (S)-(α-methylbenzyl)allylamine, n-BuLi, THF, -78°C; ii) (PPh3)3RhCl; iii) Na/NH3. 
 
 
Enders et al.243 developed a method for introducing the amino-group via TMS-

SAMP, (S)-(−)-2-methoxymethyl-1-trimethylsilylaminopyrrolidine (see Scheme 

6.9). This method avoids the use of palladium-catalysed hydrogenation. 

Compound (407) was deprotected in two steps; treatment with silica followed by 

a Raney-nickel reduction. The Scheme below has been demonstrated for a 

range of alkyl R-groups, with ee’s between 90 – 98%.179 

 

 
 
Scheme 6.9: Aza-Michael addition by Enders et al.243 Reagents and conditions: 
i) TMS-SAMP, n-BuLi, THF, -78°C; ii) a) SiO2, EtOAc; b) Raney-Ni/H2. 
 

Davies and co-workers182, 183, 184 have also worked with another chiral amine, 

(R)-N-benzyl-N-α-methyl-4-methoxybenzylamine, which has slightly different 

chemical properties than N-benzyl-N-(1R)-1-phenylethylamine (214), the chiral 

amine we used during this project. The presence of the methoxy group makes 

the amine more susceptible to oxidative cleavage when reagents such as ceric 

ammonium nitrate (CAN) and 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) are 

used.183, 184 Scheme 6.10 illustrates the chemoselective debenzylation of 
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compound (408), followed by removal of the 4-methoxybenzyl group from (409). 

Davies and co-workers182 obtained ee’s of 97%, whereas Zhang and co-

workers,244 who used formic acid to remove the 4-methoxybenzyl group, 

reported ee’s of 95%. In both of the reported cases, the R-group was a β-

pyridyl.182 

 

 
 
Scheme 6.10: Aza-Michael addition by Davies and co-workers182, 184 Reagents and 
conditions:  i) (R)-N-benzyl-N-α-methyl-4-methoxybenzylamine, n-BuLi, THF, -78°C; ii) 
CAN (2.1 eq.) MeCN: H2O (1:5), RT; iii) CAN (4.0 eq.), MeCN : H2O (1:5), RT; OR iii) 
HCO2H, Et3SiH. 
 
Another method of introducing the stereogenic centre is to use a chiral ester to 

direct the aza-Michael addition. d’Angelo and co-workers245 have successfully 

demonstrated this method (see Scheme 6.11) with de’s for compound (411) 
greater than 99% when R was a methyl group. The one disadvantage of this 

method is the high pressure required to introduce the amine.179, 245 
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Scheme 6.11: Aza-Michael addition by d’Angelo and co-workers245 Reagents and 
conditions:  i) Ph2CHNH2, 14 - 15 bar. 
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6.2.2  Extending the reach of the Wits methodology  
Having successfully completed the synthesis of two 3,5-dialkylated indolizidine 

alkaloids, we wish to apply our methodology to a broader range of alkaloids 

within this family. Additional 3,5-disubstituted ant and amphibian alkaloids are 

shown in Figure 6.2. Some of them differ from monomorine I only in the length 

of the alkyl substituents [compounds (90), (91) and (92)], while others contain 

alkenes or hydroxy-groups [compounds (88), (412), (413), (414), (415) and 

(30)]. We have already glimpsed the difficulties that can be encountered when 

incorporating an alkene into the side-chain, and incorporating an alcohol would 

also introduce interesting problems and nuances into the synthesis.  
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Figure 6.2: A range of ant and amphibian 3,5-disubstituted indolizidines. 

 
The basic synthetic strategy would be the same, (see Figure 6.3). Lactam (416) 

would be accessed from a condensation reaction between ketoester (417) and 
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amine (418). The ketoester could be prepared from acid chloride (311) using a 

Grignard reaction, and the amine could be accessed via an aza-Michael 

addition reaction with the alkenoate (419). Various parameters would need to 

be changed and optimized, especially for the targets with functionalized side-

chains. The hydroxy-groups would need to be protected to prevent interference 

with the cyclisation reaction, and the reduction reactions would have to be 

chemoselective, or the alkenes would also need protection.  
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Figure 6.3: Retrosynthetic scheme of the pyrrolidinone intermediate.  

 

6.2.3  Partnering up with ring-closing metathesis  
On closer examination of our brief explorations into RCM, it is clear that the 

positioning of the alkene groups is critical for the success of the synthetic 

strategy. The work of Holmes and co-workers,176 Kim and co-workers,242 and 

Smith III et al.122 has already demonstrated the potential of RCM in the 

synthesis of bicyclic and tricyclic nitrogenous compounds. However, in all three 

cases, both alkene groups are terminal, and neither alkene is positioned where 

it can isomerise into conjugation.  

 

Therefore, in order to incorporate this methodology into our current synthetic 

strategy, we would need to modify the allylketoester (313) into a more stable 

precursor that can withstand the condensation reaction (see Figure 6.4). The 

simplest modification would be to change the allyl chain into a butenyl chain 

which would not be as susceptible to isomerisation (405).  
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Figure 6.4: Allylketoester (313) and the modified analogue (405). 

 
Our original idea was to develop a route to access lactam (315) and hence 

apply RCM to form the bicyclic system (316) (see Scheme 6.12). Then the 

vinylogous sulfonamide methodology could be used to extend it to a tricyclic 

system (317). Future workers will need to revise the synthetic route for 

accessing lactam (315), avoiding condition such as toluene and acetic acid 

heated at reflux, as this potentially offers a novel route to the tricyclic skeleton.   
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Scheme 6.12: Proposed synthesis for the formation of the tricyclic skeleton (317). 

 
6.3 Conclusion 
 
In conclusion, the use of vinylogous sulfonamides as the key intermediate for 

forming the bicyclic skeleton of indolizidine alkaloids, (−)-indolizidine 209D, 

(±)-monomorine I and (±)-5-epi-monomorine I was proven a successful 

strategy. Unfortunately, the method of introducing the chiral centre presented 

us with problems we were unable to overcome. We did, however, explore 

additional side routes to try and circumvent the problem, and in the process 

uncovered interesting by-products, not to mention red herrings! Our attempt to 

extend the methodology to tricyclic systems was not successful, although it did 

pave the way for future workers to investigate the use of RCM in conjunction 

with vinylogous sulfonamides in the synthesis of targets with even greater 

structural complexity. 
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CHAPTER 7 
EXPERIMENTAL PROCEDURES RELATING TO CHAPTER 3 

 
7.1 General experimental procedures  
 
7.1.1 Purification of solvents and reagents 
Solvents used for chromatographic purposes were distilled before use by 

means of conventional distillation procedures. Unless otherwise stated, 

solvents used for reaction purposes were dried over an appropriate drying 

agent and then distilled under nitrogen gas. Tetrahydrofuran (THF) and diethyl 

ether (Et2O) were distilled from sodium wire using benzophenone as an 

indicator. Toluene was distilled from sodium lumps. Dichloromethane (CH2Cl2), 

dimethylformamide (DMF) and acetonitrile (MeCN) were distilled from calcium 

hydride. Potassium t-butoxide was resublimed under vacuum immediately prior 

to use. n-Butyllithium was titrated immediately prior to use, using the titration 

method outlined by Krasovskiy and Knochel.246 

 
7.1.2 Chromatography 
Separation of compounds by column chromatography was performed using 

Merck or Fluka silica-gel (particle size 0.063-0.200 mm). Rf values quoted are 

for thin layer chromatography (TLC) which was performed using Merck silica-

gel 60 F254 or on Fluka silica-gel 60 F254 coated on aluminium sheets. 

Compounds on the TLC plates were viewed under UV light, or by staining the 

plates with basic potassium permanganate, bromocresol green, iodine or 

Dragendorff’s reagent as appropriate.  

 
7.1.3 Spectroscopic and physical data 
1H NMR spectra were recorded either on a Bruker AVANCE 300 spectrometer 

or on a Bruker DRX-400 spectrometer at the indicated frequency. Chemical 

shifts are reported on the δ scale relative to tetramethylsilane as an internal 

standard. The chemical shifts are reported as follows: Value (number of 

hydrogens, description of signal, coupling constant(s) in Hz where applicable, 

and assignment). Abbreviations used include: s (singlet), d (doublet), t (triplet), 
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q (quartet) and m (multiplet). Diastereotopic hydrogens are differentiated with 

the suffix A and B. COSY spectra were routinely run to enable more complete 

assignment of the signals. 

  
13C NMR spectra were recorded either on a Bruker AVANCE 300 spectrometer 

or on a Bruker DRX-400 spectrometer at frequencies of 75 MHz or 100 MHz 

respectively. Chemical shifts are reported on the δ scale relative to the central 

signal of deuterated chloroform, taken as 77.00 ppm. DEPT and C-H spectra 

were routinely run to enable more complete assignments of the signals. 

 

Infra-red spectra were recorded on a Bruker Tensor 27 Fourier Transform 

spectrometer with diamond ATR attachment. Abbreviations used in describing 

the signals are: s (strong), m (medium), w (weak), br (broad). Assignments are 

only indicated for key signals. 

 

Optical rotations were obtained on a Jasco DIP-370 Digital Polarimeter. The 

reported values each represent an average of consistent measurements. The 

concentration of the sample is given in g / 100 mL of solvent. 

 

Melting points were recorded using a JM 626 melting-point apparatus with 

microscope and a digital thermometer. 

 

High-resolution mass spectra (ESI/EI) were recorded either on a VG70 MS 

(Mass spectrum CC Pyramid data system), a VG70 SEQ (VG 11-205J or Mar II 

data system), or on a DFS High Resolution Magnetic Sector mass 

spectrometer. 

 

Crystallographic information was obtained using intensity data collected on a 

Bruker SMART 1K CCD area detector diffractometer with graphite 

monochromated Mo Kα radiation (50 kV, 30 mA). The collection method 

involved ω-scans of width 0.3°. Data reduction was carried out using the 

programme SAINT+.247 The crystal structure was solved by direct methods 

using SHELXTL248 and WINGX.249 Non-hydrogen atoms were first refined 

isotropically followed by anisotropic refinement by full matrix least-squares 
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calculations based on F2 using SHELXTL.248 Hydrogen atoms were first located 

in the difference map, then positioned geometrically and allowed to ride on their 

respective parent atoms. Diagrams were generated using SHELXTL248 and 

PLATON.250 Crystal structures were grown using Mercury 1.4.251 

 
All molecular dynamic/simulated annealing calculations (MD/SA) were 

performed using Hyperchem,228 together with the Generalised Amber Force 

Field (GAFF)252, 253 parameters. Where parameters were not available (i.e. 

parameters involving titanium), new, crude ones were developed. A typical 

MD/SA simulation designed to discover stable conformations, began by an 

initial heating phase of 5 ps from 0 K to 1200 K. The run phase was then varied 

between 0 ps and 18 ps at 1200 K. This was subsequently followed by a 

cooling phase from 1200 K to 0 K over 50 ps. At this point the molecule was 

subjected to a full energy minimisation. 

 

7.1.4 Additional general procedures and terminology 
Evaporation in vacuo refers to the removal of solvent under reduced pressure 

at 40 - 50°C on a rotary evaporator.  

 

Hydrogenations were set up in a Büchiglasuster picoclave “Parr Hydrogenator” 

with a built in stirrer and a maximum pressure of 10 bar. 

 

Dean-Stark apparatus refers to a U-shaped glass apparatus which allows 

solvent heated at reflux to collect and separate by density in the side arm 

before flowing back into the flask, hence aiding the removal of a dense solvent 

such as H2O from the reaction. We prepared a modified Dean-Stark apparatus 

whereby the solution heats to reflux and passes through a catchment area of 

molecular sieves before returning to the round bottom flask.  

 
7.1.5 Nomenclature and compound numbering 
The compounds prepared during this project are named in the following 

experimental sections according to systematic nomenclature. However, the 

numbering system used in the diagrams of the compounds is one adopted for 



 

 235

convenience and to allow easier comparison between NMR assignments and 

does not reflect the systematic numbering of these compounds. 
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7.2 Towards the total synthesis of enantiopure (−)-indolizidine 209D 
 
7.2.1 Horner-Wadsworth-Emmons reaction 
7.2.1.1 Preparation of t-butyl 2-(diethoxyphosphoryl)acetate (272) 
Triethyl phosphite (4.7 mL, 28 mmol) was added to t-butyl bromoacetate (3.7 

mL, 25 mmol) in a RBF fitted with a condenser, under a nitrogen atmosphere. 

The mixture was heated at reflux at 110°C for 24 hours until starting material 

could not be detected by TLC analysis. The reaction was cooled and the crude 

product was rinsed with distilled H2O (25 mL) and extracted into EtOAc (2 × 25 

mL). The combined organic extracts were dried with sodium sulfate and filtered. 

The solvent was removed in vacuo and the crude product was purified by 

column chromatography (30% EtOAc/hexane) to give t-butyl 2-
(diethoxyphosphoryl)acetate (272) (6.31 g) as a clear oil in quantitative yield. 

The obtained spectra correspond with literature values.154 
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Rf 0.10 (30% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 4.17 (4H, dq, JP-H 14.3, J 7.1, H-3), 2.88 (2H, d, 

JP-H  21.5, H-2), 1.48 (9H, s, H-6), 1.35 (6H, t, J 7.1, H-4). 
 
13C (75 MHz, CDCl3) δC /ppm 164.6 (d, JP-C 6.3, C-1), 81.7 (C-5), 62.2 (d, JP-C 

6.2, C-3), 35.4 (d, JP-C 133.2, C-2), 27.2 (C-6), 16.1 (d, JP-C 6.3, C-4). 

 
31P (121 MHz, CDCl3) δP /ppm 321.4 (P). 

νmax. / cm-1: 2981 (m, C-H), 2934 (m, C-H), 1725 (s, C=O), 1394 (m), 1368 (m), 

1286 (s, P=O), 1255 (s, P=O), 1164 (m), 1113 (m), 1029 (s), 959 (s), 829 (w). 

 

m/z: 197 (36%), 179 (100), 151 (53), 123 (41), 81 (9), 57 (40).  
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7.2.1.2 t-Butyl (E)-2-nonenoate (273) 
An oven-dried, 100 mL RBF was charged with sodium hydride (60% in oil, 1.50 

g, 37.5 mmol) and pre-distilled Et2O (60 mL), under an atmosphere of nitrogen 

gas. The resulting suspension was cooled to 0°C in an ice bath and t-butyl 2-
(diethoxyphosphoryl)acetate (272) (6.31 g, 25.0 mmol) was added dropwise 

over 10 minutes. Heptanal (3.8 mL, 28 mmol) in Et2O (15 mL) was added by 

dropping funnel over 15 minutes. The ice bath was removed and the mixture 

was stirred at ambient temperature for an additional hour. The reaction was 

quenched by the addition of saturated ammonium chloride solution (20 mL) and 

then extracted into Et2O (3 × 50 mL). The combined organic extracts were dried 

with sodium sulfate and filtered. The solvent was evaporated in vacuo and the 

crude product was purified using column chromatography (2% - 5% 

EtOAc/hexane) to give t-butyl (E)-2-nonenoate (273) (5.31 g, 100% yield) as a 

clear oil in quantitative yield. 

 

 
 

Rf 0.72 (5% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 6.86 (1H, dt, J 15.6, 6.9, H-3), 5.73 (1H, dt, J 

15.6, 1.5, H-2), 2.20-2.12 (2H, m, H-4), 1.48 (9H, s, H-11), 1.36-1.23 (8H, m, 

H-5, H-6, H-7, H-8), 0.88 (3H, t, J 6.7, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 166.1 (C-1), 148.1 (C-3), 122.9 (C-2), 79.9 

(C-10), 32.0 (C-4), 31.7 (C-5), 28.8 (C-6), 28.1 (C-11), 28.0 (C-7), 22.5 (C-8), 

14.0 (C-9). 

 

νmax. / cm-1: 2957 (m, C-H), 2927 (m, C-H), 2857 (m, C-H), 1715 (s, C=O), 1653 

(m, C=C), 1457 (m), 1367 (m), 1152 (s), 1124 (s), 978 (m), 851 (w). 

 

m/z: 157 (36%), 139 (16), 115 (100), 97 (88), 70 (57), 55 (82). 
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7.2.2 Conjugate addition reaction 
7.2.2.1 t-Butyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}nonanoate (274) 
N-Benzyl-N-(1R)-1-phenylethylamine (5.97 g, 28.3 mmol) was mixed with pre-

distilled THF (100 mL) in an oven dried RBF under a nitrogen atmosphere and 

the mixture was cooled to -90°C in a liquid nitrogen/acetone bath. Freshly 

titrated n-butyllithium in hexane (1.2 M, 26 mmol) was carefully added and the 

mixture was stirred for 30 minutes. A pronounced colour change from clear to 

deep red was observed as the n-butyllithium was added and the red colour 

remained throughout stirring. t-Butyl (E)-2-nonenoate (273) (5.00 g, 23.5 

mmol) was mixed with THF (20 mL) and added over a period of 30 minutes by 

means of a dropping funnel. The reaction was kept at -90°C for a further 4 

hours, and during this time the colour of the mixture lightened. The reaction was 

quenched by the addition of saturated ammonium chloride solution (20 mL). 

The THF was removed in vacuo and the product was extracted into EtOAc (3 × 

50 mL), dried with sodium sulfate and filtered. The solvent was removed in 

vacuo and the resulting crude yellow oil was purified by column 

chromatography (5% EtOAc/hexane) to give t-butyl (3R)-3-{benzyl[(1R)-1-
phenylethyl]amino}nonanoate (274) (8.12 g, 82% yield) as a pale yellow oil. 
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Rf 0.63 (10% EtOAc/hexane), [α]D20 +4.5 (c 1.00, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.47-7.17 (10H, m, Ar-H), 3.86-3.74 (2H, m, 

H-12, H-14A), 3.48 (1H, d, J 15.0, H-14B), 3.35-3.24 (1H, m, H-3), 1.96 (1H, dd, 

J 14.5, 3.7, H-2A), 1.86 (1H, dd, J 14.5, 9.2, H-2B), 1.61-1.15 (10H, m, H-4, 
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H-5, H-6, H-7, H-8), 1.39 (9H, s, H-11), 1.32 (3H, d, J 6.9, H-13), 0.88 (3H, t, J 

6.7, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 172.2 (C-1), 143.2 (C-15/15`), 142.1 (C-15/15`), 

128.2 (C-16/16`), 128.1 (C-16/16`), 128.0 (C-17/17`), 127.9 (C-17/17`), 126.8 

(C-18/18`), 126.5 (C-18/18`), 79.8 (C-10), 58.4 (C-12), 54.0 (C-3), 50.1 (C-14), 

37.9 (C-2), 33.5 (C-4), 31.9 (C-5), 29.3 (C-6), 28.1 (C-11), 26.9 (C-7), 22.7 

(C-8), 20.5 (C-13), 14.1 (C-9). 

 

νmax. / cm-1: 2929 (m, C-H), 2857 (m, C-H), 1726 (s, C=O), 1455 (m), 1368 (m), 

1146 (s), 956 (w), 848 (w), 702 (s). 

 

m/z: 423 (1%, M), 408 (2), 352 (4), 338 (32), 308 (30), 282 (22), 250 (10), 204 

(28), 178 (64), 146 (26), 105 (100), 91 (89). Found 423.3131, C28H41O2N 

requires 423.3137. 

 
7.2.3 Debenzylation reactions 
7.2.3.1 t-Butyl (3R)-3-[N-(1-phenylethyl)amino]nonanoate (323) and t-butyl 
(3R)-3-aminononanoate (275) 
Method A 

10% Palladium on carbon (80 mg, 0.10 eq.) was added to a mixture of t-butyl 
(3R)-3-{benzyl[(1R)-1-phenylethyl]amino}nonanoate (274) (0.80 g, 1.9 

mmol) dissolved in AcOH (5 mL). The resulting suspension was set up under 7 

atmospheres of hydrogen pressure in a hydrogenator and stirred at ambient 

temperature for 48 hours. The solution was then filtered through Celite® and 

rinsed with CH2Cl2 (150 mL) in order to remove the residual catalyst. The 

CH2Cl2 was removed in vacuo and the AcOH was removed using toluene as an 

azeotrope. The crude yellow oil was purified by column chromatography (10% 

EtOAc/hexane - 10% MeOH/EtOAc) to give t-butyl (3R)-3-aminononanoate 
(275) (204 mg, 46% yield) and t-butyl (3R)-3-[N-(1-
phenylethyl)amino]nonanoate (323) (340 mg, 54% yield) both as clear oils. 
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Rf 0.56 (20% EtOAc/hexane), [α]D20 +20.4 (c 0.91, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.38-7.17 (5H, m, H-15, H-16, H-17), 3.89 (1H, q, 

J 6.5, H-12), 2.76-2.68 (1H, m, H-3), 2.66-2.50 (1H, s, N-H), 2.37 (1H, dd, J 

14.4, 5.9, H-2A), 2.26 (1H, dd, J 14.4, 4.4, H-2B), 1.45 (9H, s, H-11), 1.33 (3H, 

d, J 6.5, H-13), 1.30-1.09 (10H, m, H-4, H-5, H-6, H-7, H-8), 0.85 (3H, t, J 6.8, 

H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 171.8 (C-1), 145.9 (C-14), 128.3 (C-15/16), 126.8 

(C-17), 126.7 (C-15/16), 80.2 (C-10), 55.1 (C-12), 52.2 (C-3), 39.6 (C-2), 35.1 

(C-4), 31.7 (C-5), 29.2 (C-6) , 28.1 (C-11), 25.7 (C-7), 24.7 (C-8), 22.5 (C-13), 

14.0 (C-9). 

 

νmax. / cm-1: 3194 (w, br, N-H), 2957 (m, C-H), 2926 (m, C-H), 2856 (m, C-H), 

1724 (s, C=O), 1666 (w), 1454 (m), 1366 (m), 1150 (s), 953 (w), 843 (w), 700 

(s).  

 

m/z: 333 (1%, M), 318 (3), 262 (16), 248 (11), 218 (18), 192 (46), 172 (7), 120 

(17), 105 (100), 88 (20), 79 (8). Found 333.2662, C21H35O2N requires 333.2668. 
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Rf 0.33 (100% EtOAc), [α]D20 -13.4 (c 0.98, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 5.20 (2H, s, N-H), 3.29-3.18 (1H, m, H-3), 2.40 

(1H, dd, J 16.0, 4.2, H-2A), 2.34 (1H, dd, J 16.0, 7.8, H-2B), 1.46 (9H, s, H-11), 

1.46-1.21 (10H, m, H-4, H-5, H-6, H-7, H-8), 0.88 (3H, t, J 6.4, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 171.5 (C-1), 80.9 (C-10), 48.3 (C-3), 41.7 (C-2), 

35.9 (C-4), 31.6 (C-5), 29.1 (C-6), 28.1 (C-11), 25.7 (C-7), 22.5 (C-8), 14.0 

(C-9). 

 
νmax. / cm-1: 3420 (br, N-H), 2957 (m, C-H), 2928 (m, C-H), 2858 (m, C-H), 1727 

(s, C=O), 1558 (s), 1393 (m), 1368 (m), 1150 (s), 948 (w), 842 (w). 

 

m/z: 229 (1%, M), 172 (14), 144 (7), 114 (43), 88 (100), 56 (53). Found 

229.2036, C13H27O2N requires 229.2042. 

 
Method B 

5% Palladium on carbon (400 mg, 1.0 eq.) was added to a mixture of t-butyl 
(3R)-3-{benzyl[(1R)-1-phenylethyl]amino}nonanoate (274) (0.40 g, 

0.95 mmol) dissolved in AcOH (3 mL). The resulting suspension was set up 

under 7 atmosphere of hydrogen pressure in a hydrogenator and stirred at 

ambient temperature for 48 hours. The solution was then filtered through 

Celite® and rinsed with CH2Cl2 (150 mL) in order to remove the residual 

catalyst. The CH2Cl2 was removed in vacuo and the AcOH was removed using 

toluene as an azeotrope. The crude yellow oil was purified by column 
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chromatography (10% EtOAc/hexane -10% MeOH/EtOAc) to give t-butyl (3R)-
3-aminononanoate (275) (215 mg, 99% yield) as a pale yellow, gummy oil.e 

 

Method C 

5% Palladium on carbon (2.17 g, 0.25 eq.) was added to a mixture of t-butyl 
(3R)-3-{benzyl[(1R)-1-phenylethyl]amino}nonanoate (274) (8.66 g, 

20.5 mmol) dissolved in AcOH (5 mL) and MeOH (15 mL). The resulting 

suspension was set up under 5 atmospheres of hydrogen pressure in a 

hydrogenator and stirred at ambient temperature for 96 hours. The solution was 

then filtered through Celite® and rinsed with CH2Cl2 (150 mL) in order to remove 

the residual catalyst. The CH2Cl2 was removed in vacuo and the AcOH was 

removed using toluene as an azeotrope. The crude oil was purified by column 

chromatography (10% EtOAc/hexane - 10% MeOH/EtOAc) to give (R)-1-t-
butoxy-1-oxononan-3-aminium acetate (324) (3.26 g, 55% yield) as a 

creamy-white solid. 

 

 
M.p. 69 -73 °C 

 

Rf  0.06 (50% EtOAc/hexane),  [α]D20 -10.0 (c 1.00, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.17 (3H, s, N-H), 3.34-3.14 (1H, m, H-3), 

2.48-2.44 (2H, m, H-2), 1.96 (3H, s, H-13), 1.66-1.50 (2H, m, H-4), 1.45 (9H, s, 

H-11), 1.38-1.23 (8H, m, H-5, H-6, H-7, H-8), 0.88 (3H, t, J 6.5, H-9). 

 

                                                 
eThe yields for partially and fully debenzylated products were extremely variable and a 
range of catalysts from different suppliers was used. See Chapter 3 for the detailed 
explanation. 
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13C (75 MHz, CDCl3) δC /ppm 177.3 (C-12), 171.2 (C-1), 81.3 (C-10), 48.2 

(C-3), 39.8 (C-2), 34.6 (C-4), 31.6 (C-5), 29.1 (C-6), 28.0 (C-11), 25.6 (C-7), 

23.3 (C-13), 22.5 (C-8), 14.0 (C-9). 

 
νmax. / cm-1: 3500-2800 (br, N-H), 2957 (m, C-H), 2930 (m, C-H), 2860 (m, C-H), 

1731 (s, C=O), 1560 (s), 1395 (s), 1369 (m), 1231 (m), 1157 (s), 949 (w), 843 

(w), 650 (w). 

 

Method D 

A 100 mL RBF was charged with MeOH (15 mL) and t-butyl (3R)-3-
{benzyl[(1R)-1-phenylethyl]amino}nonanoate (274) (500 mg, 1.18 mmol). 

Ammonium formate (596 mg, 9.45 mmols) was added and the solution was 

stirred under a nitrogen atmosphere until the solution was homogenous. 10% 

Palladium on carbon (185 mg, 0.37 eq.) was carefully stirred into the mixture 

(the methanolic vapours readily ignited if the system was not properly flushed 

with nitrogen). The reaction was left at ambient temperature for 3 hours until 

TLC indicated that all the starting material was consumed. The mixture was 

filtered through Celite® and rinsed with MeOH (2 × 20 mL) to remove the 

catalyst. The solvent was removed in vacuo and the residue was rinsed with 

sodium hydroxide solution (1.0 M, 8 mL) and extracted into CH2Cl2 (2 × 20 mL). 

The combined organic extracts were dried with sodium sulfate and the solvent 

was removed in vacuo. Purification of the crude oil by column chromatography 

(5% - 100% EtOAc/hexane) gave t-butyl (3R)-3-aminononanoate (275) 
(200 mg, 74% yield) as a clear oil.f  

 
Method E 

10 - 20% Palladium hydroxide on carbon (2.00 g, 0.25 eq.) was added to a 

mixture of t-butyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}nonanoate (274) 
(8.00 g, 18.9 mmol) dissolved in absolute EtOH (30 mL). The resulting 

suspension was set up under 7 atmosphere of hydrogen pressure in a 

hydrogenator and stirred at ambient temperature for 48 hours. The solution was 

then filtered through Celite® and rinsed with CH2Cl2 (150 mL) in order to remove 
                                                 
f Unfortunately this reaction was not reproducible; see Chapter 3 for a detailed 
discussion. 
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the residual catalyst. The solvent was removed in vacuo and the crude yellow 

oil was purified by column chromatography (5% - 100% EtOAc/hexane) to give 

t-butyl nonanoate (325) (2.12 g, 53% yield) as a clear oil. 

 
Method F 

t-Butyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}nonanoate (274) (500 mg, 

1.18 mmol) was dissolved in formic acid (5 mL) and was heated at reflux for 3 

hours. The reaction mixture was cooled, the formic acid removed in vacuo, and 

the crude residue purified by column chromatography (20% - 100% 

EtOAc/hexane) to give (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}nonanoic 
acid (326)  (400mg, 92% yield). 
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Rf 0.49 (50% EtOAc/hexane), [α]D20 -26.9 (c 1.08, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 11.2-10.8 (1H, s, O-H), 7.33-7.24 (10H, m, Ar-H), 

4.16 (1H, q, J 7.2, H-10), 3.92 (1H, d, J 14.0, H-12A), 3.84 (1H, d, J 14.0, 

H-12B), 3.41-3.34 (1H, m, H-3), 2.37 (1H, dd, J 16.8, 4.8, H-2A), 2.07 (1H, dd, J 

16.8, 10.8, H-2B), 1.70-1.62 (1H, m, H-4A), 1.57 (3H, d, J 6.9, H-11), 1.41-1.12 

(9H, m, H-4B, H-5, H-6, H-7, H-8), 0.88 (3H, t, J 7.2, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 174.2 (C-1), 139.3 (C-13/C-13’), 135.8 

(C-13/C-13’), 129.2, 128.8, 128.7, 128.4, 128.2, 128.0 (C-14, C-14’, C-15, 

C-15’, C-16, C-16’), 60.3 (C-10), 56.8 (C-3), 49.5 (C-12), 35.0 (C-2), 31.5 (C-4), 

30.4 (C-5), 29.2 (C-6), 26.7 (C-7), 22.5 (C-8), 17.8 (C-11), 13.9 (C-9) 
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νmax. / cm-1: 2955 (m, C-H), 2928 (m, C-H), 2856 (m, C-H), 1716 (s, C=O), 1492 

(s), 1396 (m), 1375 (m), 1273 (m), 1207 (m), 749 (m), 700 (s). 

 

m/z: no parent ion, 352 (5%), 308 (16), 282 (27), 250 (17), 204 (18), 178 (42), 

146 (40), 105 (100).  C24H33O2N requires 367.2511. 
 
Method G 

t-Butyl (3R)-3-[N-(1-phenylethyl)amino]nonanoate (323) (0.30 g, 0.90 

mmols) was dissolved in absolute ethanol (3 mL)  with palladium hydroxide (10 

- 20%, 30 mg, 0.10 eq.). The reaction was set up under 7 atmospheres of 

hydrogen pressure in the hydrogenator at ambient temperature for 72 hours. 

The reaction mixture was filtered through Celite® to remove the catalyst, and 

was rinsed with CH2Cl2 (150 mL). The solvent was removed in vacuo and then 

the crude product was dried under high vacuum for 20 minutes. 1H-NMR 

spectra of the crude material indicated 100% recovery of starting material and 

that no debenzylation had occurred. 

 

Method H 

t-Butyl (3R)-3-[N-(1-phenylethyl)amino]nonanoate (323) (0.50 g, 1.5 mmol) 

and ceric ammonium nitrate (3.29 g, 6.00 mmol) were dissolved in MeCN/H2O 

(1:5, 12 mL) and stirred at ambient temperature for 12 hours. The reaction was 

quenched with saturated sodium bicarbonate solution (10 mL) and filtered 

through cotton wool. The product was extracted into CH2Cl2 (4 × 20 mL) and 

dried with sodium sulfate. The solvent was removed in vacuo and the crude 

product was purified by column chromatography (5% - 50% EtOAc/hexane) to 

give back starting material t-butyl (3R)-3-[N-(1-phenylethyl)amino]nonanoate 

(323) (250 mg, 50%  recovery). 

 

7.2.4 Formation of the lactam and cyclopropane by-products 
7.2.4.1 t-Butyl (3R)-3-[N-(4-chlorobutanoyl)amino]nonanoate (276) 
In an oven dried flask, t-butyl (3R)-3-aminononanoate (275) (0.22 mg, 

0.94 mmol) was dissolved in CHCl3 (2 mL) followed by the addition of sodium 

bicarbonate (0.12 g, 1.4 mmol) and 10 minutes of stirring. Chlorobutyryl 

chloride (126 µl, 1.1 mmol) was then added and the reaction was left stirring at 
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ambient temperature for 12 hours. The mixture was filtered to remove residual 

solids and was rinsed thoroughly with CH2Cl2 (2 × 20 mL). The solvent was 

removed in vacuo and the crude material was purified by column 

chromatography (10% - 50% EtOAc/hexane). The product, t-butyl (3R)-3-[N-
(4-chlorobutanoyl)amino]nonanoate (276), was only UV-active at high 

concentrations and was recovered as a odoriferous, pale brown oil in 

quantitative yield (314 mg, 100% yield). 

 

 
 

Rf 0.63 (20% EtOAc/hexane), [α]D20 +10.5 (c 1.00, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 6.22 (1H, d, J 8.7, N-H), 4.28-4.16 (1H, m, H-3), 

3.61 (2H, t, J 6.6, H-13), 2.54 (1H, t, J 7.2, H-11A), 2.46-2.30 (1H, m, H-11B), 

2.39-2.32 (2H, m, H-2), 2.16-2.01 (2H, m, H-12), 1.45 (9H, s, H-15), 1.47-1.10 

(10H, m, H-4, H-5, H-6, H-7, H-8), 0.87 (3H, t, J 6.5, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 171.4 (C-10), 171.2 (C-1), 81.2 (C-14), 46.2 

(C-3), 44.4 (C-13), 39.6 (C-2), 34.1 (C-4), 33.4 (C-11), 30.8 (C-5), 29.0 (C-6), 

28.2 (C-12), 28.0 (C-15), 26.0 (C-7), 22.5 (C-8), 14.0 (C-9). 

 

νmax. / cm-1: 3289 (br, N-H), 2928 (m, C-H), 2857 (m, C-H), 1725 (s, OC=O), 

1645 (s, NC=O), 1545 (m), 1367 (m), 1256 (m), 1153 (s), 947 (w). 

 

m/z: 333 (2%, M), 277 (25), 260 (21), 224 (26), 192 (56), 172 (77), 156 (96), 

112 (100),  88 (74), 57 (85). Found 333.2064, C17H32O3N35Cl requires 

333.2071. 
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7.2.4.2 t-Butyl (3R)-3-(2-oxo-1-pyrrolidinyl)nonanoate (277) 
Potassium t-butoxide was carefully sublimed and t-butanol was pre-distilled. 

t-Butyl (3R)-3-[N-(4-chlorobutanoyl)amino]nonanoate (276) (1.96 g, 

5.90 mmol) was dissolved in t-butanol (10 mL) and the potassium t-butoxide 

(1.32 g, 11.7 mmol) was carefully added to the solution under a nitrogen 

atmosphere. The mixture was left to stir at ambient temperature for 72 hours 

and was quenched by the careful addition of AcOH (5 mL). The solution was 

rinsed with distilled H2O (20 mL) and extracted into CH2Cl2 (5 × 20 mL). The 

combined organic extracts were dried with sodium sulfate, filtered, and the 

solvent removed in vacuo. The crude oil was purified by column 

chromatography (30% EtOAc/hexane) to give N-(cyclopropanecarbonyl) 
cyclopropane carboxamide  (327) (400 mg, 45% yield), t-butyl (E)-2-
nonenoate (273) (290 mg, 23%) and the desired product t-butyl (3R)-3-(2-
oxo-1-pyrrolidinyl)nonanoate (277) (850 mg, 49% yield) as a clear oil. 

 

  
 

Rf 0.23 (30% EtOAc/hexane), [α]D20 +9.5 (c 1.00, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 4.53-4.36 (1H, m, H-3), 3.38 (1H, dd, J 15.7, 7.1, 

H-13A), 3.26 (1H, dd, J 15.7, 7.9, H-13B), 2.42-2.34 (4H, m, H-11, H-2), 1.99 

(2H, quintet, J 7.6, H-12), 1.48-1.39 (2H, m, H-4), 1.42 (9H, s, H-15), 1.35-1.15 

(10H, m, H-4, H-5, H-6, H-7, H-8), 0.87 (3H, t, J 6.5, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 174.8 (C-10), 170.2 (C-1), 80.7 (C-14), 48.8 

(C-3), 42.4 (C-13), 39.3 (C-2), 32.2 (C-4), 31.4 (C-5), 31.1 (C-11), 28.9 (C-6), 

27.8 (C-15), 26.0 (C-7), 22.5 (C-8), 18.3 (C-12), 14.0 (C-9). 
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νmax. / cm-1: 2926 (m, C-H), 2857 (m, C-H), 1724 (s, OC=O), 1686 (s, NC=O), 

1422 (m), 1367 (m), 1267 (m), 1220 (m), 1150 (s), 953 (w), 843 (w). 

 

m/z: 297 (2%, M), 241 (43), 224 (27), 212 (7), 182 (100), 156 (56), 138 (22), 

112 (42),  57 (71). Found 297.2298, C17H31O3N requires 297.2304. 

 

 
 

1H (300 MHz, CDCl3) δΗ /ppm 8.65 (1H, s, N-H), 2.28-2.25 (2H, m, H-2), 

1.14-1.11 (4H, m, H-3/H-4), 0.99-0.93 (4H, m, H-3/H-4).  

 
13C (75 MHz, CDCl3) δC /ppm 175.3 (C-1), 15.0 (C-2), 10.3 (C-3, C-4). 

 

νmax. / cm-1: 3257-3161 (br, N-H), 2923 (m, C-H), 2853 (m, C-H), 1710 (m, 

C=O), 1519 (m), 1461 (m), 1379 (s), 1212 (s), 1168 (s), 1111 (s), 1061 (s), 

1035 (m), 943 (s). 

 
7.2.4.3 (R)-t-Butyl 3-(4-chloro-N-(R)-1-phenylethyl)butanamido)nonanoate 
(331)  
A 10 mL RBF was charged with t-butyl (3R)-3-[N-(1-phenylethyl)amino] 
nonanoate (323) (500 mg, 1.5 mmols) and sodium bicarbonate (0.22 g, 

2.6 mmols) in dry CHCl3 (8 mL). Chlorobutyryl chloride (0.32 g, 2.2 mmols) was 

added by syringe and the mixture was heated at reflux for 12 hours. The solid 

sodium bicarbonate was filtered off and the residue was rinsed with CH2Cl2 

(20 mL). The solvent was removed in vacuo and the crude mixture was purified 

by column chromatography (5% - 50% EtOAc/hexane). The product, (R)-t-butyl 
3-(4-chloro-N-(R)-1-phenylethyl)butanamido)nonanoate (331) (70 mg, 11% 

yield) was isolated as a yellow oil.  
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Rf  0.47 10% (EtOAc/hexane) [α]D20 +20.0 (c 1.00, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.36-7.18 (5H, m, H-19, H-20, H-21), 4.34 (2H, t, 

J 7.1, H-13), 3.89 (1H, q, J 6.6, H-16), 2.71 (1H, quintet, J 5.7, H-3), 2.49 (2H, t, 

J 8.0, H-11), 2.39-2.20 (4H, m, H-2, H-12), 1.39 (9H, s, H-15), 1.24 (3H, d, J 

6.6, H-17), 1.35-1.18 (10H, m, H-4, H-5, H-6, H-7, H-8), 0.90 (3H, t, J 7.5, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 177.6 (C-10), 171.8 (C-1), 145.9 (C-18), 128.2 

(C-19), 126.7 (C-21), 126.6 (C-20), 80.1 (C-14), 68.4 (C-13), 54.9 (C-16), 52.1 

(C-3), 39.5 (C-2), 35.1 (C-4), 31.7 (C-5), 29.1 (C-6), 28.0 (C-15), 27.7 (C-11), 

25.7 (C-7), 24.7 (C-17), 22.5 (C-8), 22.1 (C-12), 14.0 (C-9). 

 

νmax. / cm-1: 2960 (m, C-H), 2929 (m, C-H), 2859 (m, C-H), 1728 (s, OC=O), 

1605 (w, NC=O), 1456 (m), 1369 (m), 1259 (m), 1156 (s), 764 (w), 703 (m). 

 
7.2.4.4 Attempted debenzylation reaction 
Method A 

(R)-t-Butyl 3-(4-chloro-N-(R)-1-phenylethyl)butanamido)nonanoate (331) 
(50 mg, 0.11 mmol) was dissolved in AcOH (10 mL). Palladium hydroxide (10 - 

20%, 40 mg, 0.80 eq.) was added and the reaction was set up under 

7.5 atmospheres of hydrogen pressure in the hydrogenator. The reaction was 

stirred at ambient temperature for 48 hours. The catalyst was removed by 
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filtration through Celite® and the product was thoroughly rinsed with acetone 

(50 mL). The solvent was removed in vacuo and the crude material was purified 

by column chromatography (10% - 50% EtOAc/hexane). None of the desired 

product was isolated. 

 

Method B 

(R)-t-Butyl 3-(4-chloro-N-(R)-1-phenylethyl)butanamido)nonanoate (331), 
(100 mg, 0.22 mmol) and ceric ammonium nitrate (482 mg, 0.880 mmol) were 

dissolved in MeCN/H2O (1:5, 6 mL) and stirred at ambient temperature for 12 

hours. The reaction was quenched with saturated sodium bicarbonate solution 

(10 mL) and filtered through cotton wool. The product was extracted into CH2Cl2 

(3 × 15 mL) and dried with sodium sulfate. The solvent was removed in vacuo 

and the crude product was purified by column chromatography (20% - 50% 

EtOAc/hexane) to give t-butyl (3R)-3-[N-(1-phenylethyl)amino]nonanoate 
(323) (73 mg, 100% yield). 

 

7.2.4.5 (R)-N-(1-Phenylethyl)cyclopropanecarboxamide (332) 
(R)-t-Butyl 3-(4-chloro-N-(R)-1-phenylethyl)butanamido)nonanoate (331), 
(500 mg, 1.5 mmol) was dissolved in t-butanol (10 mL). Freshly sublimed 

potassium t-butoxide (337 mg, 3.00 mmol) was carefully added and the reaction 

was stirred for 72 hours at ambient temperature. The reaction was quenched by 

the careful addition of AcOH (5 mL). The solution was rinsed with distilled H2O 

(20 mL) and extracted into CH2Cl2 (5 × 20 mL). The combined organic extracts 

were dried with sodium sulfate, filtered, and the solvent removed in vacuo. The 

crude oil was purified by column chromatography (30% EtOAc/hexane) to give 
(R)-N-(1-phenylethyl)cyclopropanecarboxamide (332) (171 mg, 56% yield) 

as a white, crystalline solid. 
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M.p. 82 -84 °C 

 

Rf  0.63 (50% EtOAc/hexane), [α]D20 +130.4 (c 0.79, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.35-7.22 (5H, m, H-8, H-9, H-10), 6.37 (1H, d, J 

7.2, N-H), 5.11 (1H, quintet, J 7.0, H-5), 1.44 (3H, d, J 7.0, H-6), 1.38-1.24 (1H, 

m, H-2), 0.97-0.86 (2H, m, H-3/H-4), 0.74-0.61 (2H, m, H-3/H-4). 

 
13C (75 MHz, CDCl3) δC /ppm 172.7 (C-1), 143.5 (C-7), 128.5 (C-8), 127.1 

(C-10), 126.1 (C-9), 48.7 (C-5), 21.8 (C-2), 14.6 (C-6), 7.1 (C-3, C-4). 

 
νmax. / cm-1: 3330 (s, N-H), 3033 (w, C-H), 2972 (m, C-H), 2932 (m, C-H), 1636 

(s, NC=O), 1525 (s), 1495 (s), 1395 (m), 1236 (s), 1133 (w), 958 (s), 764 (s). 

 

m/z: 189 (17%, M), 174 (20), 160 (14), 145 (35), 130 (8), 120 (84), 106 (100). 

Found 189.11452, C12H15ON requires 189.11536. 

 
7.2.5 Thionation reactions 
7.2.5.1 t-Butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)nonanoate (278) 
Method A 

First, t-butyl (3R)-3-(2-oxo-1-pyrrolidinyl)nonanoate (277) (480 mg,  

1.61 mmol) was dissolved, and then Lawesson’s reagent (366 mg, 0.90 mmol) 

suspended in freshly distilled CH2Cl2 (10 mL) in an oven-dried RBF under a 

nitrogen atmosphere. The solution was left stirring at ambient temperature for 

72 hours. The reaction was quenched by the addition of saturated sodium 

bicarbonate solution (10 mL) and then extracted into CH2Cl2 (3 × 20 mL). The 

combined organic fractions were dried with sodium sulfate, the solvent removed 

in vacuo, and the crude material purified by column chromatography (20% 
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EtOAc/hexane). The desired product, t-butyl (3R)-3-(2-thioxo-1-
pyrrolidinyl)nonanoate (278) was obtained as a pale yellow, odoriferous oil 

(320 mg, 63% yield). 

 

 
 

Rf 0.51 (20% EtOAc/hexane), [α]D20 +7.4 (c 0.88, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 5.36 (1H, quintet, J 7.5, H-3), 3.71 (1H, dt, J 

10.7, 7.5, H-13A), 3.56 (1H, dt, J 10.7, 7.5, H-13B), 3.00 (2H, t, J 7.5, H-11), 

2.55 (1H, dd, J 14.4, 6.0, H-2A), 2.43 (1H, dd, J 14.4, 9.0, H-2B), 2.03 (2H, 

quintet, J 7.5, H-12), 1.64-1.55 (2H, m, H-4), 1.43 (9H, s, H-15), 1.38-1.20 (8H, 

m, H-5, H-6, H-7, H-8), 0.87 (3H, t, J 6.6, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 201.7 (C-10), 169.5 (C-1), 81.0 (C-14), 53.3 

(C-3), 49.0 (C-13), 45.1 (C-11), 38.8 (C-2), 32.2 (C-4), 31.5 (C-5), 28.9 (C-6), 

27.8 (C-15), 25.7 (C-7), 22.4 (C-8), 20.0 (C-12), 13.9 (C-9). 

 

νmax. / cm-1: 2926 (m, C-H), 2856 (m, C-H), 1722 (s, C=O), 1491 (m), 1446 (s), 

1310 (s, C=S), 1220 (s), 953 (w), 842 (w). 

 

m/z: 313 (18%, M), 280 (34), 256 (94), 224 (100), 212 (8), 173 (27), 154 (5), 

128 (17), 102 (55). Found 313.2070, C17H31O2N32S requires 313.2076. 

 

Method B 

First, t-butyl (3R)-3-(2-oxo-1-pyrrolidinyl)nonanoate (277) (0.20 g,  

0.67 mmol) was dissolved, and then phosphorus pentasulfide (90 mg, 

0.20 mmol) suspended in dry CHCl3 (3 mL) in an oven-dried RBF under a 

nitrogen atmosphere. The heterogeneous mixture was stirred at ambient 
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temperature for 72 hours. The reaction was quenched by the addition of 

saturated sodium bicarbonate solution (10 mL) and then extracted into CH2Cl2 

(3 × 10 mL). The organic fractions were combined and dried with sodium 

sulfate. The solvent was removed in vacuo and the crude material was purified 

by column chromatography (20% EtOAc/hexane) to give t-butyl (3R)-3-(2-
thioxo-1-pyrrolidinyl)nonanoate (278) (109 mg, 52% yield) was obtained as a 

pale yellow, odoriferous oil.  

 

7.2.6 Formation of the vinylogous sulfonamide  
7.2.6.1 Preparation of 1-[(4-methylphenyl)sulfonyl]acetone (279)190 
Sodium-p-toluenesulfinate (10.00 g, 56.0 mmol) was dissolved in DMSO (25 

mL), together with chloroacetone (4.47 mL, 57.6 mmol) and the resulting 

mixture was heated to 90ºC under nitrogen and stirred for 4 hours. During this 

period, the clear solution turned dark brown. The solution was cooled and 

washed with distilled H2O (50 mL) before extracting into CH2Cl2 (6 × 50 mL). 

The organic fractions were combined and then rinsed with distilled H2O to 

remove residual DMSO. The organic fractions were dried with magnesium 

sulfate and the solvent was removed in vacuo to give a crude brown oil which 

was further purified by silica column chromatography (40% EtOAc/hexane). The 

resulting product, 1-[(4-methylphenyl)sulfonyl]acetone (279), was a 

odoriferous, brown, low melting solid (11.41 g, 96% yield). Full characterization 

was in agreement with the reported literature values.190 
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Mp. 49-51ºC (lit. ref. 50-51ºC)190 

 

Rf 0.53 (40 % EtOAc/hexane) 
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1H (300 MHz, CDCl3) δΗ /ppm 7.76 (2H, d, J 8.2, H-4), 7.37 (2H, d, J 8.2, H-3), 

4.15 (2H, s, H-6), 2.45 (3H, s, H-1), 2.39 (3H, s, H-8). 

 
13C (75 MHz, CDCl3) δC /ppm 196.6 (C-7), 145.9 (C-5), 136.2 (C-2), 130.4 

(C-4), 128.6 (C-3), 68.2 (C-6), 31.8 (C-8), 22.0 (C-1). 

 

νmax. / cm-1: 2924 (m, C-H), 2360 (m, C-H), 1712 (s, C=O), 1597 (m), 1462 (m), 

1359 (s, SO2), 1317 (s), 1147 (s, SO2), 1083 (m), 812 (m), 746 (m). 

 

m/z: 212 (15%, M), 170 (26), 155 (45), 148 (29), 105 (18), 91 (100), 77 (5), 65 

(24), 43 (30). Found 212.0521, C10H12O3
32S requires 212.0507.   

 
7.2.6.2 t-Butyl (3R)-3-{2-[(E)-(p-toluenesulfonyl)methylene-1-pyrrolidinyl} 
nonanoate (280) 
Method A 

In an oven-dried RBF, under a nitrogen atmosphere, the α-thioiminium salt was 

prepared by reacting t-butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)nonanoate (278) 
(500 mg, 1.59 mmol) with freshly distilled methyl iodide (0.15 mL, 2.4 mmol) in 

THF (5 mL). After 72 hours at ambient temperature the starting material was no 

longer visible by TLC. The solvent was removed in vacuo and a premixed 

solution of 1-[(4-methylphenyl)sulfonyl]acetone (279) (675 mg, 3.18 mmol) 

and triethylamine (0.66 mL, 4.8 mmol) in CH2Cl2 (5 mL) was carefully added to 

the α-thioiminium salt. The reaction was left stirring at ambient temperature for 

an additional 96 hours and was quenched with distilled H2O (3 mL), extracted 

into CH2Cl2 (3 × 10 mL) and dried with sodium sulfate. The solvent was 

removed in vacuo and the crude material was purified by column 

chromatography (20% EtOAc/hexane). t-Butyl (3R)-3-(2-oxo-1-
pyrrolidinyl)nonanoate (277) (120 mg, 25% recovery) t-butyl (3R)-3-{2-[(E)-
(p-toluenesulfonyl)methylene-1-pyrrolidinyl}nonanoate (280) (200 mg, 28% 

yield), and the acylated product, t-butyl (3R)-3-{2-[1-(p-toluenesulfonyl)-2-
oxopropylidene]-1-pyrrolidinyl} nonanoate (337), (210 mg, 27% yield) were 

isolated from the column. The desired product (280) was first isolated as a 

yellow oil, but it quickly discoloured to brown. 
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Rf 0.47 (30% EtOAc/hexane), [α]D20 +11.6 (c 0.69, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.68 (2H, d, J 8.1, H-16), 7.16 (2H, d, J 8.1, 

H-17), 5.00 (1H, s, H-14), 3.93-3.58 (1H, m, H-3), 3.18 (1H, dt, J 16.1, 7.1, 

H-13A), 3.18 (1H, dt, J 16.1, 8.9, H-13B), 2.90 (2H, t, J 7.7, H-11), 2.32 (3H, s, 

H-19), 1.78 (2H, dt, J 14.7, 5.7, H-2AB), 1.45-1.32 (2H, m, H-12), 1.27 (9H, s, 

H-21), 1.23-1.10 (10H, m, H-4, H-5, H-6, H-7, H-8), 0.80 (3H, t, J 6.6, H-9). 

 
13C (100 MHz, CDCl3) δC /ppm 169.8 (C-1), 161.5 (C-10), 143.0 (C-15), 141.7 

(C-17), 129.2 (C-16), 126.1 (C-18), 87.9 (C-14), 81.2 (C-20), 52.2 (C-3), 47.0 

(C-13), 39.0 (C-11), 32.1 (C-2), 31.6 (C-4), 29.7 (C-5), 29.0 (C-6), 27.9 (C-21), 

26.1 (C-12), 22.5 (C-7), 21.4 (C-8), 20.9 (C-19), 14.0 (C-9). 
 

νmax. / cm-1: 2926 (m, C-H), 2856 (m, C-H), 2360 (w), 2115 (w), 1724 (s, C=O), 

1569 (s, C=C), 1288 (m, SO2), 1132 (s), 1083 (s), 847 (m). 

 

m/z: 449 (2%, M), 429 (9), 376 (6), 355 (12), 294 (23), 238 (79), 196 (94), 179 

(18), 105 (48), 91 (100), 56 (44). Found 449.2594, C25H39O4N32S requires 

449.2600. 
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Rf 0.30 (30% EtOAc/hexane), [α]D20 +44.0 (c 1.00, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm  7.74 (2H, d, J 8.1, H-16), 7.25 (2H, d, J 8.1, 

H-17), 3.94 (1H, tt, J 8.7, 4.3, H-3), 3.66-3.49 (2H, m, H-13AB), 3.40 (1H, dt, J 

15.3, 9.1, H-11A), 3.03 (1H, dt, J 15.3, 6.6, H-11B), 2.95 (1H, dd, J 15.2, 4.3, 

H-2A), 2.48-2.40 (1H, m, H-2B), 2.39 (3H, s, H-19), 2.34 (3H, s, H-23), 

2.12-1.83 (2H, m, H-12AB), 1.72-1.51 (2H, m, H-4AB), 1.46 (9H, s, H-21), 

1.42-1.27 (8H, m, H-5, H-6, H-7, H-8), 0.88 (3H, t, J 6.7, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 190.7 (C-22), 174.9 (C-10), 169.7 (C-1), 142.9 

(C-18), 142.1 (C-15), 129.3 (C-17), 125.8 (C-16), 103.7 (C-14), 81.1 (C-20), 

58.5 (C-3), 49.1 (C-13), 37.8 (C-11), 36.9 (C-2), 32.3 (C-4), 31.4 (C-5), 30.4 

(C-23), 28.8 (C-6), 27.9 (C-21), 25.9 (C-7), 22.5 (C-8), 21.3 (C-19), 20.1 (C-12), 

13.9 (C-9). 
 

νmax. / cm-1: 2930 (m, C-H), 2860 (m, C-H), 2363 (w), 1727 (s, OC=O), 1687 (m, 

C=O), 1616 (m, C=C), 1520 (m), 1297 (s, S=O), 1141 (s), 815 (m). 

 

m/z: 492 (1%, M+1), 418 (6), 376 (12), 336 (24), 320 (9), 280 (100), 238 (91), 

196 (15), 172 (6), 139 (15), 126 (54), 108 (21). Found 491.2700, C27H41O5N32S 

requires 491.2705. 
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Method B 

In an oven-dried RBF, under a nitrogen atmosphere, the α-thioiminium salt was 

prepared by reacting t-butyl (3R)-3-(2-thioxo-1-pyrrolidinyl)nonanoate (278) 
(320 mg, 1.02 mmol) with freshly distilled methyl iodide (0.10 mL, 1.5 mmol) in 

THF (5 mL). After 48 hours at ambient temperature the solvent was removed in 

vacuo and a premixed solution of 1-[(4-methylphenyl)sulfonyl]acetone (279) 
(435 mg, 2.05 mmol) and DBU (0.46 mL, 3.0 mmol) in CH2Cl2 (5 mL) was 

carefully added to the α-thioiminium salt. The reaction was left stirring at 

ambient temperature for an additional 72 hours and was quenched with distilled 

H2O (3 mL), extracted into CH2Cl2 (3 × 10 mL) and dried with sodium sulfate. 

The solvent was removed in vacuo and the crude material was purified by 

column chromatography (20% EtOAc/hexane). The desired product t-butyl 
(3R)-3-{2-[(E)-(p-toluenesulfonyl)methylene-1-pyrrolidinyl}nonanoate (280) 
(60 mg, 13% yield) and the acylated product, t-butyl (3R)-3-{2-[1-(p-
toluenesulfonyl)-2-oxopropylidene]-1-pyrrolidinyl}nonanoate (337) (190 

mg, 38% yield) were both isolated as yellow oils. 

 

7.2.6.3 Attempted deacetylation reactions 
Method A154 

t-Butyl (3R)-3-{2-[1-(p-toluenesulfonyl)-2-oxopropylidene]-1-pyrrolidinyl} 
nonanoate (337) (200 mg, 0.41 mmols) was dissolved in TFA (3 mL) and 

heated at reflux for 12 hours. The reaction mixture was cooled and then rinsed 

with an ammonia solution (10%, 15 mL). The organic compounds were 

extracted into CH2Cl2 (3 × 20 mL) and dried with sodium sulfate. The solvent 

was removed in vacuo and the crude mixture was purified by column 

chromatography (100% EtOAc). None of the desired product, t-butyl (3R)-3-{2-
[(E)-(p-toluenesulfonyl)methylene-1-pyrrolidinyl}nonanoate (280), was 

isolated. 

 

Method B154 

t-Butyl (3R)-3-{2-[1-(p-toluenesulfonyl)-2-oxopropylidene]-1-pyrrolidinyl} 
nonanoate (337) (190 mg, 0.39 mmols) was dissolved in toluene (3 mL). TFA 

(0.15 mL, 1.9 mmols) was added and the mixture was heated at reflux for 5 

hours, while being monitored by TLC. The mixture was cooled and the reaction 
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was quenched by the addition of an ammonia solution (10%, 15 mL). The 

organic material was extracted in CH2Cl2 (3 × 15 mL) and the combined organic 

fractions were dried with sodium sulfate. The solvent was removed in vacuo 

and the crude mixture was purified by column chromatography (100% EtOAc). 

None of the desired product, t-butyl (3R)-3-{2-[(E)-(p-
toluenesulfonyl)methylene-1-pyrrolidinyl} nonanoate (280), was isolated. 

 
7.2.7 Reduction of the ester 
7.2.7.1 t-Butyl (3R)-3-{2-[(E)-(p-toluenesulfonyl)methylene-1-pyrrolidinyl} 
nonan-1-ol (281) 
In an oven-dried RBF charged with THF (5 mL), t-butyl (3R)-3-{2-[(E)-(p-
toluenesulfonyl)methylene-1-pyrrolidinyl}nonanoate (280) (0.11 g, 0.24 

mmol) was dissolved and lithium aluminium hydride (25 mg, 0.67 mmol) was 

carefully added. The reaction was stirred at ambient temperature for 15 hours 

and quenched by the addition of CH2Cl2 (10 mL), distilled H2O (1 mL) and 

sodium hydroxide solution (2.0 M, 1 mL) sequentially. The mixture was filtered 

through Celite® and the solvent was removed in vacuo. The product, t-butyl 
(3R)-3-{2-[(E)-(p-toluenesulfonyl)methylene-1-pyrrolidinyl}nonan-1-ol (281) 
(83 mg, 92% yield), was isolated with sufficient purity that no chromatography 

was required. 
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Rf 0.14 (50% EtOAc/hexane), [α]D20 -25.0 (c 0.30, CH2Cl2) 
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1H (300 MHz, CDCl3) δΗ /ppm 7.74 (2H, d, J 8.1, H-16), 7.23 (2H, d, J 8.1, 

H-17), 5.09 (1H, s, H-14), 3.75-3.62 (1H, m, H-3), 3.62-3.44 (2H, m, H-13AB), 

3.20 (2H, t, J 6.7, H-1), 3.08-2.96 (1H, m, H-11A), 2.97-2.84 (1H, m, H-11B), 

2.39 (3H, s, H-19), 2.17 (1H, br, O-H), 1.86 (2H, quintet, J 7.4, H-12), 1.71 (2H, 

q, J 6.7, H-2), 1.56-1.39 (2H, m, H-4), 1.29-1.12 (8H, m, H-5, H-6, H-7, H-8), 

0.86 (3H, t, J 6.8, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 162.6 (C-10), 143.4 (C-15), 141.7 (C-18), 129.2 

(C-17), 125.8 (C-16), 86.2 (C-14), 59.0 (C-13), 51.6 (C-3), 45.9 (C-1), 34.7 

(C-2), 32.3 (C-4), 31.7 (C-7), 31.4 (C-11), 29.0 (C-6), 26.2 (C-8), 22.5 (C-5), 

21.4 (C-19), 20.8 (C-12), 14.0 (C-9). 

 

νmax. / cm-1: 3474 (br, O-H), 2927 (m, C-H), 2857 (m, C-H), 1563 (s, C=C), 1272 

(m, S=O), 1126 (s), 1079 (s), 847 (m), 653 (m). 

 

m/z: 355 (9%), 281 (14), 259 (6), 224 (11), 218 (29), 207 (42), 198 (27), 182 

(57), 155 (64), 139 (55), 124 (48), 111 (81), 105 (100).  Found 379.2176, 

C21H33O3N32S requires 379.2181. 

 

7.2.8 Cyclisation reaction 
7.2.8.1 (5R)-5-Hexyl-1,2,3,5,6,7-hexahydro-8-indolizinyl-4-methylphenyl 
sulfone (282) 
Triphenylphosphine (0.17 g, 0.65 mmol), imidazole (18 mg, 0.26 mmol) and 

iodine (66 mg, 0.26 mmol) were sequentially dissolved in toluene (7 mL). The 

alcohol, t-butyl (3R)-3-{2-[(E)-(p-toluenesulfonyl)methylene-1-pyrrolidinyl} 
nonan-1-ol (281) (50 mg, 0.13 mmol) was added and the mixture was heated 

at reflux for 6 hours. The solvent was removed in vacuo and the residue was 

partitioned between distilled H2O (10 mL) and CH2Cl2 (3 × 10 mL). The 

combined organic fractions were dried with sodium sulfate, the solvent removed 

in vacuo, and the crude material purified by column chromatography (30% 

EtOAc/hexane). (5R)-5-Hexyl-1,2,3,5,6,7-hexahydro-8-indolizinyl-4-methyl 
phenylsulfone (282) (45 mg, 96% yield) was isolated as a yellow oil which 

discoloured to blue in the presence of light. 
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Rf 0.80 (50% EtOAc/hexane), [α]D20 +9.4 (c 0.85, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.69 (2H, d, J 8.1, H-16), 7.26 (2H, d, J 8.1, 

H-17), 3.49 (1H, quintet, J 6.9, H-5), 3.19 (2H, t, J 7.1, H-3), 3.13 (2H, t, J 7.2, 

H-1), 2.39 (3H, s, H-19), 1.91 (2H, quintet, J 7.2, H-2), 1.80-1.51 (4H, m, H-6, 

H-7), 1.38-1.25 (10H, m, H-9, H-10, H-11, H-12, H-13), 0.85 (3H, t, J 6.9, H-14). 
 

13C (75 MHz, CDCl3) δC /ppm 155.1 (C-8a), 141.9 (C-15), 141.7 (C-18), 129.9 

(C-16), 126.1 (C-17), 92.4 (C-8), 53.9 (C-5), 51.2 (C-3), 32.1 (C-1), 31.7 (C-7), 

31.4 (C-6), 29.3 (C-2), 25.6 (C-9), 24.6 (C-10), 22.6 (C-19), 21.4 (C-11), 21.1 

(C-12), 19.4 (C-13), 14.0 (C-14). 

 

νmax. / cm-1: 2928 (m, C-H), 2856 (m, C-H), 1593 (s, C=C), 1291 (s, S=O), 1142 

(s), 1128 (s), 1079 (s), 1077 (m), 813 (m), 665 (m). 

 

m/z: 361 (32%, M), 304 (7), 276 (89), 206 (100), 204 (14), 164 (8), 149 (10), 

134 (16), 122 (98). Found 361.2071, C21H31O2N32S requires 361.2075. 
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CHAPTER 8 
EXPERIMENTAL PROCEDURES RELATING TO CHAPTER 4 

 
8.1 The total synthesis of monomorine I and 5-epi-monomorine I  

 
8.1.1 Preparation of ethyl 4-oxooctanoate  
8.1.1.1 Preparation of ethyl 2-acetyl-3-oxoheptanoate (344)192 
Sodium hydride (60% in oil, 7.20 g, 180 mmol) was dissolved in freshly distilled 

THF (400 mL) in an oven-dried 1 litre RBF. The solution was cooled to 0°C and 

ethyl acetoacetate (25.0 mL, 195 mmol) was added dropwise over 45 minutes 

while the solution was vigorously stirred to prevent an emulsion from forming. 

The solution proceeded to turn yellow. Valeroyl chloride (18.1 g, 150 mmol) was 

added dropwise and the solution turned opaque and milky. The reaction mixture 

was allowed to warm to ambient temperature and was left reacting for a further 

12 hours. The reaction was quenched by the careful addition of distilled H2O 

(200 mL). The product was extracted into EtOAc (3 × 200 mL) and dried with 

magnesium sulfate. The solvent was removed in vacuo and the crude oil was 

purified by column chromatography (5% EtOAc/hexane) to give ethyl 2-acetyl-
3-oxoheptanoate (344) (29.50 g, 92% yield) as a pale yellow oil. 
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Rf 0.84 (10% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 17.80 (1H, s, H-2), 4.28 (2H, q, J 7.2, H-8), 2.66 

(2H, t, J 7.5, H-4), 2.34 (3H, s, H-11), 1.75-1.55 (2H, m, H-5), 1.50-1.22 (5H, m, 

H-9, H-6), 0.92 (3H, t, J 7.2, H-7).  
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13C (75 MHz, CDCl3) δC /ppm  198.8 (C-10), 195.6 (C-3), 167.2 (C-1), 108.6 

(C-2), 60.6 (C-8), 37.4 (C-4), 27.8 (C-5), 25.5 (C-11), 22.4 (C-6), 14.1 (C-9), 

13.7 (C-7). 

 

νmax. / cm-1: 2960 (m, C-H), 2934 (m, C-H), 2874 (m, C-H), 1762 (m, C=O), 

1710 (s, C=O), 1670 (m, C=O), 1556 (m), 1415 (m), 1368 (m), 1218 (s), 1075 

(s).  

 

m/z: 214 (6%, M), 199 (38), 192 (3), 185 (10), 172 (38), 157 (100), 153 (35), 

139 (76), 130 (55), 126 (35), 115 (21), 111 (26). Found 214.11920, C11H18O4 

requires 214.12051. 

 
8.1.1.2 Ethyl 3-oxoheptanoate (345)194 
Method A 
Ethyl 2-acetyl-3-oxoheptanoate (344) (13.2 g 62.0 mmol) was dissolved in dry 

Et2O (40 mL) and ammonia gas was bubbled through the solution for 90 

minutes at ambient temperature (approximately 3 equivalents of ammonia were 

added). The solution was rinsed with distilled H2O (2 × 100 mL) and stirred in 

an HCl solution (10% (v/v), 60 mL) for 2 hours. The organic layer was rinsed 

with saturated sodium bicarbonate solution (100 mL), dried with sodium sulfate 

and then the solvent was removed in vacuo. The crude material was purified by 

column chromatography (5% EtOAc/hexane) to give ethyl acetoacetate (339) 
(6.80 g, 84% yield) as the major product and the desired product, ethyl 3-
oxoheptanoate (345), (1.69 g, 16% yield) as the minor product.  

 

 
Rf 0.71 (10% EtOAc/hexane) 
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1H (300 MHz, CDCl3) δΗ /ppm 4.20 (2H, q, J 7.2, H-8), 3.43 (2H, s, H-2), 2.55 

(2H, t, J 7.3,  H-4), 1.63-1.53 (2H, m, H-5), 1.37-1.26 (5H, m, H-6, H-7) 0.91 

(3H, t, J 7.2, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 202.9 (C-3), 167.2 (C-1), 61.2 (C-8), 49.2 (C-2), 

42.6 (C-4), 25.4 (C-5), 22.0 (C-6), 14.0 (C-9), 13.7 (C-7). 

 

νmax. / cm-1: 2960 (m, C-H), 2935 (m, C-H), 2874 (m, C-H), 1741 (s, C=O), 1715 

(s, C=O), 1312 (s), 1234 (s), 1152 (s), 1030 (s). 

 

m/z: 172 (8%, M), 157, (4), 143 (9), 130 (44), 115 (17), 102 (10), 88 (31), 85 

(100), 84 (45), 69 (24), 57 (95).  

 

Method B206 

Sodium hydride (943 mg, 23.6 mmol) was dissolved in dry THF (50 mL) and the 

solution cooled to 0ºC in an ice-bath. Ethyl acetoacetate (2.00 mL, 15.7 mmol) 

was added dropwise and the solution was allowed to stir for 15 minutes. 

n-Butyllithium (1.6 M, 15.0 mL, 23.6 mmol) was slowly added by syringe and 

the solution was stirred for an additional 15 minutes. Finally, chloropropane (2.3 

mL, 25.9 mmol) was added dropwise to the reaction mixture. The reaction was 

monitored by TLC until the ethyl acetoacetate appeared to have reacted 

completely and the reaction was then quenched by the addition of distilled H2O 

(30 mL). The product was extracted into EtOAc (3 × 50 mL), rinsed with distilled 

H2O (2 × 100 mL) and brine (2 × 50 mL) and dried with sodium sulfate.  The 

solvent was removed in vacuo and the crude product was purified by column 

chromatography (5% EtOAc/hexane) to give ethyl 3-oxoheptanoate (345) 
(200 mg, 8% yield) as a clear oil with a pleasant, fruity odour. The low yield was 

likely due to inferior quality of the n-butyllithium. 

 
8.1.1.3  Preparation of 4-oxooctanoic acid (347)198 
n-Butylmagnesium bromide was prepared in situ by reacting bromobutane 

(8.1 mL, 75 mmol) with magnesium turnings (1.95 g, 80.0 mmol) in dry THF 

(100 mL) for 1 hour at 0°C under nitrogen. In a separate RBF succinic 
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anhydride (5.00 g, 50.0 mmol) was dissolved in THF (70 mL) together with a 

catalytic amount of iron (III) acetoacetate, (530 mg, 1.50 mmol). The Grignard 

reagent (0.75 M, 67 mL, 50 mmol) was added dropwise to the succinic 

anhydride solution over 40 minutes. The colour of the solution gradually 

changed from deep red to yellow. The reaction was stirred for an additional 

hour before it was quenched with an HCl solution (10% (v/v), 30 mL). The 

product was extracted into Et2O (3 × 50 mL). The combined organic extracts 

were washed with saturated sodium bicarbonate solution (50 mL) and distilled 

H2O (2 × 50 mL) and dried with sodium sulfate. The Et2O was removed in 

vacuo and the crude product was purified by column chromatography (5% 

EtOAc/hexane) to give the desired product, 4-oxooctanoic acid (347) (2.00 g, 

25% yield), and 5,5-dibutyldihydro-2(3H)-furanone (348) (550 mg, 11% yield) 

as a by-product. 

 

 
 
M.p. 49-51ºC  

 

Rf 0.15 (10% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 12.00-10.00 (1H, br, O-H), 2.72 (2H, t, J 6.4, 

H-2), 2.63 (2H, t, J 6.4, H-3), 2.45 (2H, t, J 6.7, H-5), 1.63-1.53 (2H, m, H-6), 

1.37-1.24 (2H, m, H-7), 0.91 (3H, t, J 7.3, H-8). 

 
13C (75 MHz, CDCl3) δC /ppm 209.4 (C-4), 179.1 (C-1), 42.8 (C-5), 37.1 (C-3), 

28.2 (C-2), 26.3 (C-6), 22.7 (C-7), 14.2 (C-8). 

 

νmax. / cm-1: 3550-3350 (br, OH), 2958 (m, C-H), 2930 (m, C-H), 2868 (m, C-H), 

1703 (br, s, 2 × C=O), 1410 (m), 1347 (m), 1249 (m), 1208 (s), 1178 (m), 950 

(s). 
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 m/z: 158 (1%, M), 141 (8), 116 (62), 111 (9), 101 (75), 98 (79), 85 (92), 73 

(24), 70 (6), 57 (100), 41 (41). Found 158.0950, C8H14O3 requires 158.0943. 
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Rf 0.32 (10% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 2.57 (2H, t, J 8.4, H-3), 2.02 (2H, t, J 8.5, H-2), 

1.66-1.57 (4H, m, H-5), 1.40-1.26 (8H, m, H-6, H-7), 0.92 (6H, t, J 6.2, H-8). 

 
13C (75 MHz, CDCl3) δC /ppm 177.4 (C-1), 89.5 (C-4), 38.9 (C-5), 31.2 (C-2), 

29.6 (C-3), 26.0 (C-6), 23.4 (C-7), 14.3 (C-8). 

 

νmax. / cm-1: 2959 (m, C-H), 2938 (m, C-H), 2875 (m, C-H), 1772 (s, C=O), 1469 

(m), 1231 (m), 1194 (m), 1160 (m), 935 (m). 

 

m/z: 199 (1%, M), 141 (100), 95 (5), 85 (7), 57 (10), 41 (9). Found 199.1679, 

C12H23O2 (M+1) requires 199.1698.   

 

8.1.1.4 Preparation of ethyl 4-oxooctanoate (292)  
Method A198, 199 

THF (4 mL) and Et2O (12 mL) were distilled and degassed with nitrogen for 30 

minutes. Di-n-butylcopper lithium was prepared in situ by reacting copper iodide 

(762 mg, 4.00 mmol) with n-butyllithium (1.6 M, 5.0 mL, 8.0 mmol) at −90ºC 

under a nitrogen atmosphere for 1 hour (the solution turned black upon addition 

of n-butyllithium). Ethyl 4-chloro-4-oxobutyrate (1.04 mL, 7.30 mmol) was 

added to the cuprate by syringe at −90ºC, and the reaction mixture was allowed 

to warm to ambient temperature and stir for a further 12 hours. The reaction 

was quenched by the addition of saturated aqueous ammonium chloride (20 
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mL) and the biphasic solution was stirred for 40 minutes. Once the pH of the 

solution was neutral the product was extracted into Et2O (4 × 30 mL). The 

combined organic extracts were dried with magnesium sulfate and the solvent 

was removed in vacuo. The crude product was purified by column 

chromatography (5% EtOAc/hexane) to give ethyl 4-oxooctanoate (292) as a 

pale yellow oil (530 mg, 56% yield), with contamination by diethyl succinate 

(346) (305 mg, 24% yield), a by-product from the reaction. When the reaction 

was scaled up (48 mmol) the production of diethyl succinate (346) increased 

to 42% yield and the yield of the ethyl 4-oxooctanoate (292) went down to 2%. 

For all the solvent systems investigated, diethyl succinate (346) and ethyl 4-
oxooctanoate (292) have identical Rf values on silica TLC plates, making 

separation by column chromatography extremely difficult. They do however 

differ in boiling points (at 15 torr. diethyl succinate boils at 105°C and ethyl 

4-oxooctanoate boils at 125°C) and could be separated by distillation if the 

scale of the reaction allowed it.   
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Rf 0.63 (20% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 4.13 (2H, q, J 7.1, H-9), 2.72 (2H, t, J 7.0, H-3), 

2.62-2.45 (2H, m, H-2), 2.45 (2H, t, J 7.0, H-5), 1.63-1.55 (2H, m, H-6), 

1.34-1.27 (2H, m, H-7), 1.25 (3H, t, J 7.1, H-10), 0.91 (3H, t, J 7.3, H-8). 

 
13C (75 MHz, CDCl3) δC /ppm 209.5 (C-4), 173.2 (C-1), 61.0 (C-9), 42.9 (C-5), 

37.4 (C-3) 28.4 (C-2), 26.3 (C-6), 22.7 (C-7), 14.5 (C-10), 14.3 (C-8). 

 

νmax. / cm-1: 2959 (m, C-H), 2935 (m, C-H), 2874 (m, C-H), 1737 (s, C=O), 1720 

(s, C=O), 1413 (w), 1374 (m), 1350 (w), 1197 (s), 1163 (s), 1021 (m). 
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m/z: 187 (1%, M+1), 144 (55), 141 (65), 129 (47), 111 (8), 101 (100), 85 (57), 

73 (12), 57 (61), 41 (25). Found 187.1353, C10H18O3 (M+1) requires 187.1334. 
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1H (300 MHz, CDCl3) δΗ /ppm 4.15 (4H, q, J 7.2, H-3), 2.62 (4H, s, H-2), 1.26 

(6H, t, J 7.2, H-4). 

 

Method B200 - 202 

Bis-(N,N-dimethylaminoethyl)ether (4.4 mL, 35 mmol) was reacted with  

n-butylmagnesium chloride (2.0 M, 18 mL, 35 mmol) in THF (80 mL), at 0ºC 

under nitrogen, to allow formation of a tridentate ligand. After 20 minutes, this 

solution was added dropwise to a solution of ethyl 4-chloro-4-oxobutanoate (5.0 

mL, 35 mmol) in THF (20 mL) at -90ºC. After 20 minutes, TLC still indicated that 

starting material was present and the reaction mixture was allowed to warm to 

ambient temperature and stir for 2 hours. The reaction was quenched by the 

addition of saturated ammonium chloride solution (75 mL). The THF was 

removed in vacuo and the product was extracted into EtOAc (5 × 70 mL) and 

dried with sodium sulfate. The solvent was removed in vacuo and the product 

was purified by column chromatography (5% EtOAc/hexane) to give ethyl 4-
oxooctanoate (292) (1.35 g, 21%) as a clear oil. 

 

Method C195, 196 

 3-Benzyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride (0.75 g, 

3.0 mmol) was dissolved in dioxane (30 mL) with Et3N (2.5 mL, 18 mmol) and 

ethyl acrylate (3.2 mL, 30 mmol) in a 3-necked RBF. The flask was fitted with a 

condenser which was sealed with a KOH drying tube. It was also fitted with a 

nitrogen leak (1 bubble/second) and a septum. A mixture of valeraldehyde 

(3.2 mL, 30 mmol), a second portion of ethyl acrylate (3.2 mL, 30 mmol) and 

dioxane (5 mL) was added by syringe pump over 10 hours. The reaction was 

left for a further 6 hours at ambient temperature. The dioxane was removed in 

vacuo and the organic residue was redissolved in EtOAc. The organic layer 
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was rinsed with an HCl solution (5% (v/v), 50 mL), saturated sodium 

bicarbonate solution (2 × 50 mL) and distilled H2O (2 × 50 mL). The organic 

layer was dried with magnesium sulfate and the solvent was removed in vacuo. 

The crude material was purified by column chromatography (20% 

EtOAc/hexane) to give ethyl 4-oxooctanoate (292) (901 mg, 16% yield) with 

slight contaminated by diethyl succinate (346).  
   

Method D193 

A flame-dried, nitrogen-flushed 50 mL RBF was charged with dry CH2Cl2 (17 

mL) and neat diethyl zinc (0.60 mL, 5.8 mmol). This was done very carefully by 

means of a nitrogen flushed syringe as the diethyl zinc ignites readily on 

contact with air. Diiodomethane (0.50 mL, 5.8 mmol) was carefully added and 

as soon as exothermic bubbling was initiated the solution was cooled to 0ºC. 

After 10 minutes of stirring, ethyl 3-oxoheptanoate (345) (0.19 g, 1.1 mmol) 

was rapidly added by syringe. The reaction was left at ambient temperature for 

an additional 30 minutes and then quenched by the addition of saturated 

ammonium chloride solution (10 mL). The product was extracted into Et2O (3 × 

25 mL), and the combined organic extracts were rinsed with brine (25 mL) and 

dried with sodium sulfate. The solvent was removed in vacuo and the crude 

product was purified by column chromatography (5% EtOAc/hexane) to give 

ethyl 4-oxooctanoate (292) (125 mg, 62% yield) as a clear oil. 

 
Method E199 

Di-n-butylcopper lithium was prepared in situ by reacting copper iodide 

(720 mg, 4.00 mmol) with n-butyllithium (1.6 M, 5.00 mL, 8.00 mmol) in THF 

(4 mL) at -90 °C under a nitrogen atmosphere for 1 hour. Succinic anhydride 

(727 mg, 7.27 mmol) was carefully added to this solution and the reaction was 

stirred for a further 3 hours at ambient temperature. The reaction was quenched 

by the addition of saturated ammonium chloride solution (10 mL) and the 

biphasic solution was stirred for 30 minutes before being acidified with an HCl 

solution 5% (v/v) and extracted into Et2O (12 mL). The Et2O was removed in 

vacuo and the residue was redissolved in EtOH (10 mL). Approximately 5 drops 

of concentrated H2SO4 were added and the reaction was allowed to stir for 3 

hours. The solvent was then removed in vacuo and the crude material was 



 

 269

partitioned between EtOAc (20 mL) and distilled H2O (20 mL). The organic 

fraction was dried with sodium sulfate and the solvent was removed in vacuo. 

Purification by column chromatography (5% EtOAc/hexane) gave ethyl 
4-oxooctanoate (292) (250 mg, 34% yield over the two steps). 

 

Method F203, 204  

Ethyl 4-chloro-4-oxobutanoate (1.0 mL, 7.0 mmol), was dissolved in THF 

(10 mL) in a flame-dried RBF. The solution was cooled to -29°C in a 

xylene/liquid nitrogen bath under a nitrogen atmosphere. Tri-n-butylphosphine 

(1.9 mL, 7.7 mmol) was carefully added and the solution was stirred for 25 

minutes. This was followed by the rapid addition of n-butylmagnesium bromide 

(2.0 M, 4.0 mL, 8.0 mmol) by syringe. The reaction was left stirring for an 

additional 10 minutes and was then quenched with aqueous HCl (1.0 M, 5 mL). 

The reaction mixture was poured into a flask containing additional HCl (1.0 M, 

80 mL) and the product was extracted into EtOAc (3 × 50 mL). The organic 

fractions were combined and rinsed with sodium bicarbonate solution (1% 

(w/w), 50 mL), followed by brine (50 mL) and finally dried with sodium sulfate.  

The EtOAc was evaporated in vacuo and the crude product was purified by 

column chromatography (5% EtOAc/hexane) to give ethyl 4-oxooctanoate 
(292) (1.21 g, 93% yield) as a clear oil.  

 

Method G198 

Ethyl 4-chloro-4-oxobutanoate (5.0 mL, 35 mmol), was dissolved in THF 

(100 mL) together with iron (III) acetoacetate (0.371 g, 1.05 mmol) in an oven-

dried RBF, under a nitrogen atmosphere. The solution was cooled to 0°C and 

n-butylmagnesium bromide (1.75 M, 20 mL, 35 mmol) was added dropwise 

from a dropping funnel. The addition was complete after 10 minutes and the 

reaction was quenched by adding aqueous HCl (10% (v/v), 60 mL). The 

product was extracted into EtOAc (3 × 50 mL), washed with saturated sodium 

bicarbonate solution (60 mL), rinsed with distilled H2O (50 mL) and dried with 

sodium sulfate.  The EtOAc was evaporated in vacuo and the crude product 

was purified by column chromatography (5% EtOAc/hexane) to give ethyl 
4-oxooctanoate (292) (6.51 g, 100% yield).  
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8.1.2 Preparation of ethyl 3-aminobutyrate 
8.1.2.1 (Z)-Ethyl 3-aminobut-2-enoate (349)208 - 210 
Ethyl acetoacetate (15.2 mL, 120 mmol) was dissolved in benzene (150 mL) in 

a 250 mL RBF connected to a Dean-Stark apparatus. AcOH (6 mL) and 

ammonium acetate (18.5 g, 240 mmol) were added and the solution was 

heated at reflux for 4 hours. The solution was then cooled and the benzene and 

AcOH were removed in vacuo. The residual oil was redissolved in EtOAc 

(100 mL) and washed with saturated sodium carbonate solution (100 mL), dried 

with sodium sulfate and evaporated down in vacuo. The product was isolated 

by vacuum distillation to give (Z)-ethyl 3-aminobut-2-enoate (349) (14.0 g 

91% yield) as a clear oil. The 1H-NMR spectrum indicated that the product was 

in equilibrium with its tautomer in a (3:1) ratio respectively.  

 

 
 

M.p. 28 -31 °C 

 

Rf 0.71 (50% EtOAc/hexane) 

 

Major Tautomer (349A) 
1H (300 MHz, CDCl3) δΗ /ppm 8.5-7.5 (2H, br, s, N-H2), 4.52 (1H, s, H-2), 4.10 

(2H, q, J 7.1, H-5), 1.90 (3H, s, H-4), 1.25 (3H, t, J 7.1, H-6). 

 
13C (75 MHz, CDCl3) δC /ppm 169.9 (C-1), 159.9 (C-3), 83.1 (C-2), 58.0 (C-5), 

21.6 (C-4), 14.1 (C-6).  

 

Minor Tautomer (349B) 
1H (300 MHz, CDCl3) δΗ /ppm 8.5-7.5 (1H, br, s, N-H), 4.52 (2H, s, H-2), 4.10 

(2H, q, J 7.1, H-5), 1.66 (3H, s, H-4), 1.25 (3H, t, J 7.1, H-6). 
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13C (75 MHz, CDCl3) δC /ppm 200.6 (C-3), 166.8 (C-1), 60.9 (C-5), 49.5 (C-2), 

29.6 (C-4), 13.6 (C-6).   

 

νmax. / cm-1: 3413 (m, N-H), 3320 (m, N-H), 2981 (w, C-H), 2929 (w, C-H), 2896 

(w, C-H), 1655 (m), 1614 (s), 1553 (s), 1476 (w), 1452 (w), 1377 (w), 1291 (s), 

1165 (s), 1113 (m), 1046 (m), 980 (m), 781 (s). 

 

m/z: 129 (53%, M), 119 (29), 105 (100). 

 

8.1.2.2 (Z)-t-Butyl 3-aminobut-2-enoate (353)208 - 210 

t-Butyl acetoacetate (3.32 mL, 20.0 mmol) was dissolved in benzene (75 mL) in 

a 250 mL RBF connected to a Dean-Stark apparatus. AcOH (2 mL) and 

ammonium acetate (3.08 g, 40.0 mmol) were added and the solution was 

heated at reflux for 3 hours. The benzene and the AcOH were removed in 

vacuo and the residual oil was redissolved in EtOAc (100 mL). The organic 

layer was washed with saturated sodium carbonate solution (100 mL) and 

distilled H2O (2 × 100 mL), and then dried with sodium sulfate. The EtOAc was 

removed in vacuo and the product was purified by vacuum distillation to give 

(Z)-t-butyl 3-aminobut-2-enoate (353) (2.79 g, 89% yield) as a low-melting, 

crystalline, white solid. 
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M.p. 35 -37 °C 

 

Rf 0.74 (50% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 8.5-7.5 (2H, br, s, N-H2), 4.46 (1H, s, H-2), 1.87 

(3H, s, H-4), 1.47 (9H, s, H-6). 
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13C (75 MHz, CDCl3) δC /ppm 170.2 (C-1), 158.7 (C-3), 85.9 (C-2), 78.1 (C-5), 

28.6 (C-6), 22.3 (C-4). 

 

νmax. / cm-1: 3411 (s, N-H), 3320 (s, N-H), 2982 (w, C-H), 2929 (w, C-H), 2896 

(w, C-H), 1655 (m), 1614 (s), 1552 (s), 1476 (w), 1453 (w), 1376 (w), 1290 (s), 

1165 (s), 1113 (m), 1047 (m), 980 (m), 781 (s). 

 
8.1.2.3 Preparation of ethyl 3-(dibenzylamino)butanoate (351)158 
Freshly distilled dibenzylamine (4.95 mL, 25.8 mmol) was dissolved in THF 

(100 mL) in oven-dried glassware and cooled to −90ºC under nitrogen. 

n-Butyllithium (1.6 M, 15 mL, 24 mmol) was added by syringe and the reaction 

mixture turned from clear to deep red. The mixture was allowed to stir for 30 

minutes at −90ºC at which point a solution of ethyl crotonate (2.66 mL, 

21.5 mmol) in THF (45 mL) was added from a dropping funnel over 40 minutes. 

The reaction was maintained at −90ºC for a further 2 hours before it was 

quenched with saturated ammonium chloride solution (50 mL) and warmed to 

ambient temperature. The THF was removed in vacuo, distilled H2O (60 mL) 

was added to the aqueous solution and the product was extracted into CH2Cl2 

(6 × 30 mL). The organic fractions were combined and dried with sodium 

sulfate. The CH2Cl2 was evaporated in vacuo and the crude product was 

purified by column chromatography (5% EtOAc/hexane) to give racemic ethyl 
3-(dibenzylamino)butanoate (351) (4.93 g, 74%) as a clear and pungent oil.  

 

11

10 O

1
O 2

3

4

N
5

6

9

8

7

[351]
 

 

Rf 0.43 (10% EtOAc/hexane)  
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1H (300 MHz, CDCl3) δΗ /ppm 7.65 (2H, t, J 7.0, H-9), 7.60 (4H, t, J 7.0, H-8), 

7.53 (4H, d, J 7.0, H-7), 4.46 (1H, q, J 7.1, H-10A), 4.33 (1H, q, J 7.1, H-10B), 

3.97 (2H, d, J 13.7, H-5A), 3.78 (2H, d, J 13.7, H-5B), 3.70-3.58 (1H, m, H-3), 

2.96 (1H, dd, J 7.7, 13.9, H-2A), 2.59 (1H, dd,  J 7.0, 13.9, H-2B), 1.50 (3H, t, J 

7.1, H-11), 1.42 (3H, d, J 6.7, H-4). 

 
13C (75 MHz, CDCl3) δC /ppm 172.7 (C-1), 140.4 (C-6), 129.2 (C-7), 128.5 

(C-8), 127.2 (C-9), 60.7 (C-10), 53.8 (C-5), 51.3 (C-3), 39.6 (C-2), 14.5 (C-4, 

C-11). 

 

νmax. / cm-1: 3062 (w, Ar), 3027 (w, Ar), 2975 (m, C-H), 2934 (m, C-H), 2803 

(m), 1734 (s, C=O), 1495 (m), 1454 (m), 1368 (m), 1297 (m), 1190 (s, C-N), 

1095 (m, C-N), 1031 (m), 747 (s), 698 (s). 

 

m/z: 311 (5%, M), 296 (9), 224 (93), 220 (11), 181 (7), 132 (9), 105 (18), 91 

(100), 77 (10). Found 311.1894, C20H25O2N requires 311.1885. 

 
8.1.2.4 Ethyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}butanoate (356)158 
Benzyl[(1R)-1-phenylethyl]amine (2.02 mL, 9.67 mmol) was dissolved in THF 

(30 mL) in oven-dried glassware and cooled to −90ºC under nitrogen. 

n-Butyllithium (0.7 M, 12.9 mL, 9.03 mmol) was added by syringe and the 

reaction turned from clear to deep red. The mixture was allowed to stir for 30 

minutes at −90ºC before a solution of ethyl crotonate (1.00 mL, 8.06 mmol) in 

THF (16 mL) was added from a dropping funnel over 35 minutes. The reaction 

was maintained at −90ºC for a further 2 hours before it was quenched with 

saturated aqueous ammonium chloride (50 mL) and warmed to ambient 

temperature. The THF was evaporated in vacuo, distilled H2O (20 mL) was 

added to the aqueous solution and the product was extracted into CH2Cl2 (5 × 

40 mL). The organic fractions were combined and dried with sodium sulfate. 

The CH2Cl2 was evaporated in vacuo and the crude product was purified by 

column chromatography (5% EtOAc/hexane) to give ethyl (3R)-3-{benzyl[(1R)-
1-phenylethyl]amino}butanoate (356) (2.49 g, 95% yield) as a clear and 

pungent oil.  
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Rf 0.43 (10 % EtOAc/hexane), [α]D20 +7.6 (c 1.06, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.42-7.17 (10H, m, Ar-H), 3.99 (1H, q, J 7.2, 

H-16), 3.92 (2H, q, J 7.0, H-5), 3.71 (1H, d, J 14.7, H-11A), 3.69 (1H, d, J 14.7, 

H-11B), 3.50-3.40 (1H, m, H-3), 2.36 (1H, dd, J 5.9, 14.1, H-2A), 2.10 (1H, dd, J 

8.0, 14.1, H-2B), 1.35 (3H, d, J 7.0, H-6), 1.16 (3H, t, J 7.2, H-17), 1.14 (3H, d, 

J 6.7, H-4). 

 
13C (75 MHz, CDCl3) δC /ppm 172.8 (C-1), 144.7 (C-7), 142.2 (C-12), 128.7, 

128.5, 128.4, 128.1, 127.1, 127.0 (C-8, C-9, C-10, C-13, C-14, C-15), 60.5 

(C-16), 58.2 (C-5), 50.5 (C-3), 50.0 (C-11), 40.2 (C-2), 19.0 (C-17), 18.3 (C-6), 

14.5 (C-4). 

 

νmax. / cm-1: 3062 (w, Ar), 3027 (w, Ar), 2975 (m, C-H), 2934 (m, C-H), 1732 (s, 

C=O), 1494 (m), 1453 (s), 1371 (s), 1296 (s), 1193 (s), 749 (s), 700 (s). 

 

m/z: 325 (8%, M), 310 (30), 248 (4), 238 (71), 220 (20), 134 (54), 120 (5), 105 

(100), 77 (19), 51 (5). Found 325.2067, C12H27O2N requires 325.2042. 

 
8.1.2.5 Ethyl 3-aminobutanoate (291)  
Method A158, 212 

Ethyl 3-(dibenzylamino)butanoate (351) (1.0 g, 3.2 mmol) was dissolved in 

absolute EtOH (15 mL). Activated palladium on carbon (10%, 483 mg, 

0.150 g/mmol) and a catalytic amount of concentrated HCl (1 mL) were added 

and the mixture was stirred in a hydrogenator under 7 atmospheres of 
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hydrogen pressure for 72 hours. The solution was then filtered through Celite® 

to remove the palladium catalyst. The Celite® was thoroughly rinsed with 

CH2Cl2 (300 mL) and the solvent removed in vacuo using toluene as an 

azeotrope to remove the residual AcOH. The organic residue was redissolved 

in CH2Cl2 (30 mL) and stirred with solid sodium bicarbonate (3 spatulas full) for 

5 hours. The sodium bicarbonate was filtered off, thoroughly rinsed and then 

the CH2Cl2 was removed in vacuo to give the partially debenzylated product, 

ethyl 3-(benzylamino)butanoate (355) (540 mg, 71% yield).g 

 

Method B  

Ethyl 3-(dibenzylamino)butanoate (351) (4.00 g, 12.9 mmol) was dissolved in 

glacial AcOH (55 mL). Activated palladium on carbon (10%, 1.93 g, 

0.150 g/mmol) was added and the mixture stirred in a hydrogenator under 

7.5 atmospheres of hydrogen pressure for 72 hours. The solution was then 

filtered through Celite® to remove the palladium catalyst. The Celite® was rinsed 

thoroughly with distilled H2O (100 mL) and CH2Cl2 (100 mL) and the organic 

solvent was removed in vacuo. The aqueous solution was basified with solid 

sodium bicarbonate and the product was back-extracted into CH2Cl2 (6 × 

50 mL). The organic fractions were combined and dried with potassium 

carbonate and the CH2Cl2 was removed in vacuo to give crude ethyl 3-
aminobutanoate (291). A pure sample of ethyl 3-aminobutanoate (291) (400 

mg, 24% yield) was obtained by careful chromatography (100% EtOAc - 10% 

MeOH/EtOAc) for characterization purposes.h  

 

Method C 

Ethyl 3-(dibenzylamino)butanoate (351) (0.20 g, 0.60 mmol) and ceric 

ammonium nitrate (667 mg, 1.20 mmol) were dissolved in a 1:5 mixture of 

                                                 
g The yields for partially and fully debenzylated products were extremely variable. See 
Chapter 4 for the detailed explanation. 
h When the reaction was repeated no water was used in the work up, and low 
temperatures were employed when removing solvent in vacuo. Column 
chromatography was avoided as it resulted in reduced yields, and instead the crude 
amine was used directly in the next reaction. Residual AcOH peaks persisted in the 
crude NMR spectra of these products, but the use of higher temperatures, H2O, or 
column chromatography drastically reduces the yield as the amine is volatile and 
partially soluble in water. 
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MeCN and distilled H2O (10 mL) and the reaction mixture stirred at ambient 

temperature for 12 hours. The reaction was quenched with saturated sodium 

bicarbonate solution (10 mL) and filtered through cotton wool to remove any 

precipitate. The product was extracted into CH2Cl2 (4 × 20 mL) and dried with 

sodium sulfate. The solvent was removed in vacuo and the crude product was 

purified by column chromatography (5% - 50% EtOAc/hexane) to give ethyl 3-
(benzylamino)butanoate (355)  (108 mg, 81% yield) as a pale yellow oil.i 

 

 
 
Rf 0.11 (10% MeOH/EtOAc) 

 
1H (300 MHz, CDCl3) δΗ /ppm 4.15 (2H, q, J 7.1, H-5), 3.42-3.34 (1H, m, H-3), 

2.41 (1H, dd, J 4.6, 15.6, H-2A), 2.29 (1H, dd, J 8.4, 15.6, H-2B), 1.71 (2H, s, 

NH2), 1.27 (3H, t, J 7.1, H-6), 1.13 (3H, d, J 6.4, H-4). 

 
13C (75 MHz, CDCl3) δC /ppm 172.4 (C-1), 60.3 (C-5), 44.3 (C-2), 44.1 (C-3), 

23.6 (C-4), 14.3 (C-6). 

 

νmax. / cm-1 3370 -3200 (br, NH2), 2976 (m, C-H), 2932 (m, C-H), 1733 (s, C=O), 

1644 (s), 1552 (s), 1377 (m), 1189 (m). 

 

m/z: 132 (24%, M), 128 (13), 116 (7), 84 (7), 70 (14), 57 (18), 44 (100), 42 (13). 

Found 132.1026, C6H13NO2 requires 132.1025. 

 

                                                 
i Racemic ethyl 3-aminobutyrate is commercially available from Sigma-Aldrich as a 
90% pure, racemic mixture. For all subsequent reactions requiring the racemic amine 
the commercially available product was used. 
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Rf 0.14 (10% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.34-7.17 (5H, m, H-7, H-8, H-9), 4.16-3.98 (2H, 

m, H-10AB), 3.64 (1H, d, J 13.8, H-5A), 3.44 (1H, d, J 13.8, H-5B), 3.31 (1H, 

quintet, J 6.9, H-3), 2.62 (1H, dd, J 13.8, 7.8, H-2A), 2.26 (1H, dd, J 13.8, 6.9, 

H-2B), 1.24 (1H, s, NH), 1.19 (3H, t, J 7.2, H-11), 1.09 (3H, d, J 6.6, H-4). 
 

13C (75 MHz, CDCl3) δC /ppm 172.3 (C-1), 140.0 (C-6), 128.7 (C-7), 128.0 

(C-8), 126.8 (C-9), 60.2 (C-10), 53.3 (C-5), 50.9 (C-3), 37.6 (C-2), 14.1 (C-4), 

14.0 (C-11). 

 

8.1.2.6 Ethyl (3R)-3-aminobutanoate (291) 
Method A158 

Ethyl (3R)-3-{benzyl[(1R)-1-phenylethyl]amino}butanoate (356) (0.570 g, 

1.75 mmol) was dissolved in glacial  AcOH (5 mL). Activated palladium on 

carbon (10%, 262 mg, 0.150 g/mmol) was added and the reaction was left in a 

hydrogenator under 7.5 atmospheres of hydrogen pressure for 72 hours. The 

solution was filtered through Celite® to remove the palladium catalyst. The 

Celite® was thoroughly rinsed with CH2Cl2 (300 mL) and the solvent was 

removed in vacuo, using toluene as an azeotrope to remove the residual AcOH. 

The organic residue was redissolved in CH2Cl2 (30 mL) and stirred with solid 

sodium bicarbonate (3 spatulas full) for 5 hours. The sodium bicarbonate was 

filtered off, rinsed thoroughly and the CH2Cl2 was removed in vacuo. The crude 

material was purified by column chromatography (100% EtOAc - 10% 

MeOH/EtOAc) and two products were identified; ethyl (3R)-aminobutanoate 
(291) (80 mg, 35% yield) and ethyl (3R)-3-{[(1R)-1-
phenylethyl]amino}butanoate (357) (110 mg, 26% yield).  
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Rf 0.11 (10% MeOH/EtOAc), [α]D20 +37.0 (c 1.20, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 4.15 (2H, q, J 7.1, H-5), 3.41-3.35 (1H, m, H-3), 

2.41 (1H, dd, J 4.6, 15.6, H-2A), 2.29 (1H, dd, J 8.4, 15.6, H-2B), 1.71 (2H, s, 

NH2), 1.27 (3H, t, J 7.1, H-6), 1.13 (3H, d, J 6.4, H-4). 

 
13C (75 MHz, CDCl3) δC /ppm 172.4 (C-1), 60.3 (C-5), 44.3 (C-2), 44.1 (C-3), 

23.6 (C-4), 14.3 (C-6). 

 

νmax. / cm-1: 3370 (br, NH), 2976 (m, C-H), 2932 (m, C-H), 1733 (s, C=O), 1644 

(s), 1552 (s). 

 

m/z: 132 (24%, M), 128 (13), 116 (7), 84 (7), 70 (14), 57 (18), 44 (100), 42 (13). 

Found 132.1026, C6H13NO2 requires 132.1025. 
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Rf 0.12 (10% EtOAc/hexane), [α]D20 +23.0 (c 1.65, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.39-7.25 (5H, m, H-8, H-9, H-10), 4.12 (2H, q, J 

7.1, H-11), 4.03 (1H, q, J 6.7, H-5), 3.17-3.06 (1H, m, H-3), 2.60 (1H, dd, J 5.2, 

15.4, H-2A), 2.43 (1H, dd, J 7.1, 15.4, H-2B), 2.07 (1H, s, NH), 1.44 (3H, d, J 

6.7, H-6), 1.25 (3H, t, J 7.1, H-12), 1.12 (3H, d, J 6.5, H-4). 
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13C (75 MHz, CDCl3) δC /ppm 177.0 (C-1), 144.7 (C-7), 129.1 (C-8), 128.1 

(C-10), 127.5 (C-9), 61.1 (C-11), 56.2 (C-5), 48.7 (C-3), 40.7 (C-2), 24.3 (C-6), 

21.3 (C-4), 14.95 (C-12). 

 

νmax. / cm-1: 2970 (m, C-H), 1761 (s, C=O), 1455 (m), 1371 (m), 1185 (s), 1080 

(m), 753 (m), 702 (s). 

 

m/z: 235 (2%, M), 220 (100), 185 (8), 174 (6), 158 (9), 148 (77), 132 (88), 120 

(68), 116 (22), 105 (100). APCI Found 235.72, C14H21NO2 requires 235.16. 

 

Method B  

A 100 mL RBF was charged with MeOH (20 mL) and ethyl (3R)-3-
{benzyl[(1R)-1-phenylethyl]amino}butanoate (356) (500 mg, 1.54 mmol). 

Ammonium formate (776 mg, 12.3 mmol) was added and the solution was 

stirred under a nitrogen atmosphere until the solution was homogenous. 

Palladium on carbon (10%, 185 mg, 0.37 eq.) was carefully stirred into the 

mixture (the methanolic vapours readily ignited if the system was not properly 

flushed with nitrogen). The reaction was left at ambient temperature for 3.5 

hours, until TLC indicated that all the starting material was consumed. The 

reaction mixture was filtered through Celite® and rinsed with MeOH (2 × 20 mL) 

to remove the catalyst. The solvent was removed in vacuo and the residue was 

rinsed with NaOH solution (1.0 M, 8 mL) and extracted into CH2Cl2 (2 × 20 mL). 

The combined organic extracts were dried with sodium sulfate and the solvent 

removed in vacuo. Purification of the crude oil by column chromatography (5% - 

100% EtOAc/hexane) gave ethyl (3R)-3-{[(1R)-1-
phenylethyl]amino}butanoate (357) (250 mg, 69% yield) as a clear oil. 

 

Method C  

Ethyl (3R)-3-{[(1R)-1-phenylethyl]amino}butanoate (357) (0.69 g, 2.9 mmol) 

was dissolved in AcOH (5 mL)  with palladium hydroxide (10 - 20%, 70 mg, 

0.10 eq.). The reaction was set up under 7 atmospheres of hydrogen pressure 

in the hydrogenator at ambient temperature for 72 hours. The reaction mixture 

was filtered through Celite® and rinsed with CH2Cl2 (150 mL) to remove the 
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residual catalyst. The solvent was removed in vacuo and the crude product was 

purified by column chromatography (50% - 100% EtOAc/hexane). No products 

were isolated, but starting material was recovered (420 mg, 61% recovery). 

 
8.1.3 Condensation reaction 
8.1.3.1 Ethyl 3-[(4-oxooctanoyl)amino]butanoate (377)128, 221  

4-Oxooctanoic acid (347) (200 mg, 1.26 mmol) was dissolved in dry CH2Cl2 

(7 mL) and cooled to 0ºC. Oxalyl chloride (0.22 mL, 2.5 mmol) was added and 

the reaction was left stirring for 2 hours at ambient temperature. The excess 

oxalyl chloride and CH2Cl2 were removed in vacuo and the crude product was 

placed under high vacuum for 1 hour to remove any residual oxalyl chloride. 

Fresh CH2Cl2 (10 mL) was added to the organic residue, followed by ethyl 3-

aminobutanoate (90%, 0.19 mL, 1.26 mmol) and Et3N (0.17 mL, 1.3 mmol). The 

reaction mixture was stirred at ambient temperature for 14 hours before the 

solvent was removed in vacuo and the crude product was purified by column 

chromatography (40% EtOAc/hexane) to give ethyl 3-[(4-oxooctanoyl) 
amino]butanoate (377) (170 mg, 51% yield over the two steps) as a white 

solid.  

 

 
 
M p. 52-53.5 °C 

 

Rf 0.31 (10 % EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 6.18 (1H, d, J 7.6, NH), 4.28-4.21 (1H, m, H-3), 

4.08 (2H, q, J 7.1, H-13),  2.68 (2H, t, J 6.6, H-6), 2.42-2.31 (6H, m, H-2, H-7, 

H-9), 1.55-1.45 (2H, m, H-10), 1.27-1.24 (2H, m, H-11), 1.20 (3H, t, J 7.1, H-

14), 1.14 (3H, d, J 6.8, H-4), 0.83 (3H, t, J 7.3, H-12). 
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13C (75 MHz, CDCl3) δC /ppm 209.1 (C-8), 170.6 (C-1), 170.1 (C-5), 59.5 

(C-13), 41.5 (C-9), 41.1 (C-3), 39.2 (C-7), 36.6 (C-6), 29.0 (C-2), 24.9 (C-10), 

21.3 (C-11), 19.0 (C-14), 13.2 (C-4), 12.8 (C-12). 

 

νmax. / cm-1: 3306 (br, NH), 2960 (m, C-H), 2934 (m, C-H), 2871 (m, C-H), 1731 

(s, OC=O), 1707 (s, C=O), 1640 (s, NC=O), 1546 (m), 1374 (m), 1228 (m). 

 

m/z: Found 271.1767, C14H25O4N requires 271.1784. 

 
8.1.3.2 Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) 
Method A 

Ethyl 3-[(4-oxooctanoyl)amino]butanoate (377) (60 mg, 0.22 mmol) was set 

up to reflux with AcOH (20 mg, 1.11 mmol) in toluene (7 mL) for 72 hours. The 

solution was cooled, the solvent removed in vacuo, and the product purified by 

column chromatography (10% EtOAc/hexane) to give ethyl 3-[(2E)-2-
butylidene-5-oxopyrrolidinyl]butanoate (293) in quantitative yield, 

exclusively as the trans isomer (as verified by NOE experiments). 
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[293]  
 

Rf 0.27 (20% EtOAc/hexane)  

 
1H (300 MHz, CDCl3) δΗ /ppm 4.77 (1H, t, J 7.4, H-4), 4.45-4.37 (1H, m, H-10), 

4.12 (2H, q, J 7.1, H-13), 3.04 (1H, dd, J 7.4, 15.7, H-11A), 2.81 (1H, dd, J 7.3, 

15.7, H-11B), 2.58 (2H, t, J 8.0, H-6/H-7), 2.42 (2H, t, J 8.0, H-6/H-7), 2.00 (2H, 
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q, J 7.3, H-3), 1.47-1.42 (2H, m, H-2), 1.41 (3H, d, J 6.9, H-9), 1.25 (3H, t, J 7.1, 

H-14), 0.93 (3H, t, J 7.3, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 175.7 (C-8), 171.4 (C-12), 138.7 (C-5), 101.0 

(C-4), 60.4 (C-13), 45.2 (C-10), 37.6 (C-11), 29.2 (C-6/C-7), 29.0 (C-3), 23.2 

(C-2), 21.6 (C-6/C-7), 17.1 (C-9), 14.1 (C-14), 13.7 (C-1). 

 

νmax. / cm-1: 2959 (m, C-H), 2934 (m, C-H), 2872 (m, C-H), 1735 (s, OC=O), 

1669 (s, NC=O), 1408 (m), 1373 (m), 1241 (s), 1186 (s), 1096 (m), 1031 (m). 

 

m/z: 253 (22%, M), 229 (45), 224 (66), 214 (78), 208 (14), 168 (68), 141 (100), 

130 (74). Found 253.1376, C14H23O3N requires 253.1678. 

 

Method B222 

Ethyl 4-oxooctanoate (292) (700 mg, 3.8 mmol) and ethyl 3-aminobutanoate 

(90%, 0.56 mL, 3.8 mmol) were dissolved in toluene (25 mL) and heated at 

reflux for 30 hours using a Dean-Stark apparatus. The toluene was removed in 

vacuo and the residue was purified by column chromatography (20% 

EtOAC/hexane) to give ethyl 3-[(2E)-2-butylidene-5-
oxopyrrolidinyl]butanoate (293) (200 mg, 21% yield) and residual ethyl 4-
oxooctanoate (292) (320 mg, 45% recovery). 

 

Method C 

Ethyl 4-oxooctanoate (292) (2.00 g, 10.7 mmol), ethyl 3-aminobutanoate 

(90%, 1.58 mL, 10.8 mmol) and a catalytic amount of p-toluenesulfonic acid 

(103 mg, 0.54 mmol) were dissolved in toluene (60 mL) and heated at reflux for 

30 hours using a Dean-Stark apparatus with molecular sieves (4Å) in the side-

arm. The toluene was removed in vacuo and the residue was purified by silica 

column chromatography (10% EtOAC/hexane) to give ethyl 3-[(2E)-2-
butylidene-5-oxopyrrolidinyl] butanoate (293) (1.37 g, 50% yield) and ethyl 
4-oxooctanoate (292) (840 mg, 42% recovery).  
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Method D 

Ethyl 4-oxooctanoate (292)  (2.00 g, 10.7 mmol), ethyl 3-aminobutanoate 

(90%, 1.05 mL, 6.44 mmol) and glacial AcOH (2.15 g, 35.8 mmol) were 

dissolved in toluene (18 mL) and heated at reflux for 64 hours using a modified 

Dean-Stark apparatus. The solution was cooled and rinsed with saturated 

sodium bicarbonate solution (20 mL). The product was then extracted into 

EtOAc (3 × 30 mL) and dried with sodium sulfate. The solvent was removed in 

vacuo and the residue purified by column chromatography (10% 

EtOAC/hexane) to give ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl] 
butanoate (293) (1.43 g, 87% yield) as a clear oil. 

  

8.1.3.3 Ethyl (3R)-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate 
Ethyl 4-oxooctanoate (292) (2.04 g, 11.0 mmol), ethyl (3R)-aminobutanoate 
(291) (844 mg, 6.44 mmol) and glacial AcOH (2.15 g, 35.8 mmol) were 

dissolved in toluene (10 mL) and heated at reflux for 72 hours using a modified 

Dean-Stark apparatus. The solution was cooled and then rinsed with saturated 

sodium bicarbonate solution (20 mL). The product was extracted into EtOAc (3 

× 30 mL) and dried with sodium sulfate. The solvent was removed in vacuo and 

the residue was purified by column chromatography (10% EtOAC/hexane) to 

give ethyl (3R)-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) as a 

clear oil (753 mg, 46% yield) and ethyl 4-oxooctanoate (292) (1.02 g, 50% 

recovery).  

 

All characterization was identical to the racemate with the exception of the 

optical rotation.  

 

[α]D20 -10.0 (c 1.20, CH2Cl2) 

 

8.1.3.4 Ethyl (3S)-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate223 - 225 
Ethyl 3-aminobutyrate (90%, 0.45 mL, 3.0 mmol) was mixed together with ethyl 

butyrate (4 mL) and CAL-B (Candida antarctica lipase B)j (50 mg, 17 mg/mmol) 

and the solution was stirred at ambient temperature for 25 hours. The enzyme 
                                                 
j The CAL-B was kindly donated by Dean Brady from the Council for Scientific and 
Industrial Research (CSIR) 
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was filtered off through a sintered glass funnel and the residue was rinsed with 

EtOAc (20 mL). The EtOAc was removed in vacuo and the crude mixture of 

ethyl butyrate, free amine and acylated amine were heated at reflux together 

with ethyl 4-oxooctanoate (292) (700 mg, 3.75 mmol), AcOH (0.45 mL, 

7.5 mmol) and toluene (10 mL). The reaction mixture was allowed to reflux for 

72 hours and the solution was then cooled and the solvent removed in vacuo. 

The crude material was purified by column chromatography (10% 

EtOAc/hexane) to give ethyl (3S)-[(2E)-2-butylidene-5-
oxopyrrolidinyl]butanoate (293) (250 mg, 33% yield based on the racemate).k 

 

All characterization was identical to the racemate with the exception of optical 

rotation.  

 

[α]D20 +1.0 (c 1.00, CH2Cl2). 

 
8.1.4 Stereoselective reduction of the exocyclic alkene 
8.1.4.1 Ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate (294)  
Method A215, 226 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) (0.20 g, 

0.79 mmol) was dissolved in freshly distilled CH2Cl2 (10 mL) and cooled to 

−90ºC under nitrogen. Titanium tetrachloride (0.19 mL, 1.7 mmol) was added 

and the reaction mixture was stirred for 5 minutes. Triethylsilane (0.38 mL, 

2.4 mmol) was then added by syringe and the reaction was allowed to warm to 

ambient temperature and react for 48 hours. The reaction was quenched by the 

addition of saturated ammonium chloride solution (10 mL) and the product was 

extracted in CH2Cl2 (4 × 30 mL). The combined organic fractions were dried 

with sodium sulfate and the solvent was evaporated in vacuo. Purification of the 

crude material by column chromatography (50% EtOAc/hexane) gave ethyl 3-
(2-butyl-5-oxo-1-pyrrolidinyl)butanoate (294) (170 mg, 84% yield) as an 
                                                 
k Liljeblad et al. successfully used enzymatic resolution to separate (R)- and (S)-ethyl 
3-aminobutyrate, however, for practical reasons they isolated both the products as 
acetamides by reacting the resolved mixture of the free amine of the (S)-enantiomer 
and the acylated (R)-enantiomer with acetic anhydride. This protocol would not be 
useful in our synthetic route as we require the primary amine for our condensation 
reaction. 
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inseparable (1:4) mixture of diastereomers. The minor isomer, (the S,R and R,S 

isomer), has been designated isomer A and the major isomer, (the R,R and S,S 

isomer), has been designated isomer B.l 

 

Diastereomer A (S,R and R,S) 
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[294A]  
 
Rf 0.15 (20% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 4.12 (2H, q, J 7.2, H-13), 3.94-3.87 (1H, m, 

H-10), 3.68-3.63 (1H, m, H-5), 3.17 (1H, dd, J 16.1, 8.4, H-11A), 2.53 (1H, dd, J 

16.1,  6.0, H-11B), 2.42-2.05 (4H, m, H-6AB, H-7AB), 1.75-1.65 (2H, m, H-4), 

1.39 (3H, d, J 6.9, H-9), 1.40-1.26 (4H, m, H-2, H-3), 1.25 (3H, t, J 7.2, H-14), 

0.93 (3H, t, J 6.9, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 174.7 (C-8), 170.3 (C-12), 60.0 (C-5), 59.9 

(C-13), 46.8 (C-10), 38.3 (C-11), 33.8 (C-4), 30.6 (C-7), 26.8 (C-6), 23.9 (C-3), 

22.4 (C-9), 18.0 (C-2), 13.8 (C-1), 13.7 (C-14). 

 

νmax. / cm-1: 2958 (m, C-H), 2933 (m, C-H), 2873 (m, C-H), 1731 (s, OC=O), 

1679 (s, NC=O), 1444 (m), 1424 (m), 1372 (s), 1291 (s), 1247 (m), 1193 (s), 

1094 (m), 1029 (s), 670 (m). 

 

                                                 
l The diastereomer ratio was determined by the relative integration of the H-5 and H-10 
signals in the 1H-NMR spectra for isomer A and isomer B. 
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m/z: 255 (22%, M), 212 (6), 210 (35), 198 (100), 168 (76), 152 (88), 140 (89), 

110 (82). Found 255.1823, C14H23O3N requires 255.1834. 

 

Diastereomer B (R,R and S,S) 
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Rf 0.15 (20% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 4.20-4.10 (1H, m, H-10), 4.14 (2H, q, J 7.2, 

H-13), 3.62-3.55 (1H, m, H-5), 2.78 (2H, d, J 7.5, H-11), 2.46-2.03 (4H, m, 

H-6AB, H-7AB), 1.77-1.64 (2H, m, H-4), 1.45-1.22 (4H, m, H-2, H-3), 1.31 (3H, 

d, J 6.9, H-9), 1.25 (3H, t, J 7.2, H-14), 0.92 (3H, t, J 7.1, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 174.3 (C-8), 169.6 (C-12), 60.4 (C-13), 58.1 

(C-5), 46.1 (C-10), 38.7 (C-11), 34.3 (C-4), 30.5 (C-7), 27.1 (C-6), 24.3 (C-3), 

22.6 (C-2), 18.6 (C-9), 14.0 (C-1), 13.9 (C-14). 

 

νmax. / cm-1: 2957 (m, C-H), 2933 (m, C-H), 2872 (m, C-H), 1732 (s, OC=O), 

1681 (s, NC=O), 1445 (m), 1420 (m), 1372 (s), 1292 (s), 1248 (s), 1191 (s), 

1091 (m), 1030 (s), 666 (m). 

 

m/z: 255 (7%, M), 207 (18), 198 (84), 168 (38), 152 (100), 140 (35), 110 (84). 

Found 255.1823, C14H23O3N requires 255.1834. 
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Method B 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) (0.20 g, 

0.79 mmol) was dissolved in freshly distilled CH2Cl2 (10 mL) and cooled to 

−90ºC under nitrogen. TFA (0.14 mL, 1.8 mmol) was added and the reaction 

mixture was stirred for 5 minutes. Triethylsilane (0.38 mL, 2.4 mmol) was then 

added by syringe and the reaction was allowed to warm to ambient temperature 

and react for 60 hours. The reaction was quenched by the addition of saturated 

ammonium chloride solution (10 mL) and the product was extracted in CH2Cl2 

(3 × 30 mL). The combined organic extracts were dried with sodium sulfate and 

the solvent was removed in vacuo. Purification by column chromatography 

(50% EtOAc/hexane) gave ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate 
(294) (190 mg, 94% yield) as a (2:3) mixture of diastereomers, again favouring 

diastereomer B. 

 

Method C 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) (0.10 g, 

0.39 mmol) was dissolved in freshly distilled CH2Cl2 (10 mL) and cooled to 

−90ºC under nitrogen. Freshly distilled boron trifluoride etherate (0.11 mL, 

0.87 mmol) was added and the reaction mixture was stirred for 5 minutes. 

Triethylsilane (0.19 mL, 1.2 mmol) was then added by syringe and the reaction 

was allowed to warm to ambient temperature and react for 48 hours. The 

reaction was quenched by the addition of saturated ammonium chloride 

solution (10 mL) and the product was extracted into CH2Cl2 (4 × 30 mL). The 

combined organic extracts were dried with sodium sulfate and the solvent was 

removed in vacuo. Purification by column chromatography (50% 

EtOAc/hexane) gave ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate (294) 
(90 mg, 90% yield) as a (4:5) mixture of diastereomers, favouring diastereomer 

B. 

 

Method D 
Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) (0.10 g, 

0.39 mmol) was dissolved in freshly distilled CH2Cl2 (10 mL) and cooled to 

−90ºC under nitrogen. Tin (IV) tetrachloride (0.10 mL, 0.87 mmol) was added 

and the reaction mixture was stirred for 5 minutes. Triethylsilane (0.19 mL, 
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1.2 mmol) was added then by syringe and the reaction was allowed to warm to 

ambient temperature and react for a further 30 hours. The reaction was 

quenched by the addition of saturated ammonium chloride solution (10 mL) and 

the product was extracted into CH2Cl2 (4 × 30 mL). The combined organic 

extracts were dried with sodium sulfate and the solvent was removed in vacuo. 

Purification by column chromatography (50% EtOAc/hexane) gave starting 

material, ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293), 
(20 mg, 20% recovery) and ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate 
(294) (80 mg, 80% yield) as a (2:3) mixture of diastereomers, favouring 

diastereomer B. 

 

Method E 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) (0.20 g, 

0.79 mmol) was dissolved in freshly distilled CH2Cl2 (10 mL) and cooled to 

−90ºC under nitrogen. Zirconium tetrachloride (405 mg, 1.74 mmol) was added 

and the reaction mixture was stirred for 5 minutes. Triethylsilane (0.19 mL, 

1.2 mmol) was then added by syringe and the reaction was allowed to warm to 

ambient temperature and react for 48 hours. The reaction was quenched by the 

addition of saturated ammonium chloride solution (20 mL) and the product was 

extracted in CH2Cl2 (4 × 30 mL). The combined organic fractions were dried 

with sodium sulfate and the solvent was removed in vacuo. Purification by 

column chromatography (50% EtOAc/hexane) gave ethyl 3-(2-butyl-5-oxo-1-
pyrrolidinyl)butanoate (294) (160 mg, 79% yield) as a (3:4) mixture of 

diastereomers, favouring diastereomer B. 

 

Method F 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) (0.10 g, 

0.39 mmol) was dissolved in freshly distilled CH2Cl2 (7 mL) and cooled to −90ºC 

under nitrogen. Aluminium trichloride (115 mg, 0.860 mmol) was added and the 

reaction mixture was stirred for 5 minutes. Triethylsilane (0.19 mL, 1.2 mmol) 

was then added by syringe and the reaction was allowed to warm to ambient 

temperature and react for 72 hours. The reaction was quenched by the addition 

of saturated ammonium chloride solution (20 mL) and the product was 

extracted in CH2Cl2 (4 × 30 mL). The combined organic extracts were dried with 
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sodium sulfate and the solvent was removed in vacuo. Purification by column 

chromatography (50% EtOAc/hexane) gave ethyl 3-(2-butyl-5-oxo-1-
pyrrolidinyl)butanoate (294) (100 mg, 100% yield) as a (3:4) mixture of 

diastereomers, favouring diastereomer B. 

 

Method G 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) (0.10 g, 

0.39 mmol) was dissolved in freshly distilled CH2Cl2 (7 mL) and cooled to −90ºC 

under nitrogen. Titanium isopropoxide (0.23 mL, 0.86 mmol) was added and the 

reaction mixture was stirred for 5 minutes. Triethylsilane (0.19 mL, 1.2 mmol) 

was then added by syringe and the reaction was allowed to warm to ambient 

temperature and react for 48 hours. The reaction was quenched by the addition 

of saturated ammonium chloride solution (20 mL) and the product was 

extracted in CH2Cl2 (4 × 30 mL) – the two layers formed an emulsion and had 

to be filtered through a sintered glass funnel before separation was possible. 

The combined organic extracts were dried with sodium sulfate and the solvent 

was removed in vacuo. Purification by column chromatography (50% 

EtOAc/hexane) gave back the starting material, ethyl 3-[(2E)-2-butylidene-5-
oxopyrrolidinyl]butanoate (293), (70 mg, 70% recovery). 

 

Method H 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) (0.10 g, 

0.39 mmol) was dissolved in freshly distilled CH2Cl2 (7 mL) and cooled to −90ºC 

under nitrogen. Lanthanum triflouromethanesulfonate (504 mg, 0.86 mmol) was 

added and the reaction mixture was stirred for 25 minutes. Triethylsilane 

(0.19 mL, 1.2 mmol) was then added by syringe and the reaction was 

maintained at −90ºC for 2 hours before allowing the reaction to warm to 

ambient temperature and react for a further 96 hours. The reaction was 

quenched by the addition of saturated ammonium chloride solution (5 mL) and 

the product was extracted in CH2Cl2 (4 × 30 mL). The combined organic 

fractions were dried with sodium sulfate and the solvent was removed in vacuo. 

Purification by column chromatography (50% EtOAc/hexane) gave the ring-

opened product ethyl 3-[(4-oxooctanoyl)amino]butanoate (377) (90 mg, 85% 

yield). 
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Method I 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) (0.10 g, 

0.39 mmol) was dissolved in freshly distilled CH2Cl2 (7 mL) and cooled to −90ºC 

under nitrogen. Titanium tetrachloride (0.10 mL, 0.86 mmol) was added and the 

reaction mixture was stirred for 7 minutes. Triphenylsilane (307 mg, 1.18 mmol) 

was then added and the reaction was maintained at −90ºC for 2 hours before it 

was allowed to warm to ambient temperature and react for 96 hours. The 

reaction was quenched by the addition of saturated ammonium chloride 

solution (5 mL) and the product was extracted in CH2Cl2 (3 × 30 mL). The 

combined organic extracts were dried with sodium sulfate and the solvent was 

removed in vacuo. Purification by column chromatography (50% 

EtOAc/hexane) gave ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate (294) 
(85 mg, 85% yield) as a (1:5) mixture of diastereomers, favouring diastereomer 

B. 

 

Method J226 

Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (293) (90 mg, 

0.35 mmol) was dissolved in absolute EtOH (3 mL). Activated palladium on 

carbon (10%, 40 mg, 0.115 g/mmol) was added, and the reaction mixture was 

set-up in a test-tube in the hydrogenator under 7.5 atmospheres of hydrogen 

pressure for 60 hours. The solution was filtered through Celite® and thoroughly 

rinsed with CH2Cl2 (200 mL) to remove the catalyst. The solvent was 

evaporated in vacuo and the resulting crude product was thoroughly dried 

under high vacuum to give ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate 

(294) (90 mg, 100% yield) as a mixture of diastereomers (in a 2:3 ratio), 

favouring diastereomer B. 

 
8.1.5 Thionation reactions 
8.1.5.1 Ethyl 3-(2-butyl-5-thioxo-1-pyrrolidinyl)butanoate (295) 
The diastereomeric mixture of ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl) 
butanoate (294) (1.53 g, 5.97 mmol) and Lawesson’s reagent (1.33 g, 

3.28 mmol) were mixed in dry CH2Cl2 (40 mL) and stirred at ambient 

temperature under a nitrogen atmosphere for 96 hours. The CH2Cl2 was 

removed in vacuo and the organic residue was purified by column 
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chromatography (15% EtOAc/hexane) to give ethyl 3-(2-butyl-5-thioxo-1-
pyrrolidinyl)butanoate (295) (1.580 g, 98%) as a mixture of diastereomers, in 

the same ratio as the starting material. The diastereomers were partially 

separable by column chromatography (10% EtOAc/hexane).  

 

Diastereomer A (S,R and R,S) 
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[295A]  
 
Rf 0.25 (10% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 4.80-4.72 (1H, m, H-10), 4.15 (2H, q, J 7.2, 

H-13), 4.11-4.02 (1H, m, H-5), 3.53 (1H, dd, J 6.3, 16.2, H-11A), 3.10-2.85 (2H, 

m, H-7), 2.48 (1H, dd, J 8.0, 16.2, H-11B), 2.25-2.04 (1H, m, H-6A), 1.90-1.60 

(3H, m, H-4, H-6B), 1.52 (3H, d, J 7.1, H-9), 1.40-1.26 (4H, m, H-2, H-3) 1.27 

(3H, t, J 7.1, H-14), 0.93 (3H, t, J 7.0, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 200.9 (C-8), 171.6 (C-12), 67.7 (C-5), 61.0 

(C-13), 51.3 (C-10), 45.1 (C-7), 38.3 (C-11), 33.7 (C-4), 28.0 (C-2), 26.1 (C-6), 

23.0 (C-3), 17.5 (C-9), 14..5 (C-14), 14.4 (C-1). 

 

νmax. / cm-1: 2957 (m, C-H), 2933 (m, C-H), 2872 (m, C-H), 1736 (s, C=O), 1498 

(m), 1456 (s), 1425 (m), 1375 (m), 1312 (s, C=S), 1274 (s), 1180 (s), 1031 (m). 

 

m/z: 271 (100%, M), 242 (57), 238 (50), 226 (29), 198 (72), 184 (13), 158 (26), 

130 (43), 114 (36), 84 (8), 71 (12), 41 (35). Found 271.1606, C14H25O2N32S 

requires 271.1606. 
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Diastereomer B (R,R and S,S) 
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[295B]  
 
Rf 0.22 (10% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 5.30-5.10 (1H, m, H-10), 4.13 (2H, q, J 7.1, 

H-13), 4.11-3.95 (1H, m, H-5), 3.10-2.85 (2H, m, H-7), 2.79 (2H, dq, J 7.5, 15.5, 

H-11AB), 2.20-2.04 (1H, m, H-6A), 1.85-1.68 (2H, m, H-4), 1.58-1.46 (1H, m, 

H-6B), 1.41 (3H, d, J 7.0, H-9), 1.40-1.26 (4H, m, H-2, H-3) 1.25 (3H, t, J 7.1, 

H-14), 0.92 (3H, t, J 6.9, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 201.9 (C-8), 170.9 (C-12), 65.5 (C-5), 61.2 

(C-13), 51.0 (C-10), 44.4 (C-7), 38.8 (C-11), 34.2 (C-4), 28.0 (C-2), 26.4 (C-6), 

23.0 (C-3), 18.9 (C-9), 14.5 (C-14), 14.4 (C-1). 

 

νmax. / cm-1: 2960 (m, C-H), 2935 (m, C-H), 2874 (m, C-H), 1736 (s, C=O), 1497 

(m), 1462 (s), 1427 (m), 1375 (m), 1303 (s, C=S), 1199 (s), 1086 (m), 1033 (m). 

 

m/z: 271 (100%, M) 242 (59), 238 (52), 214 (19), 198 (85), 175 (12), 157 (23), 

130 (45), 115 (18), 84 (15), 71 (13), 41 (38). Found 271.1613, C14H25O2N32S 

requires 271.1606. 
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8.1.5.3 Ethyl 3-(2-butyl-1H-pyrrol-1-yl)butanoate (381) and ethyl 3-(2-butyl-
5-sulfanyl-1H-pyrrol-1-yl)butanoate (382) 
Ethyl 3-[(2E)-2-butylidene-5-oxopyrrolidinyl]butanoate (294) (0.16 g, 

0.79 mmol) was dissolved in distilled CH2Cl2 (5 mL) at ambient temperature 

under a nitrogen atmosphere. Lawesson’s reagent (0.18 g, 0.44 mmol) was 

added and the reaction was stirred at ambient temperature for 96 hours. The 

solvent was removed in vacuo and the crude residue was purified by column 

chromatography (10% EtOAc/hexane) to give ethyl 3-(2-butyl-1H-pyrrol-1-
yl)butanoate (381) (40 mg, 25% yield) and ethyl 3-(2-butyl-5-sulfanyl-1H-
pyrrol-1-yl)butanoate (382) (30 mg, 19% yield). 
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[381]  
 
Rf 0.66 (50% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ  /ppm 6.62 (1H, d, J 1.8, H-8), 6.10 (1H, dd, J 3.1, 1.8, 

H-7), 5.84 (1H, d, J 3.1, H-6), 4.64-4.57 (1H, m, H-10), 4.10 (2H, q, J 7.1, H-

13), 2.75-2.65 (2H, m, H-11AB), 2.58 (2H, t, J 7.8, H-4), 1.65-1.56 (4H, m, H-2, 

H-3), 1.44 (3H, d, J 6.8, H-9), 1.21 (3H, t, J 7.1, H-14), 0.95 (3H, t, J 7.3, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 170.1 (C-12), 133.0 (C-5), 115.2 (C-8), 107.5 

(C-7), 105.0 (C-6), 60.7 (C-13), 47.5 (C-10), 42.8 (C-4), 31.2 (C-11), 26.0 (C-3), 

22.6 (C-2), 22.0 (C-9), 14.1 (C-14), 13.9 (C-1). 

 

νmax. / cm-1: 2959 (m, C-H), 2934 (m, C-H), 2873 (m, C-H), 1732 (s, C=O), 1532 

(w), 1455 (w), 1378 (m), 1301 (w), 1192 (s), 1095 (m), 1030 (m). 

 
m/z: 238 (50%, M+1), 219 (49), 204 (100), 192 (52), 178 (95), 164 (65). 
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[382]  
 
Rf 0.10 (50% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ  /ppm 6.28 (1H, s, H-7), 5.73 (1H, s, H-6), 4.54-4.47 

(1H, m, H-10), 4.10 (2H, q, J 7.1, H-13), 2.71-2.65 (2H, m, H-11AB), 2.52 (2H, t, 

J 7.7, H-4), 1.62-1.57 (3H, m, H-3, S-H), 1.48-1.37 (2H, m, H-2), 1.40 (3H, d, J 

6.8, H-9), 1.21 (3H, t, J 7.1, H-14), 0.94 (3H, t, J 7.3, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 171.0 (C-12), 134.4 (C-5), 131.9 (C-8), 111.4 

(C-7), 104.1 (C-6), 60.5 (C-13), 47.3 (C-10), 42.9 (C-4), 30.9 (C-11), 26.1 (C-3), 

22.6 (C-2), 21.7 (C-9), 14.1 (C-14), 14.0 (C-1). 

 

νmax. / cm-1: 3366 (br, S-H), 2960 (m, C-H), 2935 (m, C-H), 2873 (m, C-H), 1732 

(s, C=O), 1455 (m), 1373 (s), 1301 (m), 1195 (s), 1096 (m), 1030 (s), 855 (w). 

 

m/z: no parent ion 266 (8), 257 (28), 255 (100), 236 (22), 224 (18), 202 (14), 

193 (29), 185 (17), 164 (44), 159 (73). 
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8.1.6 Formation of the vinylogous sulfonamide 
8.1.6.1 Ethyl 3-((5E)-2-butyl-5-{[4-methylphenyl)sulfonyl]methylene} 
pyrrolidinyl)butanoate (296)173 

Method A 

 Ethyl 3-(2-butyl-5-thioxo-1-pyrrolidinyl)butanoate (295) (80 mg, 0.29 mmol) 

was dissolved in THF (5 mL) in oven-dried glassware under a nitrogen 

atmosphere. Methyl iodide (0.10 mL, 1.6 mmol) was added by syringe and the 

reaction mixture was stirred at ambient temperature under nitrogen for 24 

hours. At this stage, the starting material had been consumed and the moisture-

sensitive iodine salt could be seen on the baseline of the silica TLC plate (40% 

EtOAc/hexane). The THF and excess methyl iodide were removed under high 

vacuum at 0ºC to give a crude, brown oil. Et3N (0.07 mL, 0.5 mmol) and 

1-[(4-methylphenyl)sulfonyl]acetone (279)m (64 mg,  0.30 mmol) were 

premixed in CH2Cl2 (5 mL) 10 minutes prior to addition to the crude salt. The 

reaction was stirred in an oil bath at 25ºC under a nitrogen atmosphere for 96 

hours before a second portion of Et3N (0.07 mL, 0.5 mmol) was added. After 24 

hours the reaction was quenched with distilled H2O (2 mL), and the organic 

material was extracted into CH2Cl2 (6 × 15 mL). The combined organic fractions 

were dried with sodium sulfate, the solvent was removed in vacuo and the 

crude material was purified by column chromatography (40% EtOAc/hexane). 

Ethyl 3-(2-butyl-5-oxo-1-pyrrolidinyl)butanoate (294) (80 mg, 81% recovery) 

was isolated, indicating that hydrolysis had occurred. None of the desired 

product was obtained. 

 

Method B  

Ethyl 3-(2-butyl-5-thioxo-1-pyrrolidinyl)butanoate (295) (630 mg, 2.33 mmol) 

was dissolved in THF (5 mL) in oven-dried glassware under a nitrogen 

atmosphere. Methyl iodide (0.72 mL, 12 mmol) was added by syringe at 0ºC 

and the flask was protected from light by a covering of tin foil. The reaction 

warmed to ambient temperature and stirred under nitrogen for 48 hours. At this 

stage the starting material had been consumed and the moisture-sensitive 

iodine salt could be seen on the baseline of the TLC plate (40% 
                                                 
m See Chapter 7, section 7.2.6.1 for the synthesis and characterization of 1-[(4-
methylphenyl) sulfonyl]acetone (279). 
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EtOAc/hexane). The THF and excess methyl iodide were removed in vacuo to 

give a brown oil. Et3N (0.65 mL, 4.66 mmol) and 1-[(4-
methylphenyl)sulfonyl]acetone (279) (544 mg,  2.56 mmol) were premixed in 

CH2Cl2 (5 mL) 10 minutes prior to addition to the brown oil. This mixture was 

left stirring at ambient temperature under a nitrogen atmosphere for 96 hours 

before the solvent was removed in vacuo and the organic residue was 

partitioned in distilled H2O (10 mL) and CH2Cl2 (10 mL). The crude product was 

extracted into CH2Cl2 (6 × 15 mL) and dried with sodium sulfate. The solvent 

was removed in vacuo and the crude material was purified by column 

chromatography (30% EtOAc/hexane) to give ethyl 3-(E)-2-butyl-5-(2-oxo-1- 
tosylpropylidene)pyrrolidin-1-yl)butanoate  (384) (450 mg, 45% yield), and 

the desired product, ethyl 3-((5E)-2-butyl-5-{[4-
methylphenyl)sulfonyl]methylene}pyrrolidinyl)butanoate (296), (240 mg, 

25% yield). 

 

This method was repeated with pure diastereomer A (S,R and R,S) (3.03 mmol) 

to give  ethyl 3-(E)-2-butyl-5-(2-oxo-1-tosylpropylidene)pyrrolidin-1-
yl)butanoate  (384A) (500 mg, 37% yield),  and ethyl 3-((5E)-2-butyl-5-{[4-
methylphenyl)sulfonyl]methylene}pyrrolidinyl)butanoate (296A) (450 mg, 

37% yield). 

 

This method was repeated with pure diastereomer B (R,R and S,S)  

(2.75 mmol) to give ethyl 3-(E)-2-butyl-5-(2-oxo-1-tosylpropylidene) 
pyrrolidin-1-yl) butanoate  (384B) (370 mg, 30% yield) and ethyl 3-((5E)-2-
butyl-5-{[4-methylphenyl)sulfonyl]methylene}pyrrolidinyl)butanoate 
(296B) (260 mg, 23% yield). 
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Diastereomer A (S,R and R,S) 

 

 
 

Rf 0.61 (40% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.76 (2H, d, J 8.1, H-17), 7.24 (2H, d, J 8.1 

H-18), 4.99 (1H, s, H-15), 4.12 (2H, q, J 6.9, H-13), 3.98-3.91 (1H, m, H-10), 

3.73-3.68 (1H, m, H-5), 3.11-3.01 (1H, m, H-11A), 2.92-2.80 (2H, m, H-11B, 

H-7A), 2.45-2.31 (1H, m, H-7B), 2.39 (3H, s, H-20), 1.95-1.82 (2H, m, H-4), 

1.70-1.62 (1H, m, 6A), 1.62-1.51 (1H, m, 6B), 1.32 (3H, d, J 6.9, H-9) 1.27-1.15 

(7H, m, H-2, H-3, H-14), 0.89 (3H, t, J 7.1, H-1). 
 

13C (75 MHz, CDCl3) δC /ppm 170.7 (C-12), 159.7 (C-8), 143.1 (C-19), 141.6 

(C-16), 129.1 (C-18), 125.9 (C-17), 87.4 (C-15), 62.5 (C-5), 60.7 (C-13), 48.3 

(C-10), 38.2 (C-7), 33.8 (C-11), 29.8 (C-4), 27.6 (C-2), 25.7 (C-6), 22.5 (C-20), 

21.3 (C-3), 17.5 (C-9), 14.0 (C-14), 13.9 (C-1). 

 

νmax. / cm-1: 2932 (m, C-H), 2870 (m, C-H), 2513 (w, C=C), 1713 (s, C=O), 1564 

(s), 1459 (m), 1415 (m), 1372 (m, S=O), 1281 (s), 1132 (s), 1083 (s), 841 (m).   

 
m/z: 407 (5%, M), 378 (2), 343 (3), 322 (19), 255 (10), 252 (57), 236 (10), 210 

(18), 198 (79), 196 (25), 172 (19), 168 (42), 152 (100). Found 407.2126, 

C22H33O4N32S requires 407.2130. 
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Diastereomer B (R,R and S,S) 

 

 
 

Rf 0.61 (40% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.76 (2H, d, J 8.1, H-17), 7.24 (2H, d, J 8.1 

H-18), 4.98 (1H, s, H-15), 4.09 (2H, q, J 7.1, H-13), 4.05-3.90 (1H, m, H-10), 

3.68-3.62 (1H, m, H-5), 3.12-3.02 (1H, m, H-11A), 2.88-2.75 (1H, m, H-11B), 

2.68-2.52 (2H, m, H-7AB), 2.39 (3H, s, H-20), 2.00-1.79 (2H, m, H-4), 1.72-1.65 

(1H, m, 6A), 1.59-1.51 (1H, m, 6B), 1.32 (3H, d, J 6.9, H-9) 1.27-1.15 (7H, m, 

H-2, H-3, H-14), 0.89 (3H, t, J 7.1, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 170.3 (C-12), 160.4 (C-8), 143.2 (C-19), 141.6 

(C-16), 129.1 (C-18), 125.9 (C-17), 87.4 (C-15), 61.4 (C-5), 60.7 (C-13), 48.3 

(C-10), 38.6 (C-7), 34.1 (C-11), 29.6 (C-4), 27.7 (C-2), 26.2 (C-6), 22.5 (C-20), 

21.3 (C-3), 18.0 (C-9), 14.0 (C-14), 13.8 (C-1). 

 

νmax. / cm-1: 2955 (m, C-H), 2933 (m, C-H), 2872 (m, C-H), 2604 (m, C=C), 

2498 (w, C=C), 1731 (s, C=O), 1563 (s), 1457 (m), 1416 (m), 1398 (m, S=O), 

1279 (s), 1131 (s), 1081 (s), 1034 (m), 814 (m), 813 (m). 

 

m/z: 407 (2%, M), 378 (3), 362 (2), 343 (3), 320 (5), 296 (5), 253 (20), 252 

(100), 236 (25), 224 (7), 206 (10), 196 (50), 194 (24), 173 (8), 172 (45). Found 

407.2143, C22H33O4N32S requires 407.2130. 
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Diastereomer A (S,R and R,S) 
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Rf 0.43 (30% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.72 (2H, d, J 8.5, H-17), 7.27 (2H, d, J 8.5, 

H-18), 4.25-4.10 (3H, m, H-5, H-13), 4.03 (1H, m, H-10), 3.76 (1H, m, H-7A), 

3.41 (1H, dd, J 15.6, 1.6, H-6A), 2.74 (1H, dt, J 16.4, 7.9, H-7B), 2.55-2.42 (1H, 

m, H-6B), 2.40 (3H, s, H-20), 2.34 (3H, s, H-22), 2.10-1.95 (1H, m, H-11A), 

1.80-1.63 (2H, m, H-11B, H-4A), 1.40-1.23 (8H, m, H-4B, H-2, H-3, H-14), 1.39 

(3H, d, J 7.2, H-9), 0.92 (3H, t, J 6.9, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 189.9 (C-21), 174.4 (C-12), 170.4 (C-8), 142.6 

(C-19), 142.0 (C-16), 129.3 (C-18), 125.6 (C-17), 104.4 (C-15), 62.8 (C-10), 

60.6 (C-13), 55.7 (C-5), 38.0 (C-6), 35.0 (C-7), 33.5 (C-4), 30.0 (C-20), 27.5 

(C-9), 25.4 (C-11), 24.0 (C-3), 22.3 (C-22), 19.5 (C-2), 13.9 (C-14), 13.7 (C-1). 

 

νmax. / cm-1: 2958 (m, C-H), 2933 (m, C-H), 2872 (m, C-H), 1731 (s, OC=O), 

1680 (m, C=O), 1615 (m), 1494 (s), 1396 (s), 1373 (s, S=O), 1297 (s), 1089 (s), 

1056 (m), 1029 (m).  
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Diastereomer B (R,R and S,S) 
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Rf 0.36 (30% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.75 (2H, d, J 7.8, H-17), 7.26 (2H, d, J 7.8, 

H-18), 4.38-4.31 (1H, m, H-10), 4.22-4.15 (1H, m, H-5), 4.12 (2H, q, J 7.2, 

H-13) 3.96-3.86 (1H, m, H-7A), 2.78 (1H, d, J 7.2, H-6A), 2.73-2.55 (1H, m, 

H-7B), 2.40 (3H, s, H-20), 2.30 (3H, s, H-22), 2.28-2.10 (1H, m, H-6B), 

2.10-1.95 (1H, m, H-11A). 1.79-1.63 (2H, m, H-11B, H-4A), 1.54 (3H, d, J 6.7, 

H-9), 1.50-1.20 (8H, m, H-4B, H-2, H-3, H-14), 0.92 (3H, t, J 6.9, H-1). 

  
13C (75 MHz, CDCl3) δC /ppm 189.3 (C-21), 174.5 (C-12), 169.5 (C-8), 142.7 

(C-19), 142.0 (C-16), 129.3 (C-18), 125.7 (C-17), 104.9 (C-15), 61.2 (C-13), 

60.3 (C-5), 56.6 (C-10), 40.7 (C-6), 38.6 (C-7), 35.1 (C-4), 30.3 (C-20), 27.0 

(C-3), 24.7 (C-11), 22.5 (C-2), 21.2 (C-22), 18.5 (C-9), 13.8 (C-14), 13.7 (C-1). 

 

νmax. / cm-1: 2958 (m, C-H), 2933 (m, C-H), 2872 (m, C-H), 1731 (s, OC=O), 

1681 (s, C=O), 1616 (w), 1495 (m), 1397 (m, S=O), 1296 (s), 1141 (s), 1053 

(m), 1029 (m).  

 

Method C 
Ethyl 3-(2-butyl-5-thioxo-1-pyrrolidinyl)butanoate (295) (0.17 g, 0.63 mmol) 

was dissolved in THF (10 mL) in oven-dried glassware, under a nitrogen 
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atmosphere. Methyl iodide (0.19 mL, 3.1 mmol) was added by syringe and the 

reaction was stirred at ambient temperature for 24 hours. At this stage the 

starting material had been consumed and the moisture-sensitive iodine salt 

could be seen on the baseline of the TLC plate (40% EtOAc/hexane). The THF 

and excess methyl iodide were removed in vacuo to give a brown oil. K2CO3 

(174 mg, 1.26 mmol) and 1-[(4-methylphenyl)sulfonyl]acetone (279) 
(267 mg, 1.26 mmol) were premixed in DMF (7 mL) 10 minutes prior to addition 

to the crude salt. This mixture was left stirring in an oil bath at 25ºC under a 

nitrogen atmosphere for 96 hours before it was quenched with distilled H2O 

(2 mL), and the organic material was extracted into CH2Cl2 (6 × 15 mL). The 

combined organic extracts were dried with sodium sulfate, the solvent was 

removed in vacuo and the crude material was purified by column 

chromatography (30% EtOAc/hexane) to give ethyl 3-((5E)-2-butyl-5-{[4-
ethylphenyl)sulfonyl]methylene}pyrrolidinyl) butanoate (296) (100 mg, 39% 

yield) as a mixture of diastereomers.  

 

Method D 

Ethyl 3-(2-butyl-5-thioxo-1-pyrrolidinyl)butanoate (295) (626 mg, 2.31 mmol) 

was dissolved in THF (7 mL) in oven-dried glassware under a nitrogen 

atmosphere. Methyl iodide (0.72 mL, 12 mmol) was added by syringe and the 

reaction was stirred at ambient temperature for 48 hours. The THF and excess 

methyl iodide were removed in vacuo to give a brown oil. DBU (0.70 mL, 4.6 

mmol) and 1-[(4-methylphenyl)sulfonyl]acetone (279) (980 mg,  4.62 mmol) 

were premixed in CH2Cl2 (10 mL) 10 minutes prior to addition to the oily 

residue. This mixture was left stirring in an oil bath at 25ºC under a nitrogen 

atmosphere for 72 hours before the reaction was quenched with distilled H2O (2 

mL), and the organic material was extracted into CH2Cl2 (6 × 15 mL). The 

combined organic extracts were dried with sodium sulfate, the solvent was 

removed in vacuo and the crude material was purified by column 

chromatography (30% EtOAc/hexane) to give ethyl 3-((5E)-2-butyl-5-{[4-
methylphenyl)sulfonyl] methylene}pyrrolidinyl)butanoate (296) (458 mg, 

49% yield) as a mixture of diastereomers.  
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8.1.6.2 Deacylation reactions 
Method A 

Racemic ethyl 3-(E)-2-butyl-5-(2-oxo-1-tosylpropylidene)pyrrolidin-1-
yl)butanoate  (384) (0.32 g, 0.71 mmol) was heated at reflux in AcOH (0.23 

mL, 3.8 mmol) and toluene (5 mL) for 14 hours. The reaction mixture was 

cooled and partitioned with saturated sodium bicarbonate solution (5 mL) and 

extracted into EtOAc (5 × 20 mL). The combined organic fractions were then 

dried with sodium sulfate, the solvent removed in vacuo and the crude material 

purified by column chromatography (30% EtOAc/hexane) to give ethyl 3-((5E)-
2-butyl-5-{[4-methylphenyl)sulfonyl]methylene}pyrrolidinyl)butanoate 
(296) (130 mg, 45% yield). 

 

Method B154 

Diastereomer A (R,S and S,R), ethyl 3-(E)-2-butyl-5-(2-oxo-1-
tosylpropylidene)pyrrolidin-1-yl)butanoate  (384A),  (500 mg, 1.11 mmol) 

was heated at reflux in TFA (5 mL) for 30 minutes. The mixture was cooled, 

rinsed with saturated sodium bicarbonate solution until it was basic and the 

organic material extracted into EtOAc (50 mL). The organic layer was then 

dried with sodium sulfate and the solvent removed in vacuo. The crude product 

was purified by column chromatography (30% EtOAc/hexane) to give ethyl 3-
((5E)-2-butyl-5-{[4-methylphenyl)sulfonyl]methylene}pyrrolidinyl) 
butanoate (296A) (300 mg, 67% yield).  

 

Diastereomer B (R,R and S,S), ethyl 3-(E)-2-butyl-5-(2-oxo-1-
tosylpropylidene)pyrrolidin-1-yl)butanoate  (384B), (0.37 g, 0.82 mmol) was 

heated at reflux in TFA (5 mL) for 30 minutes. The mixture was cooled, rinsed 

with saturated sodium bicarbonate solution until it was basic, and the organic 

material extracted into EtOAc (50 mL). The organic layer was then dried with 

sodium sulfate and the solvent removed in vacuo. The crude product was 

purified by column chromatography (30% EtOAc/hexane) to give ethyl 3-((5E)-
2-butyl-5-{[4-methylphenyl)sulfonyl]methylene}pyrrolidinyl)butanoate 
(296B) (180 mg, 54% yield).  
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8.1.7 Reduction of the ester 
8.1.7.1 3-((5E)-2-Butyl-5-{[(4-methylphenyl)sulfonyl]methylene} 
pyrrolidinyl)-1-butanol (297)173 
Ethyl 3-((5E)-2-butyl-5-{[(4-methylphenyl)sulfonyl]methylene}pyrrolidinyl) 
butanoate (296) (560 mg, 1.37 mmol) was dissolved in THF (20 mL) and 

cooled to 0°C in an ice-bath under a nitrogen atmosphere. Lithium aluminium 

hydride (78 mg, 2.1 mmol) was added and after 20 minutes the ice-bath was 

removed and the reaction mixture was left to stir at ambient temperature for 12 

hours. Monitoring the reaction progress by TLC revealed that the starting 

material had been consumed. The reaction was thus quenched by the addition 

of distilled H2O (5 mL), saturated NaOH solution (5 mL) and more distilled H2O 

(5 mL). The solution was then filtered through Celite® and rinsed thoroughly 

with CH2Cl2 (200 mL) to remove residual lithium aluminium hydride. The solvent 

was removed  in vacuo to give a crude, brown oil which was purified by column 

chromatography (50% EtOAc/hexane) to give 3-((5E)-2-butyl-5-{[(4-
methylphenyl)sulfonyl]methylene}pyrrolidinyl)-1-butanol (297) (460 mg, 

92% yield) as a clear oil.  

 

This method was repeated with pure diastereomer A (S,R and R,S), ethyl 3-
((5E)-2-butyl-5-{[(4-methylphenyl)sulfonyl]methylene}pyrrolidinyl) 
butanoate (296A) (450 mg, 1.10 mmol), to give  3-((5E)-2-butyl-5-{[(4-
methylphenyl)sulfonyl]methylene}pyrrolidinyl)-1-butanol (297A) (350 mg, 

87% yield). 
 

This method was repeated with pure diastereomer B (R,R and S,S), ethyl 3-
((5E)-2-butyl-5-{[(4-methylphenyl)sulfonyl]methylene}pyrrolidinyl) 
butanoate (296B) (660 mg, 1.62 mmol), to give  3-((5E)-2-butyl-5-{[(4-
methylphenyl) sulfonyl]methylene}pyrrolidinyl)-1-butanol (297B) (460 mg, 

78% yield). 

 

 

 

 

 



 

 304

Diastereomer A (S,R and R,S) 
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[297A]
 

 

Rf 0.27 (50% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.75 (2H, d, J 7.3, H-15), 7.24 (2H, d, J 7.9, 

H-16), 5.07 (1H, s, H-13), 3.74-3.60 (4H, m, H-5, H-10, H-12), 3.04 (1H, ddd, J 

17.4, 9.5, 2.9, H-7A), 2.82 (1H, dt, J 17.4, 8.4, H-7B), 2.39 (3H, s, H-18), 2.02-

1.53 (6H, m, H-4, H-6, H-11), 1.31-1.16 (7H, m, H-2, H-3, H-9), 0.88 (3H, t, J 

7.0, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 160.4 (C-8), 143.3 (C-17), 141.5 (C-14), 129.1 

(C-16), 125.8 (C-15), 86.1 (C-13), 60.3 (C-5), 59.2 (C-12), 48.5 (C-10), 36.6 

(C-11), 33.9 (C-6/7), 29.9 (C-6/7), 27.7 (C-4), 25.8 (C-3), 22.5 (C-18), 21.3 

(C-2), 17.2 (C-9), 14.0 (C-1). 

  

νmax. / cm-1: 3481 (br, O-H), 2933 (m, C-H), 2873 (m, C-H), 1562 (s), 1460 (m), 

1419 (m), 1381 (m, S=O), 1276 (s), 1130 (s), 1083 (s), 846 (m). 

 

m/z: 365 (3%, M), 341 (4), 330 (12), 320 (4), 308 (27), 294 (17), 277 (18), 264 

(38), 238 (28), 210 (42), 196 (21), 166 (100). Found 365.2036, C20H31O3N32S 

requires 365.2025. 
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Diastereomer B (R,R and S,S) 
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[297B]
 

 

Rf 0.30 (50% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.75 (2H, d, J 7.3, H-15), 7.24 (2H, d, J 7.9, 

H-16), 4.95 (1H, s, H-13), 3.72-3.58 (4H, m, H-5, H-10, H-12), 3.15-3.03 (1H, 

m, H-7A), 2.81-2.69 (1H, m, H-7B), 2.39 (3H, s, H-18), 1.96-1.53 (6H, m, H-4, 

H-6, H-11), 1.35-1.08 (7H, m, H-2, H-3, H-9), 0.87 (3H, t, J 7.0, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 160.9 (C-8), 143.2 (C-17), 141.6 (C-14), 129.2 

(C-16), 125.8 (C-15), 86.2 (C-13), 61.3 (C-5), 59.4 (C-12), 48.1 (C-10), 36.1 

(C-11), 34.0 (C-6/7), 29.7 (C-6/7), 27.7 (C-4), 26.0 (C-3), 22.5 (C-18), 21.3 

(C-2), 18.1 (C-9), 13.9 (C-1).  

 

νmax. / cm-1: 3459 (br, O-H), 2928 (m, C-H), 2859 (m, C-H), 1562 (s), 1460 (m), 

1419 (m), 1381 (m, S=O), 1276 (s), 1130 (s), 1083 (s), 846 (m). 

 

m/z: 365 (1%, M), 347 (3), 330 (24), 322 (8), 308 (39), 294 (22), 264 (58), 238 

(49), 210 (44), 196 (46), 166 (100). Found 365.2019, C20H31O3N32S requires 

365.2025. 
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8.1.8 Cyclisation reaction 
8.1.8.1 3-Butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]-1,2,3,5,6,7-hexa 
hydroindolizine (298)139, 230 
Method A 
3-((5E)-2-butyl-5-{[(4-methylphenyl)sulfonyl]methylene}pyrrolidinyl)-1-
butanol (297) (40 mg, 0.11 mmol) was dissolved in MeCN (8 mL), under 

nitrogen at ambient temperature. Triphenylphosphine (87 mg, 0.33 mmol), 

imidazole (37 mg, 0.55 mmol) and iodine (56 mg, 0.22 mmol) were sequentially 

added to the reaction mixture at 3 minute intervals. The reaction was heated at 

reflux for 5 hours, left for 12 hours at ambient temperature and heated at reflux 

for an additional 2 hours as starting material was still evident by TLC. The 

reaction mixture was then rinsed with saturated sodium bicarbonate solution 

(25 mL) and back-extracted into EtOAc (3 × 30 mL). The combined organic 

fractions were dried with sodium sulfate and the solvent was removed in vacuo. 

The crude product was purified by column chromatography (50% 

EtOAc/hexane) to give back starting material contaminated by 

triphenylphosphine oxide (85 mg). 

 

Method B  

Triphenylphosphine (493 mg, 1.88 mmol), imidazole (128 mg, 1.88 mmol) and 

iodine (319 mg, 1.26 mmol) were mixed in dry toluene (20 mL) in an oven-dried 

flask. 3-((5E)-2-Butyl-5-{[(4-methylphenyl)sulfonyl]methylene}pyrrolidinyl)-
1-butanol (297) (0.23 g, 0.63 mmol) was carefully added to this mixture and the 

reaction was heated at reflux for 3 hours under nitrogen. No more starting 

material was detected by TLC, so the reaction was allowed to cooled and then 

rinsed with saturated sodium bicarbonate solution (25 mL). The organic 

material was extracted into CH2Cl2 (5 × 30 mL) and the combined organic 

fractions were dried with sodium sulfate and the solvent was removed in vacuo. 

The crude product was purified by column chromatography (80% Et2O/hexane) 

to give 3-butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]-1,2,3,5,6,7-hexahydro 
indolizine (298) (185 mg, 85% yield) as a sticky pink oil from which several 

crystals were obtained by slow evaporation in an EtOAc/hexane mixture. 

 

This method was repeated with pure diastereomer A (S,R and R,S), 3-((5E)-2-



 

 307

butyl-5-{[(4-methylphenyl)sulfonyl]methylene}pyrrolidinyl)-1-butanol 
(297A) (0.35 g, 0.96 mmol), to give  3-butyl-5-methyl-8-[(4-
methylphenyl)sulfonyl]-1,2,3,5,6,7-hexahydroindolizine (298A) (260 mg, 

78% yield). 

 

This method was repeated with pure diastereomer B (R,R and S,S), 3-((5E)-2-
butyl-5-{[(4-methylphenyl)sulfonyl]methylene}pyrrolidinyl)-1-butanol 
(297B) (0.17 g, 0.47 mmol), to give  3-butyl-5-methyl-8-[(4-
methylphenyl)sulfonyl]-1,2,3,5,6,7-hexahydroindolizine (298B) (110 mg, 

67% yield). 

 

Diastereomer A (S,R and R,S) 

 

 
 
M.p.122 -123°C 

 

Rf 0.74 (50% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.69 (2H, d, J 7.9, H-15), 7.23 (2H, d, J 8.0, 

H-16), 3.50-3.42 (1H, m, H-5), 3.43-3.34 (1H, m, H-12), 3.27-3.17 (1H, m, 

H-10A), 2.93 (1H, dt, J 17.4, 8.1, 10B), 2.47-2.40 (1H, m, H-7A), 2.39 (3H, s, 

H-18), 2.30-2.19 (1H, m, H-7B), 2.11-2.00 (1H, m, H-6A), 1.85-1.75 (1H, m, 

H-11A), 1.68-1.50 (1H, m, H-6B), 1.47-1.18 (1H, m, H-11B), 1.15-1.08 (6H, m, 

H-2, H-3, H-4), 1.06 (3H, d, J 6.6, H-13), 0.92 (3H, t, J 6.9, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 154.8 (C-8), 141.8 (C-14), 141.4 (C-17), 129.1 

(C-15), 125.8 (C-16), 91.8 (C-9), 64.6 (C-12), 48.0 (C-5), 34.7 (C-11), 29.7 



 

 308

(C-10), 27.7 (C-2), 27.5 (C-6), 27.0 (C-4), 22.6 (C-3), 21.2 (C-13), 21.0 (C-18), 

18.5 (C-7), 13.9 (C-1). 

 

νmax. / cm-1: 2930 (m, C-H), 2858 (m, C-H), 1591 (s), 1449 (w), 1375 (w, S=O), 

1279 (s), 1147 (m), 1128 (s), 1089 (s), 670 (s). 

 

m/z: 347 (20%, M), 332 (2), 290 (100), 279 (2), 226 (2), 205 (6), 192 (7), 167 

(8), 162 (11). Found 347.1917, C20H29O2N32S requires 347.1919. 

 

Diastereomer B (R,R and S,S) 
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[298B]  
 
M.p. 99 -101°C 

 

Rf 0.74 (50% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.69 (2H, d, J 7.9, H-15), 7.23 (2H, d, J 8.0, 

H-16), 3.50-3.45 (2H, m, H-5, H-12), 3.11-3.01 (2H, m, H-10AB), 2.39 (3H, s, 

H-18), 2.36-2.29 (2H, m, H-7AB), 2.04-1.96 (1H, m, H-6A), 1.72-1.53 (4H, m, 

H-6B, H-11AB, H-4A), 1.37-1.21 (5H, m, H-2, H-3, H-4B), 1.05 (3H, d, J 6.6, 

H-13), 0.90 (3H, t, J 6.9, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 155.2 (C-8), 141.8 (C-14), 141.7 (C-17), 129.2 

(C-15), 126.0 (C-16), 91.9 (C-9), 60.1 (C-12), 45.5 (C-5), 31.7 (C-11), 30.1 

(C-10), 27.9 (C-2), 27.3 (C-6), 26.9 (C-4), 22.8 (C-3), 21.4 (C-13), 19.2 (C-18), 

17.1 (C-7), 14.0 (C-1). 
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νmax. / cm-1: 2929 (m, C-H), 2857 (m, C-H), 1590 (s), 1459 (w), 1375 (w, S=O), 

1279 (s), 1128 (s), 1086 (s), 661 (s). 

 

m/z: 347 (18%, M), 319 (2), 298 (3), 290 (100), 277 (9), 261 (1), 226 (1), 207 

(8), 192 (8), 176 (6).  Found 347.1921, C20H29O2N32S requires 347.1919. 

 
8.1.9 Reduction of the vinylogous sulfonamide 
8.1.9.1 3-Butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]octahydroindolizine 
(299) 
Method A31 

3-Butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]-1,2,3,5,6,7-hexahydro 
indolizine (298) (80 mg, 0.23 mmol) was dissolved in AcOH (4 mL) and 

reacted with platinum dioxide (3 mg, 0.05 eq.) under 7.5 atmospheres of 

hydrogen pressure for 12 hours at ambient temperature. The reaction mixture 

was filtered through Celite® to remove the catalyst and rinsed thoroughly with 

CH2Cl2 (200 mL). The solvent was removed in vacuo and the residue was 

partitioned in distilled H2O (20 mL) and CH2Cl2 (3 × 20 mL). The organic 

fractions were rinsed with saturated sodium hydrogen carbonate solution (20 

mL), dried with sodium sulfate and the solvent was removed in vacuo to give 

the crude product. This was purified by column chromatography (30% 

EtOAc/hexane) to give the product, 3-butyl-5-methyl-8-[(4-
methylphenyl)sulfonyl]octahydroindolizine (299), (67 mg, 84% yield) as a 

clear oil that discolours to pink on standing.  

 

This method was repeated with pure diastereomer A (S,R and R,S), 3-butyl-5-
methyl-8-[(4-methylphenyl)sulfonyl]octahydroindolizine (298A) (0.15 g, 

0.42 mmol), to give 3-butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]octahydro 
indolizine (299A) (130 mg, 88% yield). 

 

This method was repeated with pure diastereomer B (R,R and S,S), 3-butyl-5-
methyl-8-[(4-methylphenyl)sulfonyl]octahydroindolizine (298B) (0.11 g, 

0.32 mmol), to give 3-butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]octahydro 
indolizine (299B) (80 mg, 72% yield). 
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Diastereomer A (S,R and R,S) 
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[299A]  
 
Rf 0.58 (30% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 7.84 (2H, d, J 8.1, H-15), 7.29 (2H, d, J 8.1, 

H-16), 3.33 (1H, m, H-12), 3.03 (1H, t, J 7.5, H-9), 2.62 (1H, m, H-5), 2.58-2.48 

(1H, m, H-8), 2.43 (3H, s, H-18), 2.25-2.13 (4H, m, H-10, H-11AB), 1.82-1.15 

(10H, m, H-2, H-3, H-4, H-6, H-7), 0.91 (3H, d, J 7.5, H-13), 0.88 (3H, t, J 6.3, 

H-1).  

 
13C (75 MHz, CDCl3) δC /ppm 143.9 (C-14), 138.4 (C-17), 129.5 (C-16), 129.2 

(C-15), 67.1 (C-8), 63.4 (C-5), 61.6 (C-12), 59.5 (C-9), 39.2 (C-11), 30.5 (C-10), 

29.0 (C-7), 28.7 (C-6), 27.7 (C-4), 26.1 (C-3), 22.9 (C-2), 22.1 (C-18), 21.6 

(C-13), 14.2 (C-1).  

 

νmax. / cm-1: 2958 (m, C-H), 2928 (m, C-H), 2859 (Bohlmann), 1598 (m), 1454 

(m), 1377 (m, S=O), 1306 (s), 1275 (s), 1140 (s), 1084 (s), 818 (m).  

 

m/z: Found  349.1839, C20H31O2N32S requires 349.2075. 
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Diastereomer B (R,R and S,S) 
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Rf 0.71 (50% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ  /ppm 7.79 (2H, d, J 7.2, H-15), 7.30 (2H, d, J 7.2, 

H-16), 3.49-3.02 (3H, m, H-12, H-9, H-8), 2.67-2.54 (1H, m, H-5), 2.43 (3H, s, 

H-18), 2.07-1.98 (2H, m, H-10), 1.80-1.65 (2H, m, H-11), 1.52-1.02 (10H, m, 

H-2, H-3, H-4, H-6, H-7), 0.99-0.81 (6H, m, H-13, H-1).  

 
13C (75 MHz, CDCl3) δC /ppm 144.0 (C-14), 137.9 (C-17), 129.4 (C-16), 128.7 

(C-15), 62.9 (C-8), 60.2 (C-5), 56.5 (C-12), 47.0 (C-9), 33.0 (C-11), 29.7 (C-10), 

28.5 (C-7), 28.0 (C-6), 27.8 (C-4), 25.7 (C-3), 23.0 (C-2), 21.5 (C-18), 20.7 

(C-13), 14.1 (C-1).  

 

νmax. / cm-1: 2958 (s, C-H), 2927 (s, C-H), 2857 (Bohlmann), 1597 (m), 1454 

(m), 1378 (m, S=O), 1313 (s), 1301 (s), 1142 (s), 1085 (m), 815 (m). 

 

m/z: 349 (36%, M), 347 (88), 334 (100), 294 (100), 194 (100), 178 (90), 149 

(85), 136 (100), 105 (100). Found 349.1601, C20H31O2N32S requires 349.2075. 

 

Method B171 

3-Butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]-1,2,3,5,6,7-hexahydro 
indolizine (298) (0.16 g, 0.46 mmol) and sodium borohydride (26 mg, 

0.69 mmol) were dissolved in MeOH (7 mL) and stirred at ambient temperature 

for 4 hours. TLC showed no significant conversion of starting material. The 

reaction was heated to 60°C and was allowed to react for a further 20 hours. 

The solvent was removed in vacuo and the residue was partitioned in distilled 
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H2O (20 mL) and CH2Cl2 (3 × 20 mL). The organic fractions were combined and 

dried with sodium sulfate and the solvent was removed in vacuo. The crude 

material was purified by column chromatography (40% EtOAc/hexane) to give 

3-butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]-1,2,3,5,6,7-
hexahydroindolizine (298) (80 mg, 50% recovery) and the desired product, 3-
butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]octahydroindolizine (299) 
(15 mg, 13% yield).  

 
8.1.10 Desulfonylation 
8.1.10.1 3-Butyl-5-methyloctahydroindolizine, monomorine I (27), 5-epi-
monomorine I (28) 
Method A234, 236, 254 

A 6% (w/w) sodium amalgam was prepared by placing sodium (1.5 g, 65 mmol) 

freshly rinsed in hexane (to remove traces of paraffin oil) in a dry flask. The 

hexane was removed under high vacuum. A few drops of mercury (25.0 g, 126 

mmol) were slowly added by dropping funnel. The flask was then heated with a 

Bunsen burner until the amalgam ignited, at which point the flame was removed 

and the remaining mercury was slowly added. The flask was heated again to 

melt the amalgam so that it could be poured into a crucible where it was cooled 

under the flow of nitrogen gas. The amalgam was crushed with a mortar and 

pestle and stored in a dessicator. Anhydrous sodium hydrogen phosphate (193 

mg, 1.36 mmol) was pre-dried for 12 hours in a 130°C oven and then dissolved 

in distilled MeOH (7 mL). 3-Butyl-5-methyl-8-[(4-
methylphenyl)sulfonyl]octahydroindolizine (299) (120 mg, 0.34 mmol) and 

the sodium amalgam (515 mg, 1.50 g/mmol) were added to the MeOH solution 

and the reaction stirred at ambient temperature for 14 hours. TLC analysis was 

inconclusive so the reaction was stopped, filtered through Celite® to remove the 

mercury, and rinsed thoroughly with CH2Cl2 (20 mL). The organic layer was 

partitioned with distilled H2O, dried with sodium sulfate and the solvent was 

removed in vacuo. The crude material was purified by column chromatography 

(30% EtOAc/hexane) to give back the starting material, 3-butyl-5-methyl-8-[(4-
methylphenyl)sulfonyl]octahydroindolizine (299) (80 mg, 67% recovery). 
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Method B233 

Magnesium turnings were pre-activated by washing in an HCl solution (0.5% 

(v/v), 30 mL) rinsing with distilled H2O, EtOH, and Et2O respectively, and then 

drying for several days at 150°C. The activated magnesium turnings (64 mg, 

2.7 mmol) were mixed with MeOH (5 mL) and heated to 50°C until hydrogen 

evolution was constant. 3-Butyl-5-methyl-8-[(4-methylphenyl)sulfonyl] 
octahydroindolizine (299) (58 mg, 0.17 mmol) was added to the methanolic 

mixture. The reaction was maintained at 50°C for 3 hours and during this time 

two further portions of magnesium turnings (64 mg, 2.7 mmol) were added. The 

solution was cooled, filtered through Celite®, and rinsed thoroughly with CH2Cl2 

(100 mL). The solvent was removed in vacuo and the resulting residue was 

redissolved in Et2O (80 mL) and refiltered to remove the solid magnesium 

methoxide. After evaporation in vacuo the oily residue that remained was 

purified by column chromatography (30% EtOAc/hexane) to give 3-butyl-5-
methyloctahydroindolizine (20 mg, 60% yield) as a mixture of monomorine I 
(27), 5-epi-monomorine I (28) and indolizidine 195B (26) (as confirmed by 
13C-NMR spectroscopy only).  

 
RACEMIC MONOMORINE I (27) 
Method C 

Sodium metal (40 mg, 1.8 mmol) was reacted with naphthalene (224 mg, 

1.75 mmol) in THF (10 mL) for 1 hour in an oven-dried flask under inert 

atmosphere, until a dark green solution of sodium naphthalenide had formed. 

Isomer A of 3-butyl-5-methyl-8-[(4-methylphenyl)sulfonyl] 
octahydroindolizine (299A) (44 mg, 0.12 mmol) was added to the sodium 

naphthalenide and the mixture was stirred for 15 minutes at ambient 

temperature whilst constantly monitoring by TLC. The reaction was quenched 

by addition of saturated ammonium chloride solution (20 mL) and the organic 

products were extracted into CH2Cl2 (3 × 30 mL). The combined organic 

fractions were dried with sodium sulfate and the solvent was removed in vacuo. 

The crude material was purified by column chromatography (20% - 50% 

EtOAc/hexane) to give (±)-monomorine I (27) (18 mg, 73% yield) as a pale 

yellow oil. 
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Diastereomer A (relative stereochemistry)  

 

 
 
Rf 0.25 (30% EtOAc/hexane) 
 

1H (300 MHz, CDCl3) δΗ /ppm 2.51-2.43 (1H, m, H-3), 2.31-2.15 (1H, m, H-5), 

2.14-2.03 (1H, m, H-8a), 1.88-1.05 (16H, m, H-1, H-2, H-6, H-7, H-8, H-10, 

H-11, H-12), 1.15 (3H, d, J 6.3, H-9), 0.98 (3H, t, J 6.8, H-13). 

 
13C (75 MHz, CDCl3) δC /ppm 67.17 (C-8a), 62.90 (C-3), 60.26 (C-5), 39.73 

(C-9), 35.84 (C-6), 30.91 (C-1), 30.34 (C-8), 29.76 (C-2), 29.40 (C-10), 24.91 

(C-7), 22.90 (C-11), 22.86 (C-13), 14.16 (C-12). 

 

νmax. / cm-1: 2958 (m, C-H), 2930 (m, C-H), 2860 (Bolhmann), 1457 (m), 1380 

(m), 1319 (m), 1304 (m), 1208 (w), 1133 (m), 1089 (w), 816 (w). 

 

m/z:  no molecular ion 193 (6%), 170 (36), 155, 45), 138 (100), 107 (41). APCI 
Found 195.37, C13H25N requires 195.1987. 

 

RACEMIC 5-epi-MONOMORINE I (28) 
Method D 

Sodium metal (40 mg, 1.8 mmol) was reacted with naphthalene (224 mg, 

1.75 mmol) in THF (10 mL) for 30 minutes in an oven-dried flask under inert 

atmosphere until a dark green solution of sodium naphthalenide had formed. 

Isomer B of 3-butyl-5-methyl-8-[(4-methylphenyl)sulfonyl]octahydro 
indolizine (299B) (75 mg, 0.21 mmol) was added to the sodium naphthalenide 

and the mixture was stirred for 15 minutes at ambient temperature whilst 

constantly monitoring by TLC. The reaction was quenched by addition of 

saturated ammonium chloride solution (10 mL) and the organic products were 
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extracted into CH2Cl2 (3 × 30 mL). The combined organic fractions were dried 

with sodium sulfate and the solvent was removed in vacuo. The crude material 

was purified by column chromatography through a Pasteur pipette (0% - 100% 

EtOAc/hexane) to give racemic 5-epi-monomorine I (28) (31 mg, 71% yield) 

as a pale yellow oil that discoloured to turquoise over time. 

 

Diastereomer B (relative stereochemistry) 

 

 
 
Rf 0.17 (50% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 3.45-3.30 (1H, m, H-5), 2.51-2.38 (2H, m, H-3, 

H-8a), 1.87-1.07 (16H, m, H-1, H-2, H-6, H-7, H-8, H-10, H-11, H-12), 0.92-0.83 

(6H, m, H-9, H-13). 

 
13C (75 MHz, CDCl3) δC /ppm 59.21 (C-8a), 55.49 (C-3), 47.38 (C-5), 32.34 

(C-1), 32.21 (C-6), 31.46 (C-2), 29.12 (C-8), 28.82 (C-9), 28.12 (C-10), 23.08 

(C-11), 19.26 (C-7), 14.09 (C-12), 7.60 (C-13). 

 

νmax. / cm-1: 2957 (s, C-H), 2927 (s, C-H), 2859 (Bolhmann), 1455 (m), 1375 

(m), 1261 (w), 1201 (w), 1146 (w), 1078 (w), 784 (m), 745 (m). 

 

m/z: 195 (6%, M), 194 (12), 180 (70), 148 (8), 138 (100), 128 (26), 124 (13). 

Found 195.1976, C13H25N requires 195.1987. 
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8.2 Investigation of monobenzylated analogues 
 
8.2.1 (R,E)-5-Butylidene-1-(1-phenylethyl)pyrrolidin-2-one (388) 
Method A 

Ethyl 4-oxooctanoate (292) (6.60 g, 35.4 mmols) was dissolved in toluene 

(30 mL). Crude ethyl (3R)-3-{[(1R)-1-phenylethyl]amino}butanoate (357) 
(29.5 mmols) in AcOH (<5 mL) was added to the toluene and the mixture was 

heated at reflux for 72 hours in a modified Dean Stark apparatus filled with 

molecular sieves. The solvent was removed in vacuo and the crude material 

was purified by column chromatography (10% EtOAc/hexane) to give (R,E)-5-
butylidene-1-(1-phenylethyl)pyrrolidin-2-one (388) (3.40 g, 47% yield over 

two steps). 
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Rf  0.11 (10% EtOAc/Hexane), [α]D20 +43.1 (c 1.30, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ  /ppm 7.28-7.24 (5H, m, H-12, H-13, H-14), 5.65 (1H, 

q, J 7.2, H-10), 4.39 (1H, t, J 7.4,  H-4), 2.63-2.51 (4H, m, H-6, H-7), 1.85-1.78 

(2H, m, H-3), 1.71 (3H, d, J 7.2, H-9), 1.19 (2H, s, J 7.4, H-2), 0.72 (3H, t, J 7.4, 

H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 175.7 (C-8), 139.7 (C-11), 136.6 (C-5), 128.4 

(C-12), 126.7 (C-14), 126.3 (C-13), 104.0 (C-4), 48.8 (C-10), 29.0 (C-7), 28.8 

(C-3), 22..9 (C-2), 21.2 (C-6), 15.4 (C-9), 13.3 (C-1). 

 

νmax. / cm-1: 2957 (w, C-H), 2931 (w, C-H), 2871 (w, C-H), 1714 (m), 1666 (s, 

C=O), 1449 (w), 1398 (m), 1372 (m), 1336 (w), 1239 (m), 1201 (w), 689 (m). 
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m/z: 243 (10%, M), 214 (6), 203 (82), 198 (11), 189 (22), 174 (5), 160 (100), 

152 (7), 146 (31), 141 (27),  132 (24), 120 (29), 110 (47), 104 (89).n 

 

Method B 

Ethyl 4-oxooctanoate (292) (0.15 g, 0.90 mmols) was dissolved in toluene 

(10 mL). R-Methylbenzylamine (54 mg, 0.45 mmols) and AcOH (135 mg, 

2.25 mmols) were added to the toluene and the mixture was heated at reflux for 

72 hours in a modified Dean Stark apparatus filled with molecular sieves. The 

solvent was removed in vacuo and the crude material was purified by column 

chromatography (10% EtOAc/hexane) to give (R,E)-5-butylidene-1-(1-
phenylethyl)pyrrolidin-2-one (388) (110 mg, quantitative yield). 

 

8.2.2 (R)-5-Butyl-1-(1-phenylethyl)pyrrolidin-2-one (389) 
Method A 

(R,E)-5-Butylidene-1-(1-phenylethyl)pyrrolidin-2-one (388) (0.30 g, 

1.2 mmols)  was dissolved in CH2Cl2 (10 mL) and cooled to -90°C. Titanium 

tetrachloride (0.30 mL, 2.7 mmols) was carefully added and the reaction 

mixture was left to stir for 10 minutes before triphenylsilane (0.96 g, 3.7 mmols) 

was added and the solution slowly warmed to ambient temperature. The 

reaction was left stirring at ambient temperature for 72 hours and was then 

quenched by adding saturated ammonium chloride solution (10 mL). The 

product was extracted into CH2Cl2 (3 x 50 mL) and the combined organic 

fractions were dried with sodium sulfate. Purification by column 

chromatography (10% - 40% EtOAc/hexane) gave (R)-5-butyl-1-(1-
phenylethyl)pyrrolidin-2-one (389) as a clear oil in quantitative yield as an 

inseparable mixture of diastereomers in a 1:1 ratio. 

 

                                                 
n No HRMS was performed as the molecular ion coincides with the reference peak. 
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Rf  0.26 (40% EtOAc/hexane) 

 

ISOMER A [α]D20 +15.7 (c 1.15, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ  /ppm 7.37 (2H, d, J 7.2, H-12), 7.32-7.20 (3H, m, 

H-13, H-14), 5.38 (1H, q, J 7.2, H-10), 3.73-3.67 (1H, m, H-5), 2.54-2.43 (1H, 

m, H-7A), 2.38-2.28 (1H, m, H-7B), 2.19-2.12 (1H, m, H-6A), 1.71-1.67 (1H, m, 

H-6B), 1.63 (3H, d, J 7.2, H-9), 1.26-1.14 (1H, m, H-4A), 1.08-0.80 (5H, m, 

H-4B, H-3, H-2), 0.72 (3H, t, J 6.8, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 175.2 (C-8), 142.0 (C-11), 129.9 (C-14), 128.5 

(C-13), 127.0 (C-12), 56.9 (C-5), 49.2 (C-10), 33.9 (C-4), 30.5 (C-7), 26.7 (C-3), 

24.3 (C-6), 22.3 (C-2), 16.1 (C-9), 13.7 (C-1). 

 

νmax. / cm-1: 2931 (m, C-H), 2861 (m, C-H), 1681 (s, C=O), 1457 (m), 1417 (m), 

1375 (m), 1289 (m), 1212 (m), 1185 (m), 700 (s). 

 

ISOMER B [α]D20 +131.6 (c 0.98, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ  /ppm 7.37 (2H, d, J 7.2, H-12), 7.32-7.20 (3H, m, 

H-13, H-14), 5.38 (1H, q, J 7.2, H-10), 3.26-3.18 (1H, m, H-5), 2.54-2.43 (1H, 

m, H-7A), 2.38-2.28 (1H, m, H-7B), 2.19-2.12 (1H, m, H-6A), 1.71-1.67 (1H, m, 

H-6B), 1.63 (3H, d, J 7.2, H-9), 1.26-1.14 (1H, m, H-4A), 1.08-0.80 (5H, m, 

H-4B, H-3, H-2), 0.72 (3H, t, J 6.8, H-1). 
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13C (75 MHz, CDCl3) δC /ppm 175.0 (C-8), 139.7 (C-11), 128.3 (C-13), 127.4 

(C-14), 127.3 (C-12), 57.2 (C-5), 50.5 (C-10), 34.7 (C-4), 30.4 (C-7), 26.9 (C-3), 

24.2 (C-6), 22.5 (C-2), 18.2 (C-9), 13.8 (C-1). 

 

νmax. / cm-1: 2956 (m, C-H), 2930 (m, C-H), 2871 (w), 1674 (s, C=O), 1456 (m), 

1418 (m), 1375 (w), 1320 (m), 1291 (m), 1216 (m), 1151 (m), 700 (s). 

 

m/z: 245 (14%, M), 198 (7), 188 (19), 174 (6), 160 (18), 146 (10), 120 (8), 110 

(11), 105 (100). Found 245.1765, C16H23ON requires 245.1780. 

 

Method B 

(R,E)-5-Butylidene-1-(1-phenylethyl)pyrrolidin-2-one (388) (0.50 g, 

2.1 mmols) was dissolved in AcOH (7 mL) and 10% palladium on carbon 

(100 mg, 0.20 eq.) was carefully added. The reaction was set up in a 

hydrogenator under 2 atmospheres of hydrogen pressure. The reaction was left 

at ambient temperature for 48 hours before the catalyst was removed by 

filtering the reaction mixture through Celite®. The product was rinsed through 

the Celite® with CH2Cl2 (75 mL) and the crude material was purified by column 

chromatography (10% - 40% EtOAc/Hexane) to give (R)-5-butyl-1-(1-
phenylethyl)pyrrolidin-2-one (389) (450 mg, 89% yield) as a clear oil. The 

diastereomer ratio was 7:1 favouring isomer A. 

 

Method C 

(R,E)-5-Butylidene-1-(1-phenylethyl)pyrrolidin-2-one (388) (1.7 g, 

7.0 mmols)  was dissolved in CH2Cl2 (20 mL) and cooled to -90°C. Titanium 

tetrachloride (1.7 mL, 15 mmols) was carefully added and the reaction mixture 

was left to stir for 10 minutes before triethylsilane (3.3 mL, 21 mmols) was 

added; the solution was then slowly warmed to ambient temperature. The 

reaction was left stirring at ambient temperature for 72 hours and was then 

quenched by adding saturated ammonium chloride solution (10 mL). The 

product was extracted into CH2Cl2 (3 x 50 mL) and the combined organic 

fractions were dried with sodium sulfate. Purification by column 

chromatography (10% - 40% EtOAc/hexane) gave (R)-5-butyl-1-(1-
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phenylethyl)pyrrolidin-2-one (389) (1.15 g, 68% yield) as a clear oil with a 

diastereomer ratio of 3:1, favouring isomer A. 
 
8.2.3 (R)-5-Butyl-1-(1-phenylethyl)pyrrolidine-2-thione (390) 
Method A 

(R)-5-Butyl-1-(1-phenylethyl)pyrrolidin-2-one (389) (0.20 g, 0.81 mmol) was 

dissolved in CH2Cl2 (7 mL) in an oven-dried flask. Phosphorus pentasulfide 

(0.20 g, 0.45 mmols) was added and the heterogeneous mixture was stirred for 

72 hours at ambient temperature, under a nitrogen atmosphere. The reaction 

was quenched by the addition of saturated sodium bicarbonate solution (10 mL) 

and the product was extracted into CH2Cl2 (3 x 20 mL). The combined organic 

fractions were dried with sodium sulfate and the solvent was removed in vacuo. 

Purification by column chromatography (10% - 20% EtOAc/hexane) gave (R)-5-
butyl-1-(1-phenylethyl)pyrrolidine-2-thione (390) (140 mg, 66% yield) as a 

mixture of diastereomers which were partially separable by column 

chromatography. 
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ISOMER A (minor isomer) 

 

Rf 0.34 (10% EtOAc/hexane), [α]D20 + 226.7 (c 0.75, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ  /ppm 7.38-7.26 (5H, m, H-12, H-13, H-14),  6.30 (1H, 

q, J 7.2, H-10), 3.51-3.47 (1H, m, H-5), 3.12-3.00 (2H, m, H-7AB), 2.02-1.88 

(1H, m, H-6A), 1.70 (3H, d, J 7.2, H-9), 1.67-0.96 (7H, m, H-2, H-3, H-4, H-6B), 

0.89 (3H, t, J 7.2, H-1). 
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13C (75 MHz, CDCl3) δC /ppm 201.8 (C-8), 138.3 (C-11), 128.7 (C-12), 128.0 

(C-14), 127.6 (C-13), 64.4 (C-5), 55.6 (C-10), 43.7 (C-7), 33.5 (C-4), 29.7 (C-6), 

25.8 (C-2), 22.4 (C-3), 16.4 (C-9), 13.9 (C-1). 

 

νmax. / cm-1: 2956 (m, C-H), 2925 (m, C-H), 2856 (m, C-H), 1683 (w), 1447 (s, 

C=S), 1422 (m), 1267 (m), 1095 (m), 1026 (m),  699 (s). 

 

m/z: 261 (12%, M), 245 (14), 228 (8), 205 (6), 188 (19), 176 (7), 160 (9), 146 

(6), 120 (8), 105 (100). Found 261.1547, C16H23N32S requires 261.1551. 

 

ISOMER B (major isomer) 

 

Rf 0.27 (10% EtOAc/hexane), [α]D20 +383.6 (c 1.22, CH2Cl2) 

 
1H (300 MHz, CDCl3) δΗ  /ppm 7.45 (2H, dd, J 7.5, 1.2, H-12), 7.34-7.27 (3H, 

m, H-13, H-14),  6.55 (1H, q, J 7.2, H-10), 4.05-3.99 (1H, m, H-5), 3.16-2.95 

(2H, m, H-7AB), 2.18-2.05 (1H, m, H-6A), 1.78-1.69 (1H, m, H-6B), 1.66 (3H, d, 

J 7.2, H-9), 1.05-0.77 (6H, m, H-2, H-3, H-4), 0.65 (3H, t, J 7.0, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 201.8 (C-8), 140.1 (C-11), 128.3 (C-12), 127.7 

(C-14), 127.1 (C-13), 63.8 (C-5), 53.7 (C-10), 43.6 (C-7), 33.2 (C-4), 27.3 (C-6), 

26.4 (C-3), 22.2 (C-2), 15.1 (C-9), 13.7 (C-1). 

 

νmax. / cm-1: 2955 (m, C-H), 2929 (m, C-H), 2870 (m, C-H), 1681 (w), 1450 (s, 

C=S), 1422 (s) 1314 (s), 1271 (s), 699 (s). 

 

m/z: 261 (100%, M), 245 (42), 228 (67), 205 (33), 188 (59), 176 (50), 162 (51), 

144 (32), 128 (20), 120 (50). Found 261.1539, C16H23N32S requires 261.1551. 

 

Method B 

(R)-5-Butyl-1-(1-phenylethyl)pyrrolidin-2-one (389) (1.05 g, 4.28 mmol) was 

dissolved in CH2Cl2 (50 mL) in an oven-dried flask. Phosphorus pentasulfide 

(476 mg, 1.07 mmols) and hexamethyldisiloxane (1.36 mL, 6.42 mmol) were 
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added and the heterogeneous mixture was stirred for 72 hours at ambient 

temperature under a nitrogen atmosphere. The reaction was quenched by the 

addition of saturated sodium bicarbonate solution (10 mL) and the product was 

extracted into CH2Cl2 (3 x 20 mL). The combined organic fractions were dried 

with sodium sulfate and the solvent was removed in vacuo. Purification by 

column chromatography (10% - 20% EtOAc/hexane) gave (R)-5-butyl-1-(1-
phenylethyl)pyrrolidine-2-thione (390) (1.12 g, 100% yield) as a mixture of 

diastereomers. 
 

8.2.4 (R,E)-2-Butyl-1-(1-phenylethyl)-5-(tosylmethylene)pyrrolidine (391)  
Method A 

(R)-5-Butyl-1-(1-phenylethyl)pyrrolidine-2-thione (390) (0.25 g, 0.96 mmol) 

was dissolved in freshly dried and distilled THF (5 mL) in oven-dried glassware 

under a nitrogen atmosphere. Methyl iodide (0.30 mL, 4.8 mmol) was added 

and the reaction was left stirring under nitrogen for 48 hours. The THF and 

excess methyl iodide were removed in vacuo to give a brown oil. Et3N (0.26 mL, 

1.9 mmol) and 1-[(4-methylphenyl)sulfonyl]acetone (279) (224 mg,  1.06 

mmol) were mixed together in CH2Cl2 (5 mL) 10 minutes prior to addition to the 

brown oil. This mixture was left stirring at ambient temperature under a nitrogen 

atmosphere for 96 hours before the solvent was removed in vacuo and the 

organic residue was partitioned in distilled H2O (10 mL) and CH2Cl2 (10 mL). 

The crude product was extracted into CH2Cl2 (6 × 15 mL), dried with sodium 

sulfate, and the solvent removed in vacuo. The crude material was purified by 

column chromatography (30% EtOAc/hexane) to give the hydrolysis product, 

(R)-5-butyl-1-(1-phenylethyl)pyrrolidin-2-one (389) in 38% yield (90 mg, 0.36 

mmol), and a mixture of (R,E)-2-butyl-1-(1-phenylethyl)-5-(tosylmethylene) 
pyrrolidine (391) and (E)-1-(5-butyl-1-((R)-1-phenylethyl)pyrrolidin-2-
ylidene)-1-tosylpropan-2-one (392) in 10% combined yield (40 mg, 0.10 

mmol) 
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ISOMER A (391) 
1H (300 MHz, CDCl3) δΗ  /ppm 7.64 (2H, d, J 8.1, H-17), 7.38-7.20 (5H, m, 

H-12, H-13, H-14), 7.22 (2H, d, J 8.1, H-18), 4.89 (1H, s, H-15), 4.72 (1H, q, J 

7.1, H-10), 3.40-3.32 (1H, m, H-5), 2.89-2.78 (2H, m, H-7AB), 2.07-1.81 (2H, m, 

H-6AB), 1.61 (3H, d, J 7.1, H-9), 1.75-1.04 (6H, m, H-2, H-3, H-4), 0.82 (3H, t, J 

7.1, H-1). 

 
ISOMER B (392) 
1H (300 MHz, CDCl3) δΗ  /ppm 7.38-7.20 (7H, m, H-12, H-13, H-14, H-17), 7.22 

(2H, d, J 8.1, H-18), 6.31 (1H, q, J 7.2, H-10), 3.51 (1H, tt, J 8.9, 2.8, H-5), 

3.16-3.01 (2H, m, H-7AB), 2.40 (3H, s, H-22), 2.07-1.81 (2H, m, H-6AB), 1.70 

(3H, d, J 7.2, H-9), 1.25 (3H, s, H-20), 1.75-1.04 (6H, m, H-2, H-3, H-4), 0.83 

(3H, t, J 7.0, H-1). 

 

ISOMER A and B (391) = A; (392) = B 
13C (75 MHz, CDCl3) δC /ppm 201.4 (C-21B), 160.5 (C-8AB), 143.5, 141.6, 

139.2, 138.4 (C-19AB, C-16AB), 129.9, 129.2 (C-17AB, C-18AB), 128.7, 128.5 

(C-11AB), 128.0 (C-15B), 127.7, 127.6, 127.5, 127.0, 126.0 (C-12AB, C-13AB, 

C-14AB), 88.2 (C-15A), 64.4, 62.2, 55.6, 54.1 (C-5AB, C-10AB), 43.7, 34.0 

(C-7AB), 33.6, 29.8, 29.7, 27.9, 27.4, 26.4, 25.8 (C-2AB, C-3AB, C-4AB, 

C-6AB), 22.5, 22.4 (C-20AB), 21.4, 16.4 (C-9AB), 13.9, 13.8 (C-1AB). 

 

νmax. / cm-1: 2956 (m, C-H), 2929 (m, C-H), 2860 (m, C-H), 1683 (w), 1566 (s), 

1454 (s), 1279 (s), 1132 (s), 1084 (s), 847 (w), 701 (m), 577 (m). 
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8.2.5 Attempted debenzylation reactions 
Method A 

(R)-5-Butyl-1-(1-phenylethyl)pyrrolidin-2-one (389) (0.20 g, 0.81 mmol) was 

dissolved in AcOH (10 mL) and set up in a hydrogenator with palladium 

hydroxide (40 mg, 0.2 eq.) under 5 atmospheres of hydrogen pressure. The 

reaction was left at ambient temperature for 4 days. The residual catalyst was 

removed by filtering the solution through Celite® and rinsing with acetone 

(50 mL). The solvent was removed in vacuo and the crude product was purified 

by column chromatography (40% EtOAc/hexane). Only starting material was 

isolated (170 mg, 85% recovery). 

 

Method B 

(R)-5-Butyl-1-(1-phenylethyl)pyrrolidine-2-thione (390) (80 mg, 0.31 mmol) 

was dissolved in AcOH (5 mL) and set up in a hydrogenator with palladium 

hydroxide (8 mg, 0.1 eq.) under 7 atmospheres of hydrogen pressure. The 

reaction was left at ambient temperature for 3 days. The residual catalyst was 

removed by filtering the solution through Celite® and rinsing with CH2Cl2 

(20 mL). The solvent was removed in vacuo and the crude product was purified 

by column chromatography (10% EtOAc/hexane). Only starting material was 

isolated (80 mg, 100% recovery). 
 

Method C 

(R,E)-5-Butylidene-1-(1-phenylethyl)pyrrolidin-2-one (388) (0.20 g, 

0.82 mmol) was dissolved in methanol (11 mL). Ammonium formate (414 mg, 

6.58 mmol) was added and the solution was stirred under a nitrogen 

atmosphere until the solution was homogenous. 10% Palladium on carbon 

(74 mg, 0.37 eq.) was carefully stirred into the mixture (the methanolic vapours 

readily ignited if the system was not properly flushed with nitrogen). The 

reaction was left at ambient temperature for 3 hours. The mixture was filtered 

through Celite® and rinsed with CH2Cl2 (2 × 20 mL) to remove the catalyst. The 

solvent was removed in vacuo and the crude material was purified by column 

chromatography (10% EtOAc/hexane) to give starting material (130 mg, 65% 

recovery). 
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Method D 

(R)-5-Butyl-1-(1-phenylethyl)pyrrolidin-2-one (389) (0.10 g, 0.41 mmol) and 

ceric ammonium nitrate (894 mg, 1.60 mmol) were dissolved in MeCN/H2O 

(1:5, 6 mL) and stirred at ambient temperature for 12 hours. The reaction 

mixture was filtered through cotton wool and the product extracted into CH2Cl2 

(4 × 20 mL). The organic extracts were combined and rinsed with saturated 

sodium bicarbonate solution (20 mL) and dried with sodium sulfate. The solvent 

was removed in vacuo and the crude product was purified by column 

chromatography (20% EtOAc/hexane) to give back starting material (100 mg, 

100% recovery). 

  

Method E 

(R)-5-Butyl-1-(1-phenylethyl)pyrrolidin-2-thione (390) (0.22 g, 0.84 mmol) 

and ceric ammonium nitrate (1.85 g, 3.37 mmol) were dissolved in MeCN/H2O 

(1:5, 60 mL) and stirred at ambient temperature for 12 hours. The reaction was 

quenched with saturated sodium bicarbonate solution (20 mL) and filtered 

through cotton wool. The product was extracted into CH2Cl2 (4 × 20 mL) and 

dried with sodium sulfate. The solvent was removed in vacuo and the crude 

product was purified by column chromatography (20% EtOAc/hexane) to give 

(R)-5-butyl-1-(1-phenylethyl)pyrrolidin-2-one (389) (80 mg, 39% yield), and 

starting material (134 mg, 61% recovery). 
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CHAPTER 9 
EXPERIMENTAL PROCEDURES RELATING TO CHAPTER 5 

 
9.1  Preparation of allylic ketoesters 
 
9.1.1 Ethyl 4-allyl-4-hydroxyhept-6-enoate (394) 
Iron(III) acetoacetate (0.13 g, 0.36 mmol) was dissolved in dry THF (10 mL) in 

an oven-dried RBF. Ethyl 4-chloro-4-oxobutyrate (0.92 mL, 6.1 mmol) was 

added and the mixture was cooled to -10°C. After 10 minutes, allylmagnesium 

bromide (1.0 M, 6.7 mL) was quickly added and the reaction mixture was stirred 

for an additional 7 minutes. The reaction was quenched with HCl (1.0 M, 10 

mL) and extracted into EtOAc (3 × 40 mL). The combined organic fractions 

were rinsed with saturated sodium bicarbonate solution (50 mL) and brine (50 

mL) and dried with sodium sulfate. The solvent was removed in vacuo and the 

crude product was purified by column chromatography (30% - 40% 

EtOAc/hexane) to give ethyl 4-allyl-4-hydroxyhept-6-enoate (394) (510 mg, 

72% yield). 

 

[394]
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Rf 0.51 (40% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm  5.84 (2H, m, H-6), 5.18-5.07 (4H, m, H-7), 4.16 

(2H, q, J 7.2, H-8), 2.64 (4H, m, H-3, H-4), 2.24 (4H, d, J 7.4, H-5), 1.56 (1H, s, 

OH),1.26 (3H, t, J 7.2, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 172.1 (C-1), 133.5 (C-6), 118.6 (C-7), 73.7 (C-4), 

60.7 (C-8), 43.5 (C-5), 32.1 (C-3), 28.8 (C-2), 14.0 (C-9). 
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νmax. / cm-1: 3090 (w, O-H), 2980 (w, C-H), 2934 (w, C-H), 1716 (s, C=O), 1638 

(w), 1417 (m), 1375 (m), 1163 (s), 1021 (m), 997 (m), 915 (s).  

m/z: 211 (48%, M-1), 191 (31), 183 (25), 173 (8), 155 (16), 147 (7), 129 (100), 

121 (10), 107 (72).  

 
9.1.2 Ethyl 4-oxohept-6-enoate (313) 
Ethyl 4-chloro-4-oxobutyrate (0.50 mL, 2.8 mmol), allyl tri-n-butyl tin (0.95 mL, 

3.1 mmol) and Wilkinson’s catalyst (26 mg, 0.03 mmol) were dissolved in 

CH2Cl2 (3 mL) in a sealed tube and heated to 65°C for 5 hours. The CH2Cl2 

was removed in vacuo and the crude material was purified by column 

chromatography (5% EtOAc/hexane) to give ethyl 4-oxohept-6-enoate (313) 
in quantitative yield, slightly contaminated by tri-n-butyl tin chloride. 

 

 
 

Rf 0.10 (5% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 5.98-5.88 (1H, m, H-6), 5.20-5.12 (2H, m, H-7), 

4.12 (2H, q, J 7.2, H-8), 3.22 (2H, d, J 6.9, H-5), 2.76 (2H, t, J 6.3, H-3), 2.58 

(2H, t, J 6.3, H-2), 0.92 (3H, t, J 7.2, H-9). 

 
13C (75 MHz, CDCl3) δC /ppm 206.4 (C-4), 172.4 (C-1), 130.2 (C-6), 118.7 

(C-7), 60.4 (C-8), 47.4 (C-5), 36.7 (C-3), 27.8 (C-2), 13.8 (C-9). 

 

m/z: 171 (4%, M+1), 161 (7), 142 (5), 129 (15), 125 (100), 124 (100), 119 (3), 

105 (4). 

 

9.1.3 Ethyl (5E)-4-oxohept-5-enoate (396) 
Ethyl 4-chloro-oxobutyrate (0.50 mL, 2.8 mmol), allyl tri-n-butyl tin (0.95 mL, 

3.1 mmol) and Wilkinson’s catalyst (26 mg, 0.03 mmol) were dissolved in 

CH2Cl2 (3 mL) in a sealed tube and heated to 65°C for 5 hours. The reaction 
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mixture was left stirring at ambient temperature for 12 hours. The CH2Cl2 was 

removed in vacuo and rinsed with MeCN/hexane to remove the residual tin. 

The MeCN fraction was rinsed with hexane (2 × 15 mL) and the solvent was 

removed in vacuo. The crude material was purified by column chromatography 

(5% EtOAc/hexane) to give ethyl (5E)-4-oxohept-5-enoate (396) (310 mg, 

65% yield) as a mixture of geometric isomers (cis:trans ratio 1:2). 

 

 
 

Rf 0.10 (5% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 6.90 (1H, dq, J 15.9, 6.6, H-6), 6.16 (1H, d, J 

15.9, H-5), 4.13 (2H, q, J 7.2, H-8), 2.87 (2H, t, J 6.6, H-3), 2.62 (2H, t, J 6.6, 

H-2), 1.91 (2H, d, J 6.6, H-7trans), 1.54 (1H, d, J 6.6, H-7cis),  1.25 (3H, t, J 

7.2, H-9). 

 

trans 
13C (75 MHz, CDCl3) δC /ppm 197.9 (C-4), 172.7 (C-1), 142.8 (C-5), 131.5 

(C-6), 60.4 (C-8), 34.2 (C-3), 27.9 (C-2), 18.1 (C-7), 14.0 (C-9). 

 

cis 
13C (75 MHz, CDCl3) δC /ppm 205.2 (C-4), 172.3 (C-1), 142.8 (C-5), 131.5 

(C-6), 60.5 (C-8), 37.7 (C-3), 27.7 (C-2), 17.4 (C-7), 14.0 (C-9). 

 

νmax. / cm-1: 2982 (w, C-H), 2932 (w, C-H), 1732 (s, C=O), 1699 (m, C=O), 1674 

(m), 1635 (m), 1417 (m), 1208 (s), 1163 (s), 1096 (m), 1023 (m), 972 (m). 

 

m/z: 171 (10%, M+1), 161 (19), 129 (43), 125 (76), 124 (59), 119 (18), 107 (5), 

105 (15), 101 (100). Found 171.10207, C9H16O3 (M+1) requires 171.10157. 
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9.2 Attempted condensation reactions 
 
9.2.1  (5E)-1-Allyl-5-butylidenepyrrolidin-2-one (398) 
Ethyl 4-oxooctanoate (292) (1.04 g, 5.60 mmol), allylamine (0.21 mL, 2.8 

mmol) and glacial AcOH (0.84 mL, 14.0 mmol) were dissolved in toluene (10 

mL) and heated at reflux for 72 hours using a modified Dean-Stark apparatus. 

The solution was cooled, the solvent removed in vacuo and the residue purified 

by column chromatography (10% EtOAC/hexane) to give (5E)-1-allyl-5-
butylidenepyrrolidin-2-one (398) (277 mg, 55% yield) as a yellow oil. The 

trans geometry was verified by selective NOE experiments. 
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Rf 0.17 (10% EtOAc/hexane)  

 
1H (300 MHz, CDCl3) δΗ /ppm 5.78-5.65 (1H, m, H-10), 5.17-5.12 (2H, m, 

H-11), 4.66 (1H, t, J 7.2, H-4), 4.09 (2H, d, J 5.1, H-9), 2.74-2.44 (4H, m, H-6, 

H-7), 1.98 (2H, q, J 7.2, H-3), 1.39 (2H, sestet, J 7.2, H-2), 0.90 (3H, t, J 7.2, 

H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 175.1 (C-8), 138.7 (C-5), 131.8 (C-10), 116.7 

(C-11), 101.3 (C-4),42.1 (C-9), 28.7 (C-7), 28.6 (C-3), 23.1 (C-2), 21.2 (C-6), 

13.5 (C-1). 

 

νmax. / cm-1: 2958 (m, C-H), 2930 (m, C-H), 2872 (m, C-H), 1664 (s, C=O), 1412 

(s), 1339 (s), 1229 (m), 1177 (m), 1124 (m), 1077 (m), 991 (w), 955 (w), 921 

(m), 654 (m). 
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m/z: 179 (7%, M), 164 (3), 151 (10), 150 (100), 148 (8), 137 (55), 136 (11), 122 

(29), 108 (10). Found 179.1325, C11H17ON requires 179.1310. 

 

9.2.2 (5E)-1-But-3-enyl-5-butylidenepyrrolidin-2-one (399) 
Ethyl 4-oxooctanoate (292) (342 mg, 1.80 mmol), butenylamine hydrochloride 

(0.10 g, 0.92 mmol) and glacial AcOH (0.28 mL, 4.6 mmol) were dissolved in 

toluene (5 mL) and heated at reflux for 72 hours using a modified Dean-Stark 

apparatus. The solution was cooled, the solvent removed in vacuo and the 

residue purified by column chromatography (10% EtOAC/hexane) to give  (5E)-
1-but-3-enyl-5-butylidenepyrrolidin-2-one (399) (80 mg, 45% yield) as a 

yellow oil. The trans geometry was verified by selective NOE experiments. 
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Rf 0.14 (10% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 5.85-5.71 (1H, m, H-11), 5.10-5.02 (2H, m, 

H-12), 4.65 (1H, t, J 7.2, H-4), 3.53 (2H, t, J 7.2, H-9), 2.60 (2H, t, J 7.2, H-6) 

2.50-2.44 (2H, m, H-7), 2.33-2.26 (2H, m, H-10), 2.00 (2H, q, J 7.2, H-3), 1.42 

(2H, sestet, J 7.2, H-2), 0.92 (3H, t, J 7.2, H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 175.4 (C-8), 139.0 (C-5), 134.9 (C-11), 116.8 

(C-12), 100.6 (C-4), 39.0 (C-9), 30.8 (C-10), 28.9 (C-7), 28.7 (C-3), 23.3 (C-2), 

21.3 (C-6), 13.7 (C-1). 

 

νmax. / cm-1: 2958 (m, C-H), 2872 (m, C-H), 1662 (s, C=O), 1414 (m), 1363 (m), 

1262 (w), 1178 (m), 1126 (m), 1077 (m), 961 (w), 916 (m). 
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9.3 Ring-closing metathesis reactions 
 
9.3.1 (E)-5-Butylidene1-(prop-1-enyl)pyrrolidin-2-one (401)242, 176 
(5E)-1-Allyl-5-butylidenepyrrolidin-2-one (389) (200 mg, 1.12 mmol) and 

Grubbs second generation catalyst (47 mg, 0.06 mmol) were dissolved in 

toluene (7 mL) and heated at reflux for 12 hours. The solution was cooled and 

the solvent was removed in vacuo. The crude material was purified by column 

chromatography (10% EtOAc/hexane) to give (E)-5-butylidene1-(prop-1-
enyl)pyrrolidin-2-one (401) (40 mg, 11% yield) as a by-product. 

 

[401]
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Rf 0.14 (10% EtOAc/hexane) 

 
1H (300 MHz, CDCl3) δΗ /ppm 6.09-5.96 (2H, m, H-9, H-10), 4.91-4.85 (1H, td, 

J 7.2, 2.1, H-4), 2.66-2.60 (2H, m, H-7), 2.55-2.50 (2H, m, H-6), 1.98 (2H, q, J 

7.2, H-3), 1.81 (3H, d, J 5.4, H-11), 1.35-1.29 (2H, m, H-2), 0.90 (3H, t, J 7.2, 

H-1). 

 
13C (75 MHz, CDCl3) δC /ppm 174.8 (C-8), 139.2 (C-5), 122.4 (C-9), 121.3 

(C-4), 102.7 (C-10), 29.4 (C-7), 28.8 (C-3), 23.1 (C-2), 21.3 (C-6), 15.9 (C-1), 

13.7 (C-11).  

 

νmax. / cm-1: 2960 (m, C-H), 2874 (m, C-H), 1699 (s, C=O), 1541 (m), 1457 (m), 

1375 (m), 1188 (m), 1079 (s), 668 (w). 

 

m/z: 179 (28%, M), 166 (18), 150 (85), 148 (20), 139 (24), 124 (32), 122 (19), 

110 (100), 108 (28). C11H17ON requires 179.1310. 

 
 



 

 332

9.3.2 Attempted RCM: (5E)-1-But-3-enyl-5-butylidenepyrrolidin-2-one 
(399)242  
Method A 

(5E)-1-But-3-enyl-5-butylidenepyrrolidin-2-one (399) (20 mg, 0.10 mmol) and 

Grubbs second generation catalyst (6 mg, 0.005 mmol) were dissolved in 

toluene (3 mL) and stirred at ambient temperature for 5 days. The solvent was 

removed in vacuo and the crude material was purified by column 

chromatography to give back unreacted starting material (15 mg, 75% 

recovery). 

 

Method B 

(5E)-1-But-3-enyl-5-butylidenepyrrolidin-2-one (399) (210 mg, 1.08 mmol) 

and Grubbs second generation catalyst (46 mg, 0.05 mmol) were dissolved in 

toluene (10 mL) and heated at reflux for 12 hours. The solvent was removed in 

vacuo and the crude material was purified by column chromatography. 1H-NMR 

spectra indicated decomposition of the starting material and none of the desired 

product. 
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