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AABBSSTTRRAACCTT  

 

Parkinson's disease, primarily defined as the depletion of dopaminergic neurons in the subtantia nigra of the brain, gives rise to 

severely debilitating motor symptoms. The pharmacological gold standard treatment for the disease, Levodopa , holds great 

limitations yet still remains the most effective treatment for the disease for the last 40 years. There has been research into novel 

drug delivery systems for the treatment of the disease that include the development of implantable devices however none have 

been introduced onto the market. As the neurodegenerative disorder ravages the younger-aged population so the urgency for 

the effective chronic treatment of the disease escalates. The field of nanotechnology brings promise for the targeted delivery of 

drugs which is highly sought after in the treatment of central nervous system disorders. A nano-enabled scaffold device (NESD) 

incorporating dopamine nanoparticles into a polymeric scaffold for implantation into the brain parenchyma may be able to 

address and overcome the limitations of the current treatment for Parkinson's disease. 

 

Investigations performed cellulose acetate phthalate dopamine-loaded nanoparticles, employing an adopted emulsification-

diffusion approach, produced particles with a notably high drug entrapment efficiency (63.05±0.354%) and desirable controlled 

drug release profiles (16.23% in 24hr). The employment of an experimental design, namely the Box-Behnken design, allowed for 

the attainment of optimized nanoparticles with high zeta potentials (.34.00mV), minimal particle size (197.20nm) and extended 

mean dissolution times (40.96). 

 

Barium chloride was employed to crosslink calcium-alginate scaffolds formulated in an adopted freeze-drying approach. Highly 

resilient (63.58±5.13) and porous structures (pore sizes of 100-400µm) were developed. A statistical approach employing the 

Box-Behnken design resulted in the formulation of a candidate barium-alginate scaffold displaying maximum matrix resilience 

(82.46%) and minimal matrix erosion (18.23%) over in 30 days. In addition, dopamine-loaded nanoparticles were dispersed 

within the scaffold that formed the NESD with the desired drug release profiles (5.12% in 168hr). 

 

Nanosystems of levodopa, nicotine and dopamine nanofibers were preliminary investigated. Drug release profiles for levodopa 

(4.21%: in 75hr), nicotine (0.42% in 24hrs) and drug entrapment efficiency for the polymeric nanofibers (75-85%)  as well as 

data from scanning electron microscopy, zetasize analysis and drug release studies proved that these systems hold potential for 

the treatment of the disease and therefore require further investigation. 

 

Ex vivo cytotoxic studies carried out on the NESD and it's separate entities proved that the NESD was biocompatible with the 

white blood (70-80% cell viability in 24hr) and carcinomic brain cells (25% cell viability in 48hr) despite literature reports of 

dopamine being highly toxic in vivo. 

 

Extensive in vivo studies resulted in the development of a protocol for the surgical implantation of the NESD in the parenchyma 

of the frontal lobe of the rat brain. Scanning electron microscope images showed the gradual bioerosion (26% in 30 days) of the 

NESD while histological findings of the brain tissue proved clinically insignificant (absence of ischemia or chronic inflammation). 

Ultra Liquid Performance Chromatography revealed higher concentrations of dopamine in the CSF of rats which received brain 

implants of the NESD (28%) than in those administered the oral preparation, Sinemet (0.000012%) in 3 days. 
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 1 

CCHHAAPPTTEERR  11  

IINNTTRROODDUUCCTTIIOONN  

 

 

1.1. Background to this Study 

Parkinson’s disease (PD) is characterized by a progressive loss of dopaminergic neurons in 

the substantia nigra pars compacta of the brain (Moos and Jensen, 2004). This results in the 

loss of striatal dopaminergic terminals and their ability to store and regulate the release of 

dopamine (DA). DA is a neurotransmitter found in a region of the brain namely the substantia 

nigra. The transmitter plays a role in behaviour, learning and cognition as well as aids in the 

execution of controlled muscular movements. DA does not cross the blood brain barrier 

(BBB) therefore an exogenous supply needs to be orally administered in its levo-form known 

as Levodopa (L-dopa) (Lai and Yu, 1997). Accordingly, striatal DA receptor activation 

becomes increasingly dependent on the peripheral availability of an exogenously 

administered dopaminergic agent (Mrin et al., 2008). As the disease progresses, the patient 

begins to experience motor abnormalities such as akinesia, a resting tremor, and rigidity. The 

advancement of the disease results in worsening of these symptoms (Yulmetyev et al., 

2006). The disease affects one in every 100 persons above the age of 65 years and is the 

second most common neurodegenerative disease after Alzheimer's disease (de Rijk et al., 

2000). The current treatments for the disease have extensive side-effect profiles and issues 

with loss of efficacy after prolonged periods of time therefore validating the urgency for new 

treatment modalities. 

 

Drug delivery to the brain remains a highly challenging and essential field of study. Due to the 

numerous protective barriers surrounding the Central Nervous System (CNS), there is still an 

urgent need for effective treatment of patients living with neurodegenerative diseases such as 

PD (Singh et al., 2007). 

  

The Blood Brain Barrier (BBB) is a defensive mechanism (Misra et al., 2003). The passage of 

substances into the brain is highly selective and prevents the entry of high molecular mass 

hydrophilic compounds. This is a major impediment for drug delivery to the brain as 

numerous drugs are aqueous in nature and therefore unable to penetrate the BBB 

(Siepmann, 2006). The alternative is that drugs may be delivered systemically (as in the case 

with current drug therapy) however only a small percentage of drug reaches the brain due to 

hepatic degradation as well as the inability to cross the BBB, and the associated side effects 
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related to peak-to-trough fluctuation of plasma drug levels that leads to a lack in patient dose-

regimen compliance (Whintey, 2007). High dose parental drug administration is often 

necessary to reach sufficient concentrations of the drug in the brain parenchyma (Pardridge, 

2006) however since neurodegeneration is a chronic disease, this option seems impractical. 

 

L-dopa still remains the gold standard for the treatment of PD. Oral administration of L-dopa 

is rapidly decarboxylated to DA (only 5% DA bioavailability) in extracerebral tissues so that 

only a small portion (<1%) of a given dose is transported unchanged to the CNS. Due to its 

significant peripheral metabolism, large doses of L-dopa are required for an adequate 

therapeutic effect and often produces severe nausea, memory loss and nervousness 

(Whintey, 2007). Carbidopa inhibits decarboxylation of peripheral L-dopa, increasing the 

bioavailability of L-dopa by 99% to the brain. It does not cross the BBB nor affects the 

metabolism of L-dopa within the CNS.  Sinemet® (Merck & Co., Inc and Bristol-Myers Squibb, 

NJ and NY, USA), an immediate release preparation, is a combination of carbidopa and L-

dopa and so significantly increases the bioavailability of L-dopa. Sinemet ®CR is a controlled 

release preparation that allows for a once-a-day dosage. Unlike Sinemet® which is dosed 

three times a day (Yeh et al., 1989). However there are numerous limitations to the use of L-

dopa as well as other anti-parkinson drugs that will be further highlighted in section Chapter 1 

Section 1.2 of this dissertation. 

 

Nicotine (NT) has received considerable attention for it's possible employment as a 

neuroprotectant for PD. Smokers have shown a decline in the occurrence of PD as compared 

to the non-smoker population (Quik et al., 2007). Studies have shown that nicotine may be 

responsible for an augmentation in vitro as well as in vivo DA release (Rusted et al., 2000). 

The neuroprotectant effects of NT are further discussed in chapter 2 Table 2.5 of this 

dissertation.  

 

Nanotechnology has a long fairly unexplored history and may overcome limitations posed by 

current non-targeted drug delivery systems. Nanoparticles are small (mainly polymeric) 

particles in the nanometer range and are normally spherical depending on the nature of 

production and can be loaded with various drugs. Due to the small size of nanoparticles, they 

are able to penetrate the BBB (Liu et al., 2005) and are therefore easily imbibed within cells, 

allowing for efficient drug accumulation at targeted sites within the brain (Gelperina et al., 

2005). The use of biodegradable polymeric material for nanoparticulate formation may also 

allow sustained drug release at the targeted site over a period of days or even weeks after 
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implantation and ideally would erode in vivo (Yetkin et al., 2000). Furthermore, nano-enabled 

delivery devices should be able to maintain its physicomechanical properties for the period of 

drug release and erode with subsequent elimination from the body without producing any 

toxic by-products (Middleton and Tipton, 1998). 

 

Thus, the aim of this research was to combine polymer and nanoscience to design and 

develop a Nano-Enabled Scaffold Device (NESD) for the delivery of DA to allow for it’s 

localised and controlled delivery of DA for the treatment of PD. The NESD was implanted into 

the parenchyma of the frontal lobe of the Sprague-Dawley rat brain.  

 

1.2. Rationale for this Study 

Polymeric nanotechnology has been researched for it's application in cancer therapy (Alexis 

et al., 2008). However it has yet to be extensively explored for the treatment of 

neurodegenerative diseases. The treatment of cancer and neurodegenerative diseases are 

similar in that they both require targeted drug delivery to optimize bioavailability and reduce 

systemic side-effects experienced with CNS drugs (Abbot and Ramero, 1996).  

 

Nano-drug delivery devices have the potential to (i) maintain therapeutic levels of drug, (ii) 

reduce harmful side-effects, (iii) decrease the quantity of drug needed, (iv) reduce the 

number of dosages, and (v) facilitate the delivery of drugs with short in vivo half-lives 

(Kohane, 2006; Gelperina et al., 2005; Langer, 1998). 

 

Drug-loaded nanoparticles can be injected at the site of action but the inclusion of 

nanoparticles into a biodegradable polymeric scaffold is advantageous for targeted drug 

delivery as the nanoparticles allow for higher drug loading, due to the high surface area to 

volume ratio in comparison to other polymeric systems, and are able to facilitate opening of 

tight junctions between cells for penetrating the BBB (Kreuter, 2001). Furthermore, by 

employing biodegradable polymers during formulation avoids the need for surgical 

procedures in order to remove the device once its drug-load has been depleted (Middleton 

and Tipton, 1998). 

 

L-dopa is essentially the levorotatory isomer of dihydroxy-phenylalanine (dopa) which is the 

metabolic precursor of DA. L-dopa presumably is converted into DA in the basal ganglia. The 

reason for the formulation and current widespread use of the L-dopa is to enhance transport 

of the drug across the BBB. Initial therapy with L-dopa significantly restores normal 
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functioning for the patient with PD and every PD-patient will need L-dopa at some time during 

the course of the disease (Samii et al., 2007). However the major limitation to the use of L-

dopa arises after long-term use. The phenomenon is known as the ‘end-of-dose wearing-off’, 

where the therapeutic benefits of each dose of L-dopa lasts for shorter periods (Hely et al., 

2000). The patient begins to experience motor fluctuations prior to the time of the next dose. 

This occurs when the prescribed dose is no longer able to effectively manage the symptoms 

of the disease. In many patients, ‘off’ periods of motor immobility are associated with pain, 

panic attacks, severe depression, confusion and a sense of death (Papapetropoulos and 

Mash, 2005), which makes the clinical status even more distressing for patients as well as  

their care-givers.  Clinicians attempt to overcome this phenomenon by either increasing the 

frequency/quantity of the dose or by replacing immediate release preparations with a 

sustained release preparation for example Sinemet® CR. Increasing the dose places the 

patient at risk for dyskinesia (the inability to control muscles) which occurs at peak plasma 

drug levels (Chen and Obering, 2005).  The dose also needs to be increased on a regular 

basis in order to overcome “the wearing-off” effect which results in an increase in side-effects. 

Sinemet® CR provides a benefit in that drug plasma levels are maintained over a 24-hour 

period (Uitti et al., 1997). However, side-effects such as dizziness, insomnia, abdominal pain, 

dyskinesia, headache and depression are still experienced with sustained release 

preparations.  The inclusion of carbidopa (75-100mg daily) tends to exacerbate psychiatric, 

gastrointestinal and motor side-effects. Patients also find that while the dosing schedule 

proves convenient, there is still evidence of dyskinesia (Miyawaki et al., 1997). There have 

also been reports that, with both Sinemet® preparations, food retards absorption of the drug 

(Roos et al., 1993). Therefore in order to overcome these limitations, a NESD implanted into 

the parenchyma of the frontal lobe of the rat brain was developed in this study. The inclusion 

of DA avoids the need for metabolism to the active (as it is already in its active form) and 

peripheral loss of the DA thereby increasing its bioavailability. 

 

A Nano-Enabled Scaffold Device (NESD) implanted into the parenchyma of the frontal lobe of 

the brain will ensure DA is delivered in a controlled manner for a prolonged period of time and 

DA delivery will be targeted to the affected areas of the brain and a lower effective dose 

would be required with no systemic side-effects. The major benefit of the NESD will be 

sustained release of DA with increased efficacy in the treatment. This will ensure 

maintenance of steady-state cerebrospinal fluid (CSF) DA levels which is imperative to 

prevent the ‘end-of-dose wearing-off’ phenomenon. The ultimate goal is to increase the 

patient’s quality of life and restore their daily functioning. Currently, there is no product 
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available on the market that is able to ensure long-term efficiency and control of the motor 

manifestations of the disease without the aggravation of side-effects such as  the psychiatric 

manifestations and cardiovascular effects (Katzung et al , 2004). The NESD will prove 

superior in that it serves to overcome the major barriers of current drug delivery systems 

available for the treatment of PD. 

 

Ex vivo and in vivo studies proved essential in this study as the employment of a NESD in the 

brain is a fairly unexplored field of study and so there are insufficient CNS animal models for 

correlation purposes. While this study extensively explored in vitro studies performed on the 

NESD, none served to sufficiently simulate in vivo conditions of the parenchyma of the frontal 

lobe of the brain. An ex vivo cytotoxic study on brain and white blood cells was developed 

that allowed for the determination of the potential safety/toxicity of the NESD prior to the 

undertaking of in vivo animal studies. Animal studies allowed for the determination of the 

potential CNS effects that the NESD may have within living organisms, unlike the static 

conditions provided by the in vitro environment. The inclusion of animal studies provided 

significant data on the DA release kinetics and biodegradation behaviour of the NESD. 

 

In order to asses the versatility of the NESD, NT was loaded into the nanoparticles. NT 

transdermal patches and gums used for the cessation of smoking have proven to be 

advantageous in stimulating DA release and therefore for the employment in PD (Singh et al., 

2007). These findings justify the need for the formulation and thereby investigation into a 

controlled drug delivery system containing NT. 
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1.3. Aim and Objectives of this Study 

• To review current novel drug delivery systems for the treatment of PD and thereby 

validate the need for the development of a NESD 

• To identify a suitable method to develop DA-loaded Cellulose Acetate Phthalate 

(CAP)   nanoparticles that can be incorporated into a crosslinked alginate scaffold 

• To identify a suitable method to develop implantable crosslinked alginate scaffolds 

• To investigate the physicomechanical and physicochemical properties of the newly 

formed DA-loaded CAP nanoparticles and crosslinked alginate scaffold 

• To synthesis variants of DA-loaded CAP nanoparticles and crosslinked alginate 

scaffold   employing a Box-Behnken Experimental Design followed by 

physicochemical and physicomechanical analysis 

• To establish the optimum parameters necessary for the formulation of the desired DA-

loaded CAP nanoparticles and crosslinked alginate scaffold that will form the NESD 

• To disperse the DA-loaded CAP nanoparticles into a crosslinked alginate scaffold and 

thereafter evaluate in vitro DA release and matrix erosion behaviour of the NESD 

• To test the cytotoxicity of the NESD on carcinomic brain and white blood cells 

• To undertake in vivo animal studies and determine DA release kinetics and  

• biocompatibility of the NESD 

• To investigate novel configurations for the design of diverse nano-systems that  

            may be employed for the treatment of PD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

1.4. Overview of this Dissertation 

 

Chapter One outlines the problem and highlights the rationale for the study. It is an 

introduction to the study that covers the background and introduction. A summary of the aims 

and objectives is included in this chapter.  

 

Chapter Two focuses on drug delivery to the brain and the strategies employed. 

Furthermore, there is a detailed outline of PD, it's treatment and their limitations. The 

concepts and definitions of nanotechnology are discussed as well as its application in drug 

delivery. 

 

Chapter Three describes the formulation and development of DA-loaded nanoparticles. 

Preliminary formulation methods which investigated the stability and size of the nanoparticles 

are detailed. In addition, formulation parameters were established to allow for the 

construction of a Box-Behnken followed by optimization that lead to a candidate nanoparticle 

formulation. Furthermore, physicomechanical and physicochemical properties were analysed 

as well as in vitro DA release.  

 

Chapter Four describes the formulation and development of barium-alginate scaffolds. 

Preliminary formulation methods highlight the need for increased matrix resilience and 

decreased mass loss of the scaffold. In addition, formulation parameters were established to 

allow for the construction of a Box-Behnken followed by optimization that lead to a candidate 

scaffold formulation. Furthermore, physicomechanical and physiochemical properties were 

analysed. This chapter also looked at the incorporation of the DA-loaded nanoparticles into 

the Ba-alginate scaffold and the in vitro release from NESD. 

 

Chapter Five is a further development of nanosystems incorporating bioactive compounds 

such as L-dopa and NT for the treatment of PD. The chapter includes the preliminary in vitro 

investigation into these systems. 

 

Chapter Six is a comprehensive description of the ex vivo cytotoxic testing on brain and 

white blood cells. Descriptions of the assays employed and the handling of results are 

contained within the chapter. 
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Chapter Seven contains an explanation of the in vivo animal studies undertaken in the 

Sprague-Dawley rat model. Development of a protocol for the surgical implantation into the 

brain, biocompatibility and DA release are the highlights of the chapter. In addition, sample 

collection of blood and cerebrospinal fluid is described. 

 

Chapter Eight presents the conclusions and recommendations for future work. 
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CCHHAAPPTTEERR  22  

CCUURRRREENNTT  SSTTRRAATTEEGGIIEESS  AANNDD  LLIIMMIITTAATTIIOONNSS  OOFF  DDRRUUGG  DDEELLIIVVEERRYY  TTOO  TTHHEE  BBRRAAIINN  IINN  TTHHEE  

TTRREEAATTMMEENNTT  OOFF  PPAARRKKIINNSSOONN’’SS  DDIISSEEAASSEE  

 

 

2.1. Introduction  

2.1.1. The Physiology of the BBB 

The BBB serves to protect the brain from the external environment (the rest of the body) 

by regulating the passage of molecules to the brain. The absence of fenestrations and the 

presence of tight junctions between the endothelial cells that form the capillaries of the 

BBB, provide this regulation and protection (Kemper et al., 2004). Approximately 100% of 

large-molecule drugs and more than 98% of all small, hydrophilic molecules (larger than 

400–500 Daltons) do not cross the BBB (Pardridge, 2006).  Lipophilic molecules may 

passively diffuse through the endothelial cells but are generally limited to smaller sized 

molecules. Other parameters that influence the uptake of a drug in brain tissue are 

(Summerfield et al, 2007) the degree of ionization of the drug; plasma protein and tissue 

binding, its affinity for specific carriers as well as local cerebral blood flow. 
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2.1.1.1. Approaches Employed for Drug Delivery to the Brain 

The diverse mechanisms of drug delivery to the brain are illustrated in Figure 2.1. and briefly 

discussed hereunder.  

 

Passive diffusion of small molecules to the brain 

The movement of drug from the luminal to the ablumina interface of the BBB, occurs only 

within lipid-soluble small molecules that have a molecular mass of less than 400 daltons. This 

is a highly selective and restrictive approach of delivering drug to the brain (Pardridge, 2006). 

 

Osmotic disruption of the BBB employing hyperosmolar solutions 

It is a temporary procedure involving the use of hyperosmolar agents such as mannitol and 

arabinose (Rapoport, 2000). The administration of these solutions causes the contraction of 

endothelial cells that constituent the tight junctions. The dysfunction of the cells increases the 

intracellular spaces thereby allowing access of molecules into the brain (Kemper et al., 2004). 

This method holds grave consequences in that the disruption is not as temporary as 

previously stated. The recovery to normal state takes several hours in many instances and 

may lead to the non-selective entry of toxic substances as well as the rapid influx of fluid into 

the brain.  The employment of osmotic disruption has shown minimal decrease in patient 

morbidity and it's inevitable risks still hold cause for concern (Kemper et al., 2004). 

 

Chemical modification of the drug and it’s penetration through the BBB 

Lipidization is most commonly used to increase the likelihood of drug passing or bypassing 

the BBB. However, Pardridge (2006) reported that "to date there is not a single CNS drug 

prescribed to patients that is an example of a water-soluble drug being converted into a CNS 

active drug by medicinal chemistry". Furthermore with chemical modification of the drug 

comes changes in the pharmacokinetic profile as well which could have negative 

consequences on the biological activity of the drug (Pardridge, 2006; Gaillard and de Boer 

2006). 

 

Transcranial drug delivery mechanisms 

There are three major categories for this type of delivery: intracerebroventricular (ICV) 

infusion, the intracerebral (IC) implantation and the convection-enhanced diffusion (CED) of 

drug (Pardridge, 2006). These techniques allow for the delivery of drug at the brain 

parenchyma. In order for the approach to prove beneficial, the drug needs to be placed into 

the target site to avoid loss of drug through diffusion (Pardridge, 2006). In addition, the CSF 
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turnover rate far supersedes the diffusion rate of drug throughout the brain. CED is the 

continuous infusion of drug-infused fluid into the brain tissue. This procedure involves serious 

consequences in that the brain lacks an efficient mechanism to remove this access fluid 

(Pardridge, 2006; Pathirana et al., 2006). 

 

Active efflux of molecules for transportation to the brain 

An active efflux pump works by ejecting certain molecules from the brain to the systemic 

circulation. Molecules should have a moiety attached to their structure that would enable 

inhibition of the efflux transporter, thereby allowing increased brain penetration of the 

therapeutic drug (Pardridge, 2006; Kusuhara and Sugiyama, 2001). 

 

Receptor mediated transport of large molecules through the BBB 

The attachment of drug onto specific receptors allow for their transportation/endocytosis into 

the brain. Examples of these include transferrin receptor (holo-transferrin), neonatal Fc (IgG) 

and receptor type I scavenger receptor (lipoproteins) (Pardridge, 2006; Roberts et al., 1993). 

 

Trojan horse receptor mediated transport: an alternative system for the transportation of 

larger molecules across the BBB 

This system embodies another approach to deliver larger molecules to the brain. Drug binds 

to the receptor-specific monoclonal antibody portion of the Trojan horse (a "piggy back" 

receptor molecule) which binds to an exofacial epitope on the endogenous BBB peptide 

receptor. Trojan horses allow for the "carrying" of the molecule across the BBB on the 

endogenous peptide receptor mediated transport system (Pardridge, 2006; Dietz and Bohr, 

2004). 

 

Carrier mediated transport of water soluble molecules through the BBB 

These receptors allow for the transportation of water soluble molecules through the BBB. 

Examples of these carriers include hexose, lactate, glucose and phenylalanine among others. 

In actuality, the mainstay therapy for PD, L-dopa utilizes the neutral amino acid carrier (used 

for the transportation of phenylalanine) to cross the BBB. Utilization of the body's intrinsic 

system to overcome the BBB may be employed to other water soluble drugs. Furthermore, 

drugs may be converted to the analogues of natural molecules that have transporters within 

the BBB, thereby allowing entry of drug into the BBB (Tsuji, 2001; Pardridge, 1991). 
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Figure 2.1: Schematic representation of mechanisms of drug delivery to the brain (Rapoport 1976, Pardridge 2002, Pardridge 
2005, Abbott et al., 2006)
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Nasal Drug Delivery: an approach for the treatment of central nervous system conditions  

The administration of drug via the nasal route allows for bypassing the BBB (Mishr, 2004). 

Drug is transported from the nasal cavity into the olfactory part of the nasal epithelium to 

enter into the submucus space (adjacent to the olfactory CSF) and then into the CSF 

compartment of the brain. While drug does not have to pass through the BBB, a prerequisite 

for nasal drug delivery is a lipophilic drug with a Mw = 400 daltons. Once there is a significant 

restriction in the drugs that may be delivered using this approach. Another process is to 

considerably obliterate nasal mucosa by instilling larger molecules (>400Mw) into the nostrils, 

this causes trauma to the epithelium resulting in the molecules entering through the nasal 

membrane (Pardridge, 2006; Liu et al., 2001). 

 

Nano-therapeutic molecules 

Nanotechnology comprises ideally of materials with size ranges from 1-100nm. These 

materials exhibit large surface areas which in turn results in the increase of the particle 

surface energy and may give rise to biological reactivity (Oberdörster et al., 2005).  Nano-

engineered materials and devices aimed at biology and medicine in general and 

neuroscience in particular are designed to interface with cells and tissues at a fundamental 

molecular level (Silva, 2007). The process of nano-sizing allows for the potential elimination 

of obstacles arising from low drug solubility, degradation, fast clearance rates, non-specific 

toxicity, and inability to cross biological barriers (Kingsley et al., 2006). The site-specific 

delivery of nano-drugs allows for the maximization of therapeutic effect and minimization of 

side-effects.  

 

Nanodiagnostics: The early recognition and detection of disease states is imperative to the 

prognosis. Nano-enabled molecular imaging have been made in all imaging modalities 

including optical, nuclear, ultrasound, computed tomography and magnetic resonance 

imaging (Caruthers et al., 2007). The increased surface area per volume of nanoparticles 

ensures that there is no need to load each targeted particle with a high concentration of 

imaging agent. Examples of these include nanoparticulate iron oxides may be used as 

contrast agents in magnetic resonance imaging. They monitor gene expression or detection 

of metastases in prostate cancer, atherosclerotic plaques and brain inflammation (Moghmini, 

2005). These imaging agents may further be coupled with a nanosized drug delivery system 

to allow for multifunctionality allowing for the early detection and treatment of disease (Bawa, 

2007). 
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Table 2.1 lists the selected nano-therapeutic molecules on the market for the treatment of 

various diseases 
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Table 2.1: Selected nano-therapeutic molecules on the market for the treatment of various diseases (adapted from Nijhara and Balakrishnan, 2006, du Toit et    

al., 2007 and Zhang et al., 2007 

Drug name Manufacturer(s) Indications Size (nm) Major benefits FDA Approval 

Rapamune® 

(Sirolimus) 
Wyeth, Elan 
(Madison, 
 New Jersey, US) 

Immunosuppressant 
in kidney transplant 
patients 

<200 Enhanced bioavailability, convenient 
dosage formulation, and extended 
shelf-life, compared with its 
microformulated counterpart 

August 2000 

Emend® 

(Aprepitant) 
Merck, Elan 
(New Jersey, US) 

Delayed nausea and 
vomiting in 
chemotherapy 
patients 

<1000 First FDA-approved drug for the 
treatment of delayed nausea and 
vomiting in chemotherapy 

March 2003 

TriCor® 

(Fenofibrate) 
Abbot 
(Illinois, US) 

Primary 
hypercholesterolemia, 
mixed lipidemia, 
hypertriglyceridemia 

<1000 Minimal fasted and fed variability in 
bioavailability of the drug, when 
compared with its microformulated 
counterpart. 

December 2004 

Abraxane® 

(Abraxane) 
American 
Pharmaceutical 
Partners, Inc.  
(Illinois, US) 

Metastatic breast 
cancer 

130  Eliminates the use of toxic solvents 
that were essential for its 
microformulated counterpart 

January 2005 

Doxil® 

(Doxorubicin) 
ALZA Corporation 
(California, US) 

Anti-cancer drug for 
the treatment of 
refractory ovarian 
cancer and Kaposi’s 
Sarcoma 

100 
 

First FDA-approved drug for cancer 
therapy 

February 2005 
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Nano-drug delivery systems currently under investigation 

• Dalargin poly(butylcyanoacrylate) nanoparticles for central analgesia (Schroeder, 

1998); 

• Doxorubicin poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the  

treatment of cancerous tumors (Mitra et al., 2003);  

• Diminazenediaceturate (diminazene) polysorbate 80 nanoparticles for the treatment of 

second stage Human African Trypanosomiasis (Olbrich et al., 2004); 

• Amphotericin B chitosan dextran sulfate nanoparticles for the treatment of systemic 

fungal infection (Tiyaboonchai and Limpeanchob, 2007); 

• Delavirdine, stavudine and saquinavir poly (butylcyanoacrylate), methylmethacrylate-  

  sulfopropylmethacrylate, and solid lipid nanoparticles for the treatment AIDs Dementia  

  Complex (Kuo and Su, 2007); 

• Indomethacin polylactic acid nanoparticles used for the reduction of fever, pain and 

inflammation (Závišová et al., 2007); 

• Insulin fluorescein isothiocyanate nanoparticles for the management of diabetes 

mellitus (Damgé et al., 2007); and 

• Paclitaxel poly (DL-lactide-co-glycolide) nanoparticles for the treatment of cancerous 

tumors (Feng et al., 2007). 

 

Nano-drug delivery systems are by no means limited to nanoparticles and may be 

manufactured in various configurations. These range from typical nanogels formed from 

crosslinked hydrophilic polymers to nanofluidics. These structural diversifications are further 

outlined in Table 2.2. 
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Table 2.2: The diverse architectures of nano-systems  
Nanosystem Description Image of the nanosystem 
Nanogels These are crosslinked nanoparticles consisting 

of hydrophilic polymers that give rise to an 
increase in viscosity of the material (du Toit et 
al., 2007) 

 
Cabot Corp Nanogel TM, New Hampshire, US, 2003. 

 (www.cabot-corp.com) 
Nanofibers These are fibers with dimensions <100nm 

prepared via electrospinning or interfacial 
polymerization techniques (Yang et al., 2007) 

 
Wang et al., 2008 

Nanocrystals These are crystalline material of nanosize. 
Applications include fluorescent semi-conductor 
nanocrystals employed as probes to allow for 
imaging and diagnostics (Parak et al., 2003) 

 
Shin et al., 2007 

Dendrimers 
 

These are tree-like macromolecules with 
branches reaching out from the core. These 
molecules are of particular interest as their 
production allows for reproducibility and the 
formation of highly defined structures. They 
epitomize the concept of multi-functionality 
medicinal systems as they permit the attachment 
of various therapeutic and imaging molecules to 
their surface (du Toit et al., 2007) 

 
Kong and Pan, 2008 

Nanoliposomes 
 

A lipid layer/s surrounds An aqueous core. 
These systems may be able to carry both 
hydrophobic drugs (lipid layer) as well as 
hydrophilic drugs (aqueous layer). In addition, 
liposomes may carry charged drugs within its 
core that will neutralize upon contact to bodily 
fluids thereby transversing through the 
surrounding membranous layer (Zaru et al., 
2007) 

 
University of Washington, 2000-2008 

(www.washington.edu) 
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Nanowires 
 

These are two dimensional structures with 
surfaces that can be functionalised to promote 
targeting, biocompatibility, solubility and 
controlled drug release (Kwon et al., 2007) 

 
Huang et al., 2008 

Nanotubes Employment of porous membranes to create 
nanosized hollow tubes of various dimensions. 
Functionalization of these tubes allows for the 
attachment of various drugs to the structure 
  

 
Xiong et al., 2004 

Nanofluidics The infamous "lab on a chip". These systems 
look at the movement of nanoscale drops of fluid 
into and out of bodily fluids to deliver drug to 
their target (Hu and Li, 2007) 
 

 

 
Guo , 2005 
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2.2. Parkinson’s disease: An Overview 

In 1817, James Parkinson wrote “An Essay on the Shaking Palsy” which aptly described the 

clinical manifestations of the disease which later bore his name (Lim, 2005). PD is 

characterized by the depletion of dopaminergic nigrostriatal neurons. It is the most common 

movement disorder and second, only to Alzheimer’s disease, as the cause of age-related 

neurodegeneration (Mosley et al., 2006). As the numbers of the aging population escalates 

so does the prevalence of neurodegenerative disorders such as PD. Dopamine (DA) 

replacement therapy is essential to manage the motor manifestations of PD.  

 

2.2.1. Possible theories explicating the aetiology of PD 

Oxidative stress leading to DA neuronal degeneration 

It has been reported that the brain has an increased risk (in comparison to the rest of the 

body) of oxidative stress due to it's inability to counteract radicals (Owen et al., 1996). 

Furthermore the metabolism of DA leads to the formation of hydrogen peroxide (H2O2) 

(Czerniczyniec et al., 2007). This hypothesis is further believed as studies have confirmed 

that (Owen et al., 1996): 

• DA turnover is likely to be increased in surviving neurons with a resultant increase in 

oxidation and thereby increased formation of H2O2;  

• Levels of reduced and total glutathione are decreased in the pars compacta of the 

substantia nigra (SNc) suggesting decreased protection against OH formation;  

• Iron concentration is increased in the SNc thereby increasing the likelihood of an 

interaction with H2O2 and consequent OH formation; and  

• Lipid peroxidation is increased in the SNc. 

 

Exposure to environmental toxins 

This theory is based on the symptoms and clinical finding, in animals and humans, when 

exposed to toxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-

hydroxydopamine (6-OHDA) being the same as in PD. Research has shown that there is a 

possible link between the exposure to environmental toxins and the development of PD 

(Rajput, 2001). 
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An inherited disease 

It has been reported that the lifetime risk in first degree relatives of sporadic cases is 

estimated to be as high as 17% with the mutated genes, α-synuclein and parkin, being 

identified as the genes responsible for the inheritance of PD (Popovic and Brundin, 2005). 

 

Increased risk of PD with age  

The increase in age has an additive effect on cell atrophy that in turn causes the 

degeneration of specific areas of the brain, detrimental neuropathology and therefore an 

increase in the prevalence of PD (Elbaz and Tranchant, 2007). However; recent findings 

have shown that an increase in age may not be significant in the cause of PD (Calne and 

Kumar, 2007). 

 

Pathology of PD:  

Lewy bodies are considered to be the hallmark feature for PD diagnosis (Lu et al., 2005). 

These are described as intra-cytoplasmic, single or multiple, spherical or elongated, 

eosinophilic masses possessing a dense core and a peripheral halo (Wakabayashi et al., 

2006). The core consists of microscopic, dense deposits of abnormal protein, formed as 

products of the mutated α-synuclein gene. 

 

Other factors that may trigger the onset of PD include viral infection; excess iron and 

manganese in the diet (responsible for additional oxidation and thereby degeneration of the 

brain cells); CNS disorders (brain tumors, hydrocephalus, encephalitis, meningitis and 

stroke); traumatic  injury to the brain; abuse of antipsychotic drugs and intravenous 1-methyl 

4-phenyl 1,2,3,6-tetrahydropyridine (resulting in mitochondrial dysfunction); and carbon 

monoxide poisoning (Carson-De Witt, 2003). 

 

2.2.2. The diagnosis of PD 

Diagnosis and subsequent treatment of PD is sufficiently delayed due to the fact that 

approximately 80% of striatal nerve terminals and up to 60% of dopaminergic neurons in the 

substantia nigra have been lost before clinical presentation of symptoms of PD becomes 

apparent (Agid, 1991). Compensatory mechanisms such as; increased dopaminergic activity 

in the substantia nigra, down-regulation of DA transporters and up-regulation of postsynaptic 

DA receptors in the striatum account for the lack of symptoms at an earlier stage of the 

disease (Nyholm, 2003). There is no definitive test for the diagnosis of PD. Diagnosis is made 

on the  
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development of symptoms of the disease including gait changes, trembling and difficulty 

speaking or writing.  The United Kingdom PD Society (UK PDS) Brain Bank diagnostic 

criterion is a guideline tool used to aid in diagnosis (Table 2.3). 

Table 2.3: Parkinson's disease syndrome brain bank diagnostic criteria (United Kingdom) 
(extracted from Hughes et al., 1992) 

Step 1 - Diagnosis of Parkinsonian syndrome 

Bradykinesia plus at least one of the following: 

Muscular rigidity 

Rest tremor 

Postural instability 

Step 2 - Exclusion criteria including: 

History of repeated strokes 

History of repeated head injury 

History of definite encephalitis 

Step 3 - Supportive prospective criteria (at least three required): 

Unilateral onset 

Rest tremor present 

Evidence of progression 

Persistent asymmetry 

Excellent response to L-dopa 

Severe L-dopa-induced chorea 

L-dopa response for 5+ years 

Clinical course of 10+ years 

 

2.2.3. Pharmacological treatment of PD 

Treatment of PD is based on strategies that either prevent dopaminergic cell degeneration 

and death; stimulate dopaminergic cell proliferation;or  compensate depletion of DA (Popovic 

and Brundin, 2005). Their pharmacological treatment, recommended dosages, side-effects 

and the limitations are outlined in Chapter 2 Table 2.4 of this dissertation. 
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Table 2.4: The current pharmacological treatment for PD and their limitations (adapted from Cutson et al., 1995, Comella and Tanner, 1995 and Katzung ,      

       2004) 

Class Drug Dose Side-effects Limitations 
Dopaminergic 

L-dopa 
L-dopa 
(ratio represent that of carbidopa to 
L-dopa in mg) 
1:10 ratio :  
50:200 tds/qid 
1:4 ratio:  
25:100 L-dopa tds/qid 

• Hair loss 
• Psychiatric 

manifestations 

• On-off Syndrome 
• Multiple dosing (t1/2 = 1.3hrs) 
• Sinemet® CR-pulsed rather than constant drug levels  

               Patient variation in absorption results in patient's mood state   
               during the course of the day (United States Patent 4883666,   
               ,1989) 

MAO inhibitors 
 Selegine 

Rasagaline 

Selegine:  
5mg bd 
Rasagaline:  
1mg bd or 
0.5mg bd(with L-dopa) 

• Orthostatic 
hypertension 

• Insomnia  
• Impotence  

• Hypertensive crisis 
• Combination of Rasagaline with L-dopa may possibly increase 

blood levels of Rasagiline or exacerbate pre-existing 
dyskinesia (Product information, 2006) 

Antivirals 
Amantadine 

Amantadine:  
100mg bd is thought to either, 
promote the release, prevent the 
reuptake, or have an influence on the 
synthesis of DA. 

• Slurred speech 
• Shortness of breath 
• Visual disturbances 

 

• Effect is short lived therefore used as a diagnostic tool 

COMT-inhibitors Tolcapone 
Entacapone 

Tolcapone: 
100mg tds (with Sinemet®) 
Entacapone: 
200mg tds (with Sinemet®) 

• Dyskinesias 
• Hepatotoxicity 

(talcopone) 

• May only be used in combination with L-dopa 
• Talcopone - use is limited due to risk of causing potentially 

fatal, acute fulminant liver failure (should only be used in 
patients where there is no alternative) 

Anticholinergics 
 
 

Trihexyphenidyl 
Benztropine 
 
 

Trihexyphenidyl:  
2mg tid 
Benztropine: 
1mg tds 
Specifically effective against tremor 

• Blurred vision 
• Difficult or painful 

urination (especially 
in older men) 

• Dryness of 
membranes 

• There is little to no corrective effect on rigidity or bradykinesia 
or akinesia  

• Increased side-effect profile 

DA Agonists 
 

Ergot derivatives: 
Bromocriptine 
Pergolide 
Non-ergot derivatives: 
ropinirole 

pramipexole 

Pergolide:  
1mg tds 
Bromocriptine:  
5mg bd 

• Psychiatric 
disturbances 

• Possibility of 
myocardial infarctions 
and subsequent 
death 

• Limited to use as adjunctive therapy 
• Exacerbation of adverse effects in elderly  
• Increased half life will decrease the risk of motor complications 

but brings increase in price, poorer control of symptoms and 
DA effects 

 

 Apormophine Apormorphine: 
0.06mg/kg (0.6mL/kg) 
Alleviates the "off" periods 
experienced when taking L-dopa 

• formation of skin 
nodules 

• nausea 

• Short in vivo half-life = 100min 
• Impractical administration route (s.c) for chronic use 
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2.2.4. Challenges of current therapy used in the treatment of PD 

2.2.4.1. Limitations of Sinemet® for the treatment of PD 

Sinemet® is currently the leading treatment used for PD but numerous limitations: 

•  Loss of efficacy: Sinemet® loses it's efficacy in 50% of patients as soon as 5-15    

             years following continuous administration. Patients begin to experience debilitating    

 dyskinesia ("on-period") and profound tremor, rigidity, and akinesia (“off-periods")  

(Arica et al., 2005); 

•  Response fluctuations: Sinemet® has wide distribution throughout the body and  

             patient variation is often documented; 

•  Accelerated premature metabolism: L-dopa causes delayed gastric emptying,  

             increasing absorption rate in the stomach where L-dopa is absorbed. Dopa  

             decarboxylase is present within the gastric mucosa and will prematurely convert L-  

dopa into DA which further serves to stimulate DA receptors in the stomach leading to 

further delays in the gastric emptying rate (Pfeiffer, 2005); 

•  Minimal BBB transport: approximately 1% of the administered dose is available to  

  the brain;  

•  Large doses related to side-effects: severe nausea, vomiting and orthostatic  

  hypotension; 

• Controlled released preparations: controlled release L-dopa therapy (Sinemet® CR) – 

a "once-a-day" treatment results in pulsed rather than constant drug levels (Hely et 

al., 2002) which alleviates the "wearing-off" phenomenon. In addition, the degree to 

which Sinemet® CR increases the t1/2 of L-dopa is minimal (40min). Moreover, it has a 

distinct disadvantage, especially in advanced PD, because its effects are more 

unpredictable than those of immediate-release L-dopa (Popovic and Brundin, 2005); 

• Drug holidays: involves the temporary withdrawal of L-dopa for a predetermined 

period. This approach is employed as an attempt to resensitize DA receptors in the 

striatum so that L-dopa therapy can be reintroduced at lower doses with fewer side-

effects. This strategy however is highly controversial due to possible serious effects 

such as neuroleptical malignant-like syndrome and therefore only used as a last 

resort (Koziorowski and Friedman, 2001); and 

• Continuous infusion: the infusion of L-dopa/carbidopa (Duodopa TM, NeoPharma AB, 
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Uppsala, Sweden), into the duodenum or subcutaneous apormorphine infusion over 

at least 6 months - this seems highly impractical and requires hospitalization for the 

first series of infusions (Koziorowski and Friedman, 2001).  

• Transdermal patches: Neupro® (Schwartz Pharma Neupro ®, Monheim, Germany). 

The patch allows for sustained release of DA over a 24 hour period resulting in steady 

state plasma drug levels and essentially the reduction/elimination of the ‘on-off’ 

phenomenon. However, the patch needs to be applied and removed once daily and 

may lead to issues of patient compliance. In addition, there is a limitation to the 

quantity of drug that may be delivered per square meter of skin (Rascol, 2005) and 

the resulting continuous stimulation of the receptors may lead to putative desensitivity  

(Pfeiffer, 2007).  

 

2.2.4.2. The gap in current therapy employed in the treatment of PD 

Development of novel drug delivery system for the treatment of PD needs to address 

(Stocchi, 2006) neuroprotection where drug therapy not only provides relief from the 

immediate symptoms but also serve to restore and repair further neuronal damage in order to 

inhibit the progression of PD. Furthermore elimination of "end of dose" dyskinesias as with L-

dopa and easy administration and favorable dosing schedules need to be achieved with new 

treatment options. Research into drugs that treat both motor and non-motor symptoms 

(depression and memory loss) is also encouraged so as to provide holistic treatment for PD. 

 

2.2.5. Implantable novel polymeric drug delivery systems for the treatment of PD 

Optimization of drug release, stability and sterility as well as size and shape of the implant 

needs to be scrutinized to ensure the long-term controlled release and biocompatibility of an 

implanted system (Fournier et al., 2003). Furthermore, an implantable system for any chronic 

cardiovascular or neurodegenerative disorder should retain the bioactivity of the drug. (Vats 

et al., 2005). 

 

Implantation of a DA-loaded biodegradable polymeric device is necessary in incidences 

where patients (Taylor and Minger, 2005) show refraction to conventional drug therapy; have 

a complete loss of DA-producing neurons; require targeted delivery of DA; and/ or wish to 

avoid ethical and moral consequences that come with the implantation of fetal or tissue cells. 
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2.2.5.1. L-dopa/Carbidopa loaded microspheres for implantation into the cerebellum 

Arica et al, 2004 conducted studies on these microspheres implanted into the cerebellum of 

the rat brain. Results showed that test rats had significantly reduced apormorphine rotations 

as compared to the control group, beginning at week one up to eight post-implantation 

holding promise as a new treatment for PD. The drawback with the study may have been the 

employment of two separate costly drugs into the formulation whereas DA-loaded drug 

delivery systems prove more feasible in that the drug-loaded microspheres system was 

implanted directly into the brain (Arıca et al., 2004). 

 

2.2.5.2. DA-loaded drug delivery systems: microspheres and a silicone pellet into the 

striatum 

In two separate studies, DA was loaded into drug delivery systems for the treatment of PD. In 

the first study, DA-loaded microspheres were implanted into the striatum of the rat brain and 

released drug in 120min and while it did decrease the rate of release of drug, the quantity 

was the same as for non-encapsulated, free drug (McRae-Degueurce et al., 1988). In a later 

study, rats were implanted with DA-releasing pellets which showed a 50% reduction in 

apomorphine-induced rotational behaviour, and this effect persisted for the 2-month duration 

of the experiment (Becker et al., 1989).  

 

2.2.6. Gene Therapy 

The early onset of the disorder may be due to genetic predispositions of PD. Gene therapy is 

being investigated to slow the progression of the disease. The vector adenoassociated viral 

(AAV2) not only provides for the attachment of genes but is responsible for the restoration of 

the Aromatic L-Amino Acid Decarboxylase (AADC) enzymatic function and allows for the 

conversion of L-dopa to DA, which is significantly reduced in PD. These studies are still 

underway and have now moved onto clinical trials (Fiandaca et al., 2007). 

Genes being investigated are: 
• AAV2 Glutamic Acid Decarboxylase (GAD): rate-limiting enzyme for synthesis of the 

major inhibitory neurotransmitter in the brain, γ-amino butyric acid (Fiandaca et al., 

2007); 

• AAV2 Human Aromatic L-Amino Acid Decarboxylase (hAADC):  has an additive 

effect on the function of AADC and so may decrease the dose of L-dopa required as 

well as increase its efficacy (Fiandaca et al., 2007); and 

• AAV2 neurotrophic factor neurturin (NTN): may prevent the degeneration and provide 

neuroprotection for the DA-neurons in the striatum (Gasmi et al., 2007). 
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2.2.7 Empirical treatments employed in the treatment of PD  

Novel symptomatic treatments that target the non-dopaminergic areas will eliminate the 

motor side effects that arise from the use of dopaminergic agents (Colosimo et al., 2006).  

Examples of these include -2 adrenergic antagonists, adenosine A2A receptor antagonists, 

-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonists, neuronal 

synchronization modulators and agents that interact with serotonergic systems. 

 

In addition, there has been investigation into various agents that may be used to provide 

neurorestoration and protection in PD, these are outlined in Table 2.5. 
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Table 2.5: Selected neuroprotective and neurorestorative agents under investigation for the treatment of PD 

Drug Name Mechanism Of Action Short comings/Side-effects Animal model evidence References  

Co-enzyme Q10 Anti-oxidant Not regulated by the FDA 

Expensive* 
 

Administration of 200mg/kg/day of Co-
enzyme Q10 for a period of five weeks 
resulted in a decrease in striatal DA 
concentrations in MPTP-lesioned mice 

Co-enzyme Q10 and nicotinamide are 
neuroprotective against mitochondrial toxins in 
vivo (Beal et al., 1994) 

Creatinine  Enhances mitochondrial 
function and anti-oxidant 
properties 

Weight gain, oedema, nausea, 
vomiting and diarrhea* 

Administration of 1% creatinine for a period of 
two weeks resulted in a 10% loss of 
dopamine neurons in MPTP-lesioned mice in 
comparison to a 70% loss in untreated mice 

Creatinine and cyclocreatine attenuate MPTP 
neurotoxicity (Matthews, 1999). 

GM1 ganglioside 
 

Possible inhibition of cell 
apoptosis, protection against 
excitotoxicity and has been 
hypothesised to reduce the 
sensitivity of DA-neurons to 
toxins* 

Chronic administration may lead to 
increased serum cholesterol, 
triglycerides and apolipoprotein B 
levels* 

Administration of GM1 to MPTP-lesioned cats 
resulted in an enhanced sensorimotor 
behavioral recovery compared to the 
untreated group. Results show enhanced 
release and reuptake of DA in GM1-treated 
animals and an increase in functional DA 
terminals 

Differences in release and clearance of 
extracellular dopamine in the striatum after 
spontaneous or GM1-ganglioside-stimulated 
recovery from experimental Parkinsonism 
(Schneider et al., 2000) 
 

Minocycline Might inhibit microglia-related 
inflammatory events, and also 
nitric oxide synthase production 
thereby inhibiting  
apoptotic (Frankish, 2003 
Peschanski, 1994) 

Anorexia, nausea, vomiting, 
dizziness,rash, hypersensitivity 
reactions and headache (Peng et 
al., 2006) 

Administration of minocycline to weaver mice 
decreased the degeneration of DA neurons. 
Mice (aged 3 weeks) showed a 30% loss of 
nigral neuronsin comparison to untreated 
mice who displayed a 50%. 

Nigrostriatal dopaminergic neurodegeneration 
in the weaver mouse is mediated via 
neuroinflammation and alleviated by 
minocycline administration (Peng et al.,2006 ) 
 

NSAIDs Potent inhibitors of 
cyclooxgenase enzymes 
resulting in reduction of 
inflammation involved in PD 
pathogenesis (Chen et al., 
2003) 

All NSAIDs have shown to be toxic 
to DA-neurons, except for 
ibuprofen (Chen et al., 2003) 
 

The content of DA in striatum showed 
significantly decreased after MPTP 
intoxication in ibuprofen-treated animals 
compared with control and non-ibuprofen-
treated animals 

Ibuprofen and the mouse model of Parkinson's 
disease (Kurkowska-Jastrzebska et al., 2006) 

Nicotine Stimulation of nicotinic receptor 
evokes the release of DA and 
is a possible free radical 
scavenger (Singh et al, 2007) 

The benefits of the treatment are 
far overshadowed by the harmful 
respiratory and addictive effects 

Nicotine treatment prevented the striatal DA 
loss after a 6µg 6-OHDA injection when 
administered 4hr before and 20hr, 44hr and 
68hr post- toxin 

Nicotine prevents striatal dopamine loss 
produced by 6-hydroxydopamine lesion in the 
substantia nigra (Costa et al., 2001) 

Melatonin Potent free radical scavenger 
which can enhance antioxidant 
activity (Kadanthode, 2003) 

Increased drowsiness Chronic administration of melatonin prevented 
nigral dopaminergic cell death induced by 6-
ODHA in the rat model 

Protective effect of melatonin in a chronic 
experimental model of Parkinson’s disease 
(Antolín et al., 2002) 

* (National Institute of Neurological Strokes and Disorders, 2005) 
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2.2.8. Current surgical approaches for the treatment of PD 

The surgical approach for the treatment of PD has lost favour due to complications and the 

introduction of effective pharmacological treatments such as L-dopa (Walter and Vitek, 2004). 

However the current failure in the treatment has lead to resurgent interest in this approach 

(Follett, 2000). 

 

Patient selection for surgical intervention (Walter and Vitek, 2004): 

• Non-Parkinson's Plus patients: patients who are responsive to pharmacological  

treatment; 

• Age: younger patients seem to tolerate the surgery well; 

• Patients who are on medication that still display significantly debilitating  

    symptoms; 

• Patients should not display significant neuropsychological dysfunction ; 

• Patients should not show any intracranial pathology that could result in surgical  

complications; and 

• Depression or mood disorders adequately controlled with medication.  
 

Table 2.6 highlights the three major surgical treatments for PD patients that includes 

restorative (cell transplantation); ablative (pallidotomy and thalamotomy); and 

electrophysiological (deep brain stimulation) (Kolchinsky, 2001). 
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Table 2.6: Surgical strategies employed for the treatment for PD 

Class  Description Symptom 
Improvement 

Complication/ Limitation 
 
 

Success 
Rate in Particular Studies 

Ablation Pallidotomy Performed on the side 
contralateral to the most 
debilitating symptoms. 
Surgical lesioning of the 
globus pallidus, a deep sub-
region of the basal ganglia, 
situated near the thalamus 
(Dewey, 2004).  

Irreversible procedure 
 

Tremor 
L-dopa induced 
bradykinesia 
Rigidity 
(Thompson, 2001) 
 
 

Visual impairment 
Facial Pareis 
Hemiparesis 
Speech and voice 
Memory impairment 
(Bilateral pallidotomy gives rise to 
more serious complications) 
May exacerbate speech and gait 
disorders in some patients 
(Dewey, 2004) 

Increased success rate <70yrs 
Bilateral thalamotomies result in a 
prohibitively high rate of cognitive 
and speech problems (Dewey, 
2004) 

 
 

 Thalotomy 
 
 
 

As per pallidotomy but 
performed on the thalamus 

Tremor 
(Diamond et al., 
2007) 

Speech disturbance 
Apraxia 
(Clarke and Moore, 2007) 

Tremor has reappeared in a few 
weeks or months in a small 
percentage of patients (Hallett, 
1999) 

Electrophysiological 
 

Deep Brain 
Stimulation (DBS) 
 

A microelectrode is implanted 
in subthalamic nucleus of 
globus pallidus (GPi) or in the 
thalamus. The electrode 
delivers electrical current at a 
high frequency that stimulates 
the tremor control centre 
resulting in tremor reduction. 
Non-destructive, non-invasive 
and reversible (National 
Institute of Neurological 
Disorders and Strokes, 2007) 

Reduction in 
symptoms of 
advanced PD 
(implanted in 
subthalamic 
nucleus or GPi) 
Reduction in 
tremor (implanted 
in thalamus) 
 

Fatal intracerebral infection 
Cognition-mania 
Depression  
Problems with balance 
Expensive procedure 
Generator needs to be replaced 
every 5-8 years (Panikar and 
Kishore, 2003) 

Reduction of PD questionnaire 
score by 9.5 points and United PD 
Rating Scale scores by 19.6 in 
comparison to the 
pharmacologically treated group, 
six months post-DBS (Hamani et 
al., 2005). Thirty months post-
surgery there was a lasting 
decrease in fluctuations by more 
than 50%, and dyskinesias were 
reduced by about 70% (Toda et 
al., 2004) 

Restorative 
 
 
 
 

Embryonic stem(ES) 
cell transplantation  
 

ES cells can be cultured then 
induced to differentiate into 
DA-neurons.  
Initially cells are obtained 
from developing human 
embryos, this is a one-time 
event and so therefore 
morally acceptable (Walter 
and Vitek, 2004) 
 

All motor 
symptoms 

Dystonia and dyskinesia 
development (1 year or more 
beyond surgery and continued to 
have persistent dyskinesia despite 
reduction or elimination of 
dopaminergic drugs) 
Poor survival of the grafts, poor 
cell purity (University of Pittsburgh 
Study in Neurosurgery, 2007) 

Although stem-cell transplants 
have not yet been used in clinical 
trials for PD, early animal studies 
are underway and have shown 
some ability to produce cells with 
dopaminergic differentiation 
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 Fetal Mesencephalic 
Dopamine-secreting 
Cells 
 

Ventral mesencephalic tissue 
from aborted foetuses, after 
being matched to the patient 
for ABO blood antigens, can 
be implanted stereotaxtically 
through the caudate and 
putamen via needle tracks in 
an attempt to replace the lost 
nigrostriatal neurons 
(Drucker-Colín and Verdugo-
Díaz, 2004) 

All motor 
symptoms 
L-dopa induced 
dyskinesia 

Ethical concerns 
(3-8 embryos are required for a 
single patient transplantation 
which does not provide assured 
success) (Hallett, 1999). 
Development of "runaway" 
dyskinesias 
 

30% success rate in patients 
younger than 60 years old 
 
 

 Xenotransplantation May be derived from the 
ventral mesencephalon tissue 
from porcine embryos and 
implanted into the stratium of 
the human brain (Brevig et 
al., 2000) 

All motor 
symptoms 

Obsessive compulsive disorder 
Auditory hallucinations 
Variance of dyskinesias 
Worsening of PD symptoms 
(Peschanski 1994) 
Fatal or handicapping intracerebral 
hemorrhages and abscess (Palfi, 
2004) 
Risk of microbe transmission  

The success rate depends on the 
gestational period of the donor 
tissue as well as volume of tissue 
implanted 
The survival of newly transplanted 
cells is very low  
(Sayles et al., 2004) 
Unsuccessful integration with the 
existing neural circuitry, cells may 
ability to release DA and it’s a 
complicated non-reproducible 
procedure (Brevig et al., 2000)  

Miscellaneous 
Radiosurgery and 
the Gamma Knife 

 

Allows for the precise location 
and radiation of specific areas 
in the brain. 
Investigation for use as a tool 
for both thalamotomy and 
pallidotomy in patients who 
are not candidates for 
standard surgery (Swedish 
Medical Center, 2007) 

Depends on the 
type of ablation 
that is being 
employed as well 
as the 
electrophysiologic
al surgery  

Mortality 
Weakness  
Partial paralysis 
Tissue necrosis 
Morbidity 
(Okun et al., 2001) 

Operated areas were significantly 
off target (Peschanski et al., 1994) 
 
 

 
Transcranial 
Magnetic Stimulation 

(TMS) 

Non-invasive technique that 
employs high frequency 
magnetic pulses that are 
placed on specific area on the 
scalp so as to target affected 
areas of the brain. 
An alternate for patients who 
may not undergo DBS 
(Erhardt et al., 2004) 

Motor symptoms 
(bradykinesia, 
tremor, postural 
imbalance) 
Depressive and 
visual symptoms 
(del Olmo et al., 
2007) 

Symptoms may actually worsen 
with this approach (Boylan et al., 
2001) 

Acute left frontal reverse TMS (20 
Hz) was able to modulate 
dopaminergic neurotransmission 
release (30% increase) in a rat 
study (Kanno et al., 2004) 
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2.3. Concluding Remarks 

This chapter addressed the challenges of delivery of drug to the BBB and the approaches 

employed to overcome this. Nanotechnology and its applications in drug delivery, in particular 

to the brain, were investigated. Furthermore, a synopsis of PD was given as well as the 

current pharmacological treatment used to treat this disorder and the limitations thereof. The 

employment of implantable and novel drug delivery devices was discussed. Finally, surgical 

approaches for the treatment of PD were revisited. Overall the urgency for newer and 

effective treatment was highlighted. 
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CCHHAAPPTTEERR  33  

DDEEVVEELLOOPPMMEENNTT  AANNDD  FFOORRMMUULLAATTIIOONN  OOFF  DDOOPPAAMMIINNEE--LLOOAADDEEDD  CCEELLLLUULLOOSSEE  AACCEETTAATTEE  

PPHHTTHHAALLAATTEE  NNAANNOOPPAARRTTIICCLLEESS  

 

 

3.1. Introduction 

The size range of <100nm has been the defining term for nanotechnology (Igarashi, 2008). 

However in DA delivery, this size limitation is not critical and various therapeutically active 

nano-enabled systems have been used for the treatment of various ailments such as 

Abraxane® 130nm (Abraxis BioScience Corporate Offices, California, USA), Taxol® 160nm 

(Bristol-Myers, New York, USA), Adriamycin® 200-400nm (Pharmacia & Upjohn, S.P.A, Milan, 

Italy) (Farokhzad and Langer, 2006). Nanoparticles may be synthesized employing a number 

of well established procedures (Peltonen et al., 2004). Salting-out, emulsification-diffusion 

and nanoprecipitation are among the many examples of these procedures (Olivier, 2005). 

 

Salting-out of nanoparticles 

This involves the combinatory use of an organic and aqueous phase under high magnetic 

stirring rates for a period of 15-20min to facilitate emulsification. Deionised water is 

subsequently added to induce the diffusion of the organic phase into the external solvent 

resulting in nanoparticle formation (Galindo-Rodríguez et al., 2005). 

 

Solvent evaporation/ emulsification-diffusion 

The polymer and drug are dissolved in an organic phase. The resulting solution is then 

emulsified by immersing it into an aqueous solution producing an oil in water (o/w) emulsion. 

Surfactant and/or emulsifying agent may then be added to ensure the stability of the 

formulation. The organic phase is evaporated by increasing the temperature under reduced 

pressure. The resultant solution is then centrifuged to produce nanoparticles ( Piñón-

Segundo et al., 1996; Galindo-Rodríguez et al., 2005).   

 

Spontaneous emulsification or solvent diffusion  

A water soluble solvent and a water insoluble organic phase are mixed to produce an oil 

phase (used for hydrophobic drugs). An emulsion is then prepared as per the solvent 

evaporation method and nanoparticles are formed. The size of the particles may be 

significantly reduced by increasing the concentration of the water-soluble solvent (Mohanraj 

and Chen, 2006). 
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Supercritical fluid (SF) technology 

This method limits the toxicity that occurs as a result of surfactants and/or solvents used 

during formulation. The chosen solute is solubilised in SF. The solution is then pushed 

through a nozzle allowing the solute to precipitate (completely free of solvent). The 

disadvantage of this method is that it may only be used for low molecular mass polymers 

(Pathak et al., 2005). 

 

Coercervation or ionic gelation  

Two diverse aqueous phases are blended (one phase being a hydrophilic polymer solution). 

The polymers comprise charged groups for electrostatic interaction. The result is the 

production of nano-size coacervates (Agnihotri et al, 2004). DAs may be encapsulated, 

covalently attached or adsorbed onto the surface of the nano-carriers (Olivier, 2005). 

Nanoparticles may be further modified to release DA upon external environmental stimuli 

such as pH, heat, magnetic fields or chemical changes (Mohanraj and Chen, 2006). 
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3.2. Materials and Methods 

3.2.1. Materials 

Cellulose acetate phthalate (CAP) (Mw=2534.12g/moL), poly(vinyl alcohol) (PVA) 

(Mw=49,000g/moL), acetone, methanol and dopamine hydrochloride (DA) (Mw=189.64g/moL)  

were all purchased from Sigma Aldrich (St. Louise, MO, USA). Deionized water was obtained 

from a Milli-Q water purification system (Milli-Q, Millipore, Billerica, MA, USA). All other 

reagents were of analytical grade and used as purchased. 

 

3.2.2. Technology Applied in the Present Study 

3.2.2.1. Application of the Zetasizer® NanoZS Series Instrument  

The Zetasizer® Nano Series (Malvern Instruments, Worcestershire, UK) is an evolution in the 

analysis of nanoparticles. The instrument allows for measurements imperative and exclusive 

to nanotechnology. Applications include the determination of particle size and zeta potential 

(which were employed in the present study) as well as the molecular mass of drugs. 

3.2.2.2. The determination of the size of the nanoparticles  

Particle size is determined by dynamic light scattering (DLS) that measures the Brownian 

motion of the particles. Brownian motion relates to particle size in that smaller particle sizes 

are expected to move more rapidly than larger particles therefore exhibiting greater Brownian 

motion. 

Factors that may affect the rate of particle diffusional speed are:  

• Ionic media: a conductive media will increase the electric double layer (Figure 3.1) 

around the particle, decreasing its speed and thereby increasing its size 

measurement; 

• Surface structure: the arrangement or shape of the particle surface that leads to 

greater protruding surfaces or reduced, flattened surfaces; and 

• Non-spherical particles: the assumption with the DLS technique, employed in this 

study, is that all particles are spherical. Non-spherical particles may give rise to 

changes in diffusional speed and therefore size of particles. 

The particle size is computed as the hydrodynamic diameter calculated by means of the 

Stokes-Einstein equation (Kusaka and Adachi, 2007): 
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D

kT
Hd

πη3
)( =         Equation 3.1 

Where d (H) is the hydrodynamic diameter, D is the translational diffusion coefficient, k is 

Boltzmann's constant, T is the absolute temperature and η is the viscosity of the liquid/ 

solvent employed. Parameters, such as temperature and viscosity of the liquid/s used, need 

to be known as it is imperative as these will affect the calculated hydrodynamic diameter. 

Temperature needs to be kept constant to ensure that the viscosity of the liquid is maintained 

throughout the measurement process. 

3.2.2.3. The determination of the zeta potential of the nanoparticles 

The zeta potential, also known as the particle surface charge, may arise from the adsorption 

of charged surfactant, the ionization of charged groups of DA and CAP and/or surfactants 

(PVA) employed and the loss of ions from the newly formed nanoparticles. The surface 

charge influences the rheology, interactions with electrolytes present in the body and stability 

of the formulation. 

Stability may be calculated by employing the Derjaguin, Verwey, Landau and Overbeek 

theory (DVLO) theory (Derjaguin 1940; Vervey and Overbeek, 1948):  

Vtotal = VR + VA + VS        Equation 3.2 

Where VS is the potential due to the solvent and VA and VR are the forces of electrostatic born 

repulsion and van derWaals attraction respectively that exist between the particles. A charge 

of ±30mV is an indication of a stable formulation that will not aggregate. 
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Figure 3.1: Schematic representation of a charged particle and its distribution of ions 

An imaginary border exists within the diffuse region, where the sum of the charges of the 

unstable particles gives rise to the zeta potential measured (Lyklema et al., 1999). 

The present chapter focuses on the formulation of DA-loaded polymeric nanoparticles with 

the employment of CAP as the primary polymer. Investigations leading to the development of 

an experimental design for the DA-loaded CAP nanoparticles was the focal point of this 

Chapter. The ultimate goal being the identification of a candidate optimized DA-loaded CAP 

nanoparticle formulation for incorporation into the NESD. 

 
In this study, the emulsification-diffusion (ED) method was selected for formulating the DA-

loaded CAP nanoparticles. Reasons for employing the ED approach are: 

• The ED method allowed for the use of a permutated organic solvent system in which 

both DA and CAP were soluble in both aqueous and organic solvents. 

• Organic solvents employed in the formulation were highly volatile and therefore could 

easily be removed by the process of rota-evaporation; 

• Surfactants could be added in the emulsion to impart stability to the formulation; and 

• Noticeable incompatibility between CAP and PVA at high concentrations. The ED 

method allows for smaller quantities to be added that would maintain a satisfactory 

DA entrapment of >60%. 
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3.2.3. Rotavapor® R210 (BÜCHI Labortechnik AG, Flawil, Switzerland) with heating bath  

The apparatus allows for the distillation of organic solvents under reduced pressure thereby 

concentrating the sample. The reduction of pressure facilitating liquid evaporation at a lower 

temperature. The distillation tube transfers the distilled solvent into a condenser. A sealed 

outlet at the end of the distillation tube prevents sample from entering the condenser that may 

result in contamination. 
 

3.2.4. Identification of ideal processing conditions for the successful formulation of 

DA-loaded CAP nanoparticles  

The conditions under which the Rotavap was operated is listed Table 3.1. 

 

Table 3.1: Processing conditions for rotaveporation in formulating DA-loaded CAP 

nanoparticles 

Processing Condition                                                                Settings 

                     Temperature (°C)                      60 

                   Rotavapor time (min)                      60 

                   Rotation speed (rpm)                                                                      40 

                      Flask size (mL)                                                                           100                                                                                                             

                       Heating media                                                                   deionized water 

 

 

3.2.4.1. Temperature for CAP solubilization  

A magnetic stirrer equipped with a heat adjustable plate (Fried Electric, Haifa, Israel) allowed 

for the control of temperature during formulation. Heat played a significant role in the rate of 

CAP dissolution in an acetone: methanol solvent system. A temperature of 30±0.5°C was 

chosen to provide a balance between the efficient solubilization of CAP as well as inhibition 

of evaporation and degradation of the highly volatile CAP solution. Parafilm was also used to 

cover beakers however the volatility of the sample coupled with the high stirring speeds 

resulted in the degradation of the film and thereby evaporation of solvent. 

 

3.2.4.2. Stirring time and speed for solvent emulsification 

A minimum emulsification/stirring time of 30min was maintained (Quintanar-Guerrero et al., 

1996). This duration was increased to 60min to enable greater agitation and to allow for a 

further reduction in particle size. The maximum stirring speed 700rpm was chosen to 

maintain favourable hydrodynamicity of the solution.  
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3.2.5. Preparation of DA-loaded CAP nanoparticles 

DA-loaded CAP nanoparticles were prepared using an adapted emulsification–diffusion 

technique, previously reported (Piñón-Segundo et al., 1996).  Briefly, 500mg of CAP and 

50mg DA were dissolved in acetone and methanol (3:7 mixture), to which, a 1%w/v PVA 

solution was added. The solution was agitated for 30min using a magnetic stirrer (Fried 

Electric, Haifa, Israel) set at 700rpm. A submicronized oil in water emulsion was 

spontaneously formed due to immediate reduction of the interfacial tension with rapid 

diffusion of organic solvent into the aqueous phase representative of the Marangoni Effect 

(Poletto et al., 2008). Excess solvent was evaporated from the suspension using a Rotavap 

(Rotavapor® R210, Switzerland) at 60°C for 1hr and the resulting solution was centrifuged 

(Optima® LE-80K, Beckman, USA) at 20,000rpm for 20min. The sediment layer containing 

DA-loaded CAP nanoparticles was removed and lyophilized for 24hr at 25mtorr to obtain a 

powder. 

 

3.2.6. Morphological characterization of DA-loaded CAP nanoparticles 

Morphological characterization of the nanoparticles revealed the shape, surface, structure 

and size homogeneity and possible degree of aggregation.  Surface morphology was 

characterized by Scanning Electron Microscopy (SEM), (JEOL, JEM 840, Tokyo Japan).  

Photomicrographs were taken at different magnifications and samples were prepared after 

sputter-coating with carbon or gold (N=10). Nanoparticle size and shape was further explored 

using cryo-Transmission Electron Microscopy (TEM) (JEOL 1200 EX, Tokyo, Japan, 120keV) 

for higher definition and resolution. Samples were prepared by placing a dispersion of 

nanoparticles in ethanol on a copper grid with a perforated carbon film followed by 

evaporation and viewing at room temperature (N=10). 

 

3.2.7. Determination of polymeric structural variations due to DA-loaded CAP 

nanoparticle formation  

The structure of native CAP, PVA and DA-loaded CAP nanoparticles produced were 

assessed using Fourier Transmission Infrared (FTIR) spectroscopy to assess the potential for 

any variations in vibrational frequencies and subsequent CAP and PVA structure as a result 

of DA, CAP and PVA interactions during DA-loaded CAP nanoparticle formation. Changes in 

the CAP backbone may alter the inherent stability and therefore affect the physicochemical 

and physicomechanical properties of the selected polymer type for the intended purpose. 

Samples of DA-free and DA-loaded CAP nanoparticles were blended with potassium bromide 

(KBr) in a 1%w/w ratio and compressed into 1×13mm disks using a Beckmann Hydraulic 
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Press (Beckman Instruments, Inc., Fullerton; USA) set at 8 tons. The sample disks were 

analyzed in triplicate at high resolution with wavenumbers ranging from 4000-400 cm-1 on a 

Nicolet Impact 400D FTIR Spectrophotometer coupled with Omnic FTIR research grade 

software (Nicolet Instrument Corp, Madison, WI, USA).   

 

3.2.8. Construction of calibration curves for spectrophotometric determination of DA 

release from CAP nanoparticles 

A calibration curve for DA was constructed using a known series of concentrations of DA (0-

0.08mg/mL) in phosphate buffered solution (PBS) (pH 6.8; 37°C). A linear curve was plotted 

with the observed absorbance on the y-axis and concentration (mg/mL) on the x-axis. The R2 

(a statistical value represented the degree at which a function fits a set of values (Phaser 

Scientific Software, Florida, USA) was calculated to a value more than 0.95. 

 

3.2.9. Determination of DA entrapment efficiency of CAP nanoparticles 

In order to assess the entrapment efficiency of DA within the CAP nanoparticles, post-

lyophilized powdered samples were accurately weighed and completely dissolved in PBS, 

(pH 6.8; 37°C). The DA content was analyzed by UV spectrophotometry at λ280nm (Hewlett 

Packard 8453 Spectrophotometer, Germany) and computed from a standard linear curve of 

DA in PBS (pH 6.8; 37°C) (R2=0.99). Equation 3.3 was utilized to compute the DA 

Entrapment Efficiency (DEE). 

 

100

t
D

aD
DEE% ×=        Equation 3.3. 

Where DEE% is the DA entrapment efficiency, Da is the actual quantity of DA (mg) measured 

by UV spectroscopy and Dt is the theoretical quantity of DA (mg) added in the formulation. 

 

3.2.10. In vitro DA release studies on CAP nanoparticles 

In vitro release studies were performed on the DA-loaded CAP nanoparticle formulations 

utilizing a shaking incubator (Labex, Stuart SBS40®, Gauteng, South Africa) set at 20rpm. 

The DA-loaded CAP nanoparticles was immersed separately in 100mL phosphate-buffered 

saline (PBS) (pH 6.8, 37°C) contained in 150mL glass jars. At predetermine time intervals 

3mL samples of the release media were removed, filtered through a 0.22µm Cameo Acetate 

membrane filter (Millipore Co., Bedford, MA, USA) and centrifuged at 20,000rpm (Redhead, 

2001). The supernatant was then removed and analyzed by UV spectroscopy at a maximum 
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wavelength of λ280nm for DA content analysis. DA release was quantified using a linear 

standard curve (R2=0.99). An equal volume of DA-free PBS was replaced into the release 

media to maintain sink conditions.  

In addition, the Mean Dissolution Time (MDT) values were calculated at 8hr, for each of the 

samples generated in the experimental design, using Equation 3.4. Computing the release 

data in this manner allowed for the effective model-independent comparison of all 

formulations in terms of their respective DA release behavior. All release studies were 

performed in triplicate. Futhermore, the MDT was calculated for formulations generated in the 

experimental design. 

 

100
M

t
M-M

ME% ×

∞

=

∞

                                                                                Equation 3.4  

Where Mt is the fraction of dose released in time ti=(ti + ti-1) ⁄ 2 and M∞ corresponds to the 

loading dose. 

 

3.2.11. Determination of particle size and zeta potential of DA-loaded CAP 

nanoparticles 

The zeta potential value provides an indication of the shelf life stability of the nanoparticles.  

A high absolute value of zeta potential (-/+30mV) indicates a high electric charge on the 

surface of the DA-loaded CAP nanoparticles, which may cause strong repellent forces among 

particles to prevent aggregation in buffered solution.  The nanoparticle zeta potential 

measurements were obtained using a Zetasizer Nano ZS (Malvern Instruments Ltd, Malvern, 

Worcestershire, UK).  Each sample (1%w/v) was appropriately diluted with deionised water, 

filtered (0.22µm filter Millipore Co., Massachusetts, USA) to maintain the number of counts 

per second in the region of 600 (Layre et al., 2006) and placed into disposal cuvettes (size) or 

capillary cells (zeta potential) (Malvern Instruments Ltd, Malvern, Worcestershire, UK. The 

viscosity and refractive index of the continuous phase were set to those specific to deionized 

water. Measurements were taken in triplicate with multiple iterations for each run in order to 

elute size intensity and zeta potential distribution profiles. Futhermore, the particle size and 

zeta potential was calculated for formulations generated in the experimental design. 
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3.2.11. Formulation and Statistical Optimization of DA-loaded CAP Nanoparticles  

An experimental strategy, namely the Box-Behnken design, was developed and employed for 

the statistical optimization of the DA-loaded CAP Nanoparticles. 

 

3.2.11.1. Determination of limitations for variables employed in the Box-Behnken 

design 

The formulation variables listed in Table 3.2 were subjected to their higher and lower limits 

and thereafter DEE was calculated for each formulation. The most influential variables were 

selected for the employment in the Box-Behnken design. 

 

Table 3.2: Illustrates the variations in formulations that were used to identify the limits for a 
Box -Behnken design to optimize DA-loaded CAP nanoparticles and their DA entrapment 
efficiency percentage 
Formulation number Variables DEE% 

1 Increased quantity of CAP (0.5-1g) 64.30 

2 Increased quantity of DA (0.05-0.1g) 68.97 

3 Increased emulsification time (0.5-3hr) 18.39 

4 Increased rotavap time (0.5-1hr) 42.19 

5 Increased [PVA]  (0.5-2%w/v
) 18.11 

6 Reduced [PVA] (0.5%w/v) 63.20 

7 Increased stirring speed (300-700rpm) 65.64 

 

• Concentration of CAP – [CAP] was chosen on the basis of [DA] within the formulation. 

At least 0.5g of CAP was needed to successfully entrap DA. However a limit of 1g was 

decided on to reduce the formation of DA-free CAP nanoparticles 

• Stirring speed - such a parameter is imperative to the size of nanoparticles formed. 

Stirring speed was set at 300rpm as this allows for minimal agitation while 700rpm was 

chosen as the upper limit. This was the highest speed at which the vessel could be 

controlled. 

• Emulsification time - a duration of 30min was required to allow for minimal interaction 

between the aqueous and organic phase while 3hr was chosen as the maximum so as to 

reduce solvent loss. 

• PVA concentration - a concentration less than 0.5%w/v and more than 2%w/v caused 

precipitation of the PVA and thereby did not produce DA-loaded CAP nanoparticles. 
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A 4-factor (stirring speed, emulsifying time, [CAP] and [PVA]) Box-Behnken design on the 

measured responses (zetasize analysis and in vitro DA release) was established for 

formulation optimization.  

The variables listed in Table 3.3 were selected for the employment in the Box-Behnken 

design. Furthermore, the measured responses and for the design and the objectives thereof 

was established. 

Table 3.3: The variables for DA-loaded CAP nanoparticles used in the 4-factor Box-Behnken 

design 

  Values  

Independent Variables Low  High 

CAP (g) 0.5  1 

PVA (%w/v) 0.5  2 

Stirring speed (rpm) 300  700 

Emulsifying time (min) 30  180 

Dependent Variables Low High Objective 

In vitro DA release (MDT) 38 42 Maximize 

Zeta Potential (mV) -20 -39 Minimize 

Particle Size (nm) 150 350 Minimize 

 

 

3.2.11.2. Optimization of DA-loaded CAP nanoparticles 

Polynomial equations relating the dependent and independent variables were generated, and 

the formulation process was optimized under constrained conditions to obtain formulations 

displaying the desirable Particle Size (minimal), Zeta Potential (minimal) and MDT 

(maximum). 
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3.3. Results and Discussion  

3.3.1. Surface morphology of DA-loaded CAP nanoparticles 

Figures 3.2 and 3.3 are microscopic images that display the morphology and sizes of DA-

loaded CAP nanoparticles formulated in an adopted emulsification-diffusion approach 

 

Figure 3.2: SEM images of DA-free CAP nanoparticles 

 

Figure 3.3: TEM images of (a) DA-free CAP nanoparticles and (b) DA-loaded CAP 
nanoparticles formed  
 
The SEM images (Figure 3.2) show CAP nanoparticles in both DA-free and DA-loaded 

states.  The flocculated particles were uniform in size, spherically shaped and were well-

individualised.  TEM images of non-DA loaded CAP particles (Figure 3.3a) revealed dense 

structures with variations in size; however the rounded-shape was maintained. DA-loaded 

CAP nanoparticles (Figure 3.3b) proved to be slightly transparent with a transient aggregation 

between them (further explained in 3.2.2.6). Overall both DA-free and DA-loaded CAP 

nanoparticles showed homogeneous solid matrix structures void of any crystalline surface 

morphologies. 

a) 

a) b) 

 

0.5µm 

40nm 40nm 
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3.3.2. Structural variations present in the formation of DA-loaded CAP nanoparticles  
Chemical structural variations are depicted in Figure 3.4 in the formation of DA-loaded CAP 

nanoparticles. The variations confirmed the interaction of DA, CAP and PVA in the formation 

of DA-loaded CAP nanoparticles. Figure 3.4 is the possible chemical reaction that may have 

occurred between DA, CAP and PVA and therefore provides a further explanation for the 

structural variations that arose in the formation of the DA-loaded CAP nanoparticles. 

 

 

 

 

Figure 3.4: FTIR spectra obtained for the formation of DA-loaded CAP nanoparticles 
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Figure 3.5: Proposed chemical interaction between DA and CAP 
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FTIR spectra for DA-free CAP nanoparticles (Figure 3.4) revealed a broad stretch band 

(1070-1242cm-1 and 3200-3600cm-1) representing OH- groups and a stretch band (2926cm-1) 

indicating alkane moieties while a band at 1731cm-1 revealed the presence of -C=O within the 

CAP nanoparticle structure. The interpretation demonstrates the definitive presence of 

impervious CAP in DA-free CAP nanoparticles. The spectra for DA-loaded CAP nanoparticles 

also confirmed the presence of CAP (bands at 1070, 1242 and 2926cm-1) while the possible 

interaction of CAP OH- functional groups with the -NH2 group of DA (Figure 3.5) may have 

resulted in the formation of nitro compounds (1390cm1). The interaction between the H+ of 

the NH2 group on DA and the O- atom of the OH-group on CAP may have culminated in the 

proposed physical interactions of the two compounds retarding DA release. 

 

3.3.3. Calibration curve for DA in PBS (pH 6.8; 37ºC) for the determination of the 

concentration of DA release from CAP nanoparticles 

Figure 3.6 displays a calibration curve obtained for DA in PBS (pH 6.8; 37ºC) employing a UV 

spectrophotometry at λ280 (Hewlett Packard 8453 Spectrophotometer, Germany). 
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Figure 3.6: DA calibration curve at 280nm in PBS (pH 6.8; 37ºC) 

 

3.3.4. DA entrapment efficiency of CAP nanoparticles 

A DA entrapment value of 63±0.354% was calculated for the DA-loaded CAP nanoparticles. 

This is considerably high for a nanoparticle formulation which exhibits a large surface area 

and thereby DA can be easily adsorbed on to the surface instead of being encapsulated 

within the particle.  The DEE value can be attributed to DA having a greater affinity for the 

aqueous phase of the emulsion therefore significantly increasing the entrapment of DA.   

 

y   = 13.28x 
R2 = 0.9964 
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3.3.5. In vitro DA release of CAP nanoparticles 

The DA-loaded CAP nanoparticles showed minimal release (2%) at t= 0.5hr (Figure 3.7). The 

release of DA could be ascribed to release of DA that was adsorbed onto the surface of the 

particles while the steady release at t = 2.5hr could be the result of DA entrapped within the 

polymeric matrix.  Total DA release at 24hr was 16% proving that there was a high degree of 

prolonged DA delivery. Figure 3.7 is a diagrammatic account of the in vitro release of DA 

from the CAP nanoparticles over a 25hr period.  
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Figure 3.7: DA release profiles for CAP nanoparticles in PBS (pH 6.8; 37ºC), (SD≤0.005) 

 

3.3.6. DA-loaded CAP nanoparticle size and stability 

A nanoparticle z-average size of 241nm and 165nm was recorded for DA-free and DA-loaded 

CAP nanoparticles, respectively (Figures 3.8a and c). The result was atypical as it was 

expected that the DA-free CAP nanoparticles would have a smaller size in comparison to the 

DA-loaded particles due to the absence of DA. However, the zeta potential of DA-loaded 

CAP nanoparticles displayed increased stability in comparison to the DA-free particles. DA-

free particles therefore aggregated more easily, contributing to the relative increase in size. A 

polydispersity index (PdI) value of 0.030 was calculated for the DA-loaded CAP nanoparticles 

indicating minimal variation in particle size (165-174nm) and highlighting the uniformity of 

particle size in the formulation. Zeta potential values of -23.1mV and -35.2mV were recorded 

for DA-free and DA-loaded CAP nanoparticles respectively (Figures 3.8b and d). While this 
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result was indicative of the desirable lack of particle agglomeration in both DA-free and DA-

loaded particles, it also revealed that the DA-loaded CAP nanoparticles displayed superior 

stability in comparison to DA-free particles.  

 

3.3.6.1. Size and zeta potential distribution profiles for CAP nanoparticles: DA-free and 

DA-loaded 

The distribution profiles for size and zeta potential of DA (Figure 3.8), DA-free (Figure 3.9a 

and b) and DA-loaded (Figure 3.9c and d) CAP nanoparticles were obtained using the 

Zetasizer Nano ZS (Malvern Instruments Ltd, Malvern, Worcestershire, UK). A single peak 

defines a sample with limited distribution in size or zeta potential. 
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Figure 3.8: Size distribution profile for DA measuring 156.9nm 
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Figure 3.9: Zetasize profiles of a) and b) size intensity and zeta potential distribution profiles 
of DA-free CAP nanoparticles, c) and d) size intensity and zeta potential distribution profiles 
of DA-loaded CAP nanoparticles respectively 
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3.3.7. Experimental design for the optimization DA-loaded CAP nanoparticles 

The Box-Behnken study design, requiring a total of 27 experimental runs (formulation 

combinations), was generated and analyzed using Minitab® V14 (Minitab Inc, PA, USA). The 

variables for each formulation are listed in Table 3.4. 

Table 3.4: Illustration of variations in formulations employed for a Box-Behnken design for the 
optimization of DA-loaded CAP nanoparticles 

Formulation 

number 

CAP 

 (g) 

PVA 

 (%w/v) 

Emulsifying time 

(min) 

Stirring speed 

(rpm) 

1 1 1.25 30 500 

2 1 1.25 180 500 

3 0.75 0.5 180 500 

4 0.75 1.25 105 500 

5 0.75 1.25 180 30 

6 1 1.25 105 30 

7 0.75 1.25 105 500 

8 0.75 0.5 105 700 

9 10.5 0.5 105 500 

10 0.75 1.25 105 500 

11 0.5 1.25 105 700 

12 0.75 1.25 30 700 

13 0.75 1.25 180 700 

14 0.5 2 105 500 

15 0.5 1.25 105 300 

16 0.75 2 105 700 

17 1 2 105 500 

18 0.75 2 105 300 

19 0.5 1.25 30 500 

20 0.75 2 30 500 

21 1 0.5 105 500 

22 0.75 0.5 30 500 

23 1 1.25 105 700 

24 0.75 0.5 105 300 

25 0.5 1.25 180 500 

26 0.75 1.25 30 300 

27 0.75 2 30 500 
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3.3.7.1. Measured responses for the experimental optimization of DA-loaded CAP 

nanoparticles 

The measured responses (Zeta Potential, Particle Size and MDT) for each of the 27 

formulation employed in the Box-Behnken design are listed in Table 3.5. 

 

Table 3.5: Measured responses for the experimental optimization of DA-loaded CAP 

nanoparticles 

Formulation number Zeta Potential (mV) Size (nm) (PdI) MDT (DEE %) 

1 -22.10 164.47 (0.05) 41.15 (32.71) 

2 -14.77 221.83 (0.16) 41.68 (46.43) 

3 -1.258 224.87 (0.27) 41.52 (35.33) 

4 -28.13 158.93 (0.03) 40.44 (30.48) 

5 -32.03 237.83 (0.31) 41.61 (39.56) 

6 -25.90 232.93 (0.06) 41.38 (41.34) 

7 -22.73 209.33 (0.01) 40.82 (21.13) 

8 -23.80 212.70 (0.08) 41.92 (50.36) 

9 -10.97 265.27 (0.04) 40.82 (30.04) 

10 -35.97 365.93 (0.09) 41.00 (37.68) 

11 -12.07 300.13 (0.015) 40.62 (31.34) 

12 -26.60 199.00 (0.03) 38.87 (16.97) 

13 -30.77 367.40 (0.41) 41.81 (62.10) 

14 -17.43 187.60 (0.02) 41.84 (56.57) 

15 -26.13 200.43 (0.03) 42.18 (20.11) 

16 -28.70 360.10 (0.09) 41.65 (45.33) 

17 -27.80 817.20 (0.28) 41.45 (49.52) 

18 -29.73 330.23 (0.24) 41.45 (39.50) 

19 -32.13 297.63 (0.22) 41.37 (37.23) 

20 -23.73 265.03 (0.03) 41.48 (41.38) 

21 -18.00 172.60 (0.04) 41.64 (48.55) 

22 -28.53 221.83 (0.11) 41.79 (44.88) 

23 -33.37 240.27 (0.20) 41.49 (36.71) 

24 -17.37 416.53 (0.43) 41.36 (34.96) 

25 -38.30 218.73 (0.19) 41.18 (28.59) 

26 -30.00 258.03 (0.12) 41.87 (56.48) 

27 -31.37 200.63 (0.05) 41.38 (48.13) 
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3.3.7.2. Comparison of the experimental and fitted response values calculated for the 

experimental optimization of DA-loaded CAP nanoparticles 

The plots for experimental versus fitted responses for MDT (Figure 3.10a), Particle Size 

(Figure3.10b) and Zeta Potential (Figure 3.10c) showed R2 values of 81.24, 75.98 and 74.39 

respectively. These values show a close agreement between the experimental and predicted 

values for the responses, proving the Box-Behnken design was robust for the determination 

of MDT, Particle Size and Zeta Potential. Overall, the plots showed the applicability of the 

regression models and robustness of the design employed for the optimization of DA-loaded 

CAP nanoparticles. 

 

Formulation no

0 2 4 6 8 10 12 14 16 18 20 22 24 26

M
D

T

38.5

39.0

39.5

40.0

40.5

41.0

41.5

42.0

42.5

Actual
Fitted

 

Formulation no

0 2 4 6 8 10 12 14 16 18 20 22 24 26

S
iz

e 
(n

m
)

0

200

400

600

800

Actual
Fitted

 

a) 

b) 

R2 = 81.24 

R2 = 75.98 



 52 

Formulation no

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Z
et

a 
P

ot
en

tia
l (

m
V

)

-40

-30

-20

-10

0

Actual
Fitted

 

Figure 3.10: The Regression plots for (a) MDT, (b) Particle Size and (c) Zeta Potential for the 
calculation of R2 values that determine the correlation between the fitted and experimentally 
determined values for the formulation responses 
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3.3.7.3. Response analysis of MDT for DA-loaded CAP nanoparticles 

The differing DA release profiles for the respective nanoparticulate formulations are 

represented in Figure 3.12, signifying their variable capabilities to DA release from their 

matrix structures. A physical incompatibility described by discontinuous aggregation and 

subsequent clustering between the predominant polymers CAP and PVA was noted. The 

incompatibility is confirmed in Figure 3.11a where an increase in [CAP] (0.75-1g) and 

decrease [PVA] (0.5%w/v) led to a desirable MDT value (>41.5) and vice versa. An increase in 

[PVA] resulted in an increased MDT (Figure 3.11b) therefore stating that the increase in 

[PVA] (1.5-2%w/v) controlled and limited DA release. Lower stirring speeds (300rpm) also 

displayed higher MDT values (41.75) presumably due to the efficient entrapment of DA at 

lower agitation during processing (Figure 3.11b).   

 

 

Figure 3.11: Response surface plots correlating MDT and (a) [CAP] and [PVA] and (b) [CAP] 
and stirring speed 
 
 
 
 
 
 

a) b) 
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Figure 3.12: Release profiles depicting DA release from the CAP formulations 
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3.3.7.4. Response analysis for size of DA-loaded CAP nanoparticles 

Figure 3.13a showed that an increase in stirring speed (300-700rpm) had an unfavourable 

effect on the Particle Size (150-300nm). Higher stirring speeds may have resulted in greater 

inter-particle collisions thereby leading to coagulation of particles (Sugih et al., 2007). A 

prolonged emulsification phase of between 150-180min coupled with a desirable lower 

stirring speed resulted in the formation of dispersed non-aggregated particles with a reduced 

Particle Size of maximum 200nm. An interesting observation (Figure 3.13b) was a decrease 

in [CAP] (0.5g) resulting in an increase Particle Size (200-225nm). DEE results obtained from 

the experimental design template (Table 3.4) demonstrated that a significantly lower DEE 

was achieved with an increase in [CAP] which may have resulted in decreased Particle 

Sizes. (DA=156.9nm as per Figure 3.8). 

 

 Figure 3.13: Response surface plots correlating Particle Size and (a) emulsifying time and 
stirring speed and (b) [CAP] and emulsifying time 
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3.3.7.5. Response analysis for Zeta Potential of DA-loaded CAP nanoparticles 

The increase in [PVA] (1.5-2%w/v) gave rise to increased, desirable Zeta Potential (-33 to -

35mV) (Figure 3.14a). This was expected as the PVA was added to the formulation due to its 

ability to act as an absorptive surfactant, decreasing interfacial tension and imparting stability 

to the formulation. Figure 3.14b showed that an increased in stirring speed (500-700rpm) and 

decrease in emulsifying time (30min) resulted in high Zeta Potentials (-30 to -35mV). The 

higher agitation velocity prevented the particles from aggregating and eliminated the 

possibility of sedimentation or caking of the nanoparticles. 

 

 

Figure 3.14: Response surface plots correlating Zeta Potential and (a) PVA and stirring 
speed (b) emulsifying time and stirring speed  
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3.3.7.6. The main and interaction effects on the responses:  

Mean Dissolution Time 

The main effects on the MDT (Figure 3.15a) noted that [PVA] had a significant effect (p = 

0.052) on MDT, where concentrations that were either < or > 1.25%w/v had a positive effect 

on the MDT. This showed that the increase in [PVA] (1.5-2%w/v) was able to control and limit 

DA release. While interaction plots (Figure 3.15b) for MDT displayed that a high MDT value 

was most significantly influenced by a decrease in stirring speed and time (p = 0.091). 

Therefore overall, a decreased stirring speed may allow for the adequate homogenation of 

the formulation components prior to micronisation of the particles. This would significantly 

increase the DA entrapment efficiency within the polymer thereby controlling release of DA 

from the CAP nanoparticles. 
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Figure 3.15: Typical (a) main effects plot and (b) interactions plot of the response values for 
MDT 
 
Particle Size 

[PVA] was once again a significant variable in influencing the Particle Size (p =0.034), with 

Particle Sizes increasing with an increase in [PVA] being a main effect (Figure 3.16a). 

However, interaction plots (Figure 3.16b) revealed a higher stirring speed and decreased 

[PVA] produced smaller particles (<300nm). The rate at which PVA was agitated was 

sufficient to ensure homogeneity and the impartation of surfactant properties to the 

formulation thereby reducing the risk of particle attraction that could produce unfavorably 

larger Particle Sizes. 
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Figure 3.16: Typical (a) main effects plot and (b) interactions plot of the response values for 
Particle Size 
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Zeta Potential 

The main effects on Zeta Potential proved that [PVA] has a significant effect on the negative 

Zeta Potential (Figure 3.17a) and thereby confirmed its capacity to impart stability to the 

formulation (p= 0.051). In the interaction plots (Figure 3.17b), there was a distinct relationship 

between a decreased [CAP] and increase Zeta Potential and this was noted in consideration 

of the physical incompatibility between CAP and PVA. 
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Figure 3.17: Typical (a) main effects plot and (b) interactions plot of the response values for 
Zeta Potential 
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3.3.7.7. Analysis of the Box-Behnken design employed for optimization of DA-loaded 

CAP nanoparticles 

The assessment of the regression models can be undertaken employing residual plots 

(Figure 3.18). Residual plots are essentially a linear comparison between observed values 

and model predictions for those observations (Stewardson and Whitfield, 2004). 
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Figure 3.18: The residual plots for the responses (a) MDT, (b) Particle Size and (c) Zeta 
Potential 
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Residual analysis for MDT (Figure 3.18a), Particle Size (Figure 3.18b) and Zeta Potential 

(Figure 3.18c) showed the indiscriminate distribution of data. The normal plot of residuals 

formed a linear curve showing normality. The residuals versus fitted plots showed a random 

pattern of residuals on either side of 0 with no identifiable patterns in the plot thereby 

indicative of a random scatter and no trends. The histogram supported that the residuals 

have a normal distribution with zero mean and constant variance. The residuals versus the 

order of the data was used to identify and non-random error, the plot displayed a negative 

correlation is indicated by rapid changes in the signs (-/+) of the consecutive residuals. A 

significant effect is indicated by a p-value of ≤0.05 for any factor. The factors and the 

respective p-values are displayed in Table 3.6. 

  

Table 3.6: Full ANOVA analysis for the measured responses (MDT, Particle Size and Zeta 
Potential for DA-loaded CAP nanoparticles) 

Term p-value 

     MDT                   Particle Size          Zeta Potential 

[CAP] 

[PVA] 

[ET] 

[SS] 

[CAP]2 

[PVA]2 

[ET]2 

[SS]2 

[CAP]*[PVA]                         

[CAP]*[ET]                

[CAP]*[SS] 

[PVA]*[ET] 

[PVA]*[SS] 

[ET]*[SS] 

 

0.687 

0.918 

0.187 

0.091 

0.195 

0.0520 

0.443 

0.309 

0.292 

0.526 

0.156 

0.882 

0.748 

0.013 

0.412 

0.034 

0.886 

0.352 

0.544 

0.226 

0.823 

0.437 

0.837 

0.916 

0.456 

0.851 

0.031 

0.783 

0.877 

0.051 

0.605 

0.617 

0.293 

0.115 

0.941 

0.698 

0.889 

0.610 

0.222 

0.132 

0.765 

0.777 

 

Where SS = stirring speed, ET = emulsifying time, MDT = mean dissolution time, PVA = 

poly(vinylalchol) and CAP = cellulose acetate phthalate 

 

 



 65 

The complete regression equations generated for MDT, Particle Size and Zeta Potential are 

indicated below: 

 

MDT=-1.049E-13+8.196E-14[CAP]-3.972E-15[PVA]+0.500[ET]+2.031E-16[SS]-1.204E-

14[CAP]2-2.69E-15[PVA]2-2.561E-19[ET]2-1.276E-19[SS]2+1.585E14[CAP*PVA]-8.771E-

16[CAP*ET]+3.723E-18[CAP*SS]+3.370E-17[PVA*ET]-1.596E-17[PVA*SS]- 

3.817E-19[ET*SS]                             Equation 3.5 

 

Particle Size=-131.441-406.807[CAP]+395.560[PVA]+0.985[ET]+0.861[SS] 

547.133[CAP]2+124.081[PVA]2-0.002[ET]2+0.0012[SS]2-70.933[CAP*PVA]+0.361[CAP*ET]-

0.974[CAP*SS]-0.216[PVA*ET]-1.027[PVA*SS] - 0.001[SS*ET]             Equation 3.6 

 

Zeta Potential=-25.415-53.170[CAP] 

25.842[PVA]+0.120[ET]+0.119[SS]+69.820[CAP]2+11.973[PVA]2+5.289E-05[ET]2-3.935E-

05[SS]2-3.467[CAP*PVA]+0.128[CAP*ET]-0.118[CAP*SS]-0.131[PVA*ET]+0.009[PVA*SS]-

8.833E-05 [SS*ET]                                                                         Equation 3.7 

 

3.3.7.8. Response optimization of DA-loaded CAP nanoparticles 

This was carried out employing statistical software (Minitab ®, V14, Minitab Inc®, PA, USA) to 

determine the optimum level for each variable. The optimization process resulted in the 

attainment of various formulations with a low desirability for all three outcomes therefore a 

selection of the most influential desired outcome was necessary to the detriment of the other 

two outcomes. MDT of DA-loaded nanoparticles could be controlled further by the 

incorporation of these nanoparticles into the scaffold while Zeta Potential could be altered by 

uniform distribution throughout the scaffold during formulation. Therefore, the DA-loaded CAP 

nanoparticle formulation displaying the smallest Particle Size with high desirability (>99%) 

was selected as the optimal formulation.  

 

 

 

 

The formulation was optimized for the measured responses of MDT, Particle Size and Zeta 

Potential (Figure 3.19). Optimization was carried out so as to obtain the levels of [CAP], 
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[PVA], emulsifying time and stirring speed that would maximize the measured responses 

(Palamakula et al., 2004). 

 

Figure 3.19: Optimization plots displaying factor levels and desirability values for the chosen 
optimized DA-loaded CAP formulation 
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    Measured response          Predicted values   Experimental values Desirability (%) 

 

Zeta Potential (mV)            -26.072                                -34.000                                76.682 

Size (nm)                              150.175                                197.200                                76.154 

MDT                                       43.505                                  40.956                                94.414 
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3.3.7.9. Desirability for the measured responses of the optimized DA-loaded CAP 

formulation 

The value for MDT desirability (94.41%) was the most promising outcome and therefore DA 

release from the CAP nanoparticle system would be controlled and sustained for the period 

of time desired. With reference to the particle size (possessing a statistical desirability of 

76.15%); while the value of 197nm (Figure 3.20a) was not ideal it was within size range of 

previously marketed medicinal nano-therapeutic systems (Table 2.1). Furthermore, the 

particles do not need to cross through the BBB and so the size may exceed 100nm. The 

desirability value of 76.68% obtained for the Zeta Potential optimization (Figure 3.20b) 

signified that it differed substantially from the fitted value with a superior value of -34.00mV 

for the optimized system in terms of stability. Overall, the optimized system displayed the 

desirable DA release, size and stability required for been utilized as an intracranial device for 

the prolonged and controlled delivery of DA to the brain tissue. 
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Figure 3.20: (a) Size and (b) Zeta distribution profiles for optimized DA-loaded CAP 
nanoparticles measuring 197.2nm and -34mV respectively 
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3.4. Concluding Remarks 

This chapter served in the development of DA-loaded CAP nanoparticles using an adopted 

emulsification-diffusion approach. Parameters such as Particle Size, Zeta Potential and MDT 

were chosen as the significant responses for the formulation due to the ability of these to 

control DA release. DA entrapment proved significantly high for CAP nanoparticles which 

compensated for the rapid in vitro release of the DA. Micrographs (TEM and SEM) further 

revealed the uniform spherical shape and morphology of the DA-loaded CAP nanoparticles. 

FTIR analysis confirmed the presence of both DA, CAP AND PVA within the DA-loaded CAP 

nanoparticles as well the ionic interaction. Data from size and zeta potential intensity profiles 

proved formulations were stable and within the desirable nano-range of 165.4-174.1nm. A 

Box-Behnken statistical design was employed for the optimization of the formulation. [CAP] 

and [PVA] as well as the stirring speed and emulsifying time where identified as the 

significant formulation variables. The design generated diverse formulations giving rise to 

various differences in responses (MDT, Particle size and Zeta Potential). Evaluation of the 

statistical significance of the design confirmed the applicability to the present study. 

Optimization of the formulation resulted in DA-loaded CAP nanoparticles with a Zeta Potential 

of -34mV, Particle Size of 198nm and MDT value of 40.96. The DA-loaded CAP 

nanoparticles were foremostly optimized for a maximum MDT value that resulted in controlled 

DA release. The DA-loaded CAP nanoparticles were incorporated into a Ba-alginate scaffold 

and further evaluated for in vitro DA release and will be detailed in Chapter 4 of this 

dissertation. 
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CCHHAAPPTTEERR  44  

FFOORRMMUULLAATTIIOONN  OOFF  CCRROOSSSSLLIINNKKEEDD  AALLGGIINNAATTEE  SSCCAAFFFFOOLLDDSS  FFOORR  TTHHEE  DDEESSIIGGNN  OOFF  AA  

NNAANNOO--EENNAABBLLEEDD  SSCCAAFFFFOOLLDD  DDEEVVIICCEE  

 

 

4.1. Introduction 

Prototyping technology has created a significant impact in biomedical materials design. 

Molecular modeling facilitates the design of accurately customized structural models of 

polymeric devices for various applications (Levy et al., 1997; Ono et al., 1999; Chua et al., 

2000; Curodeau et al., 2000; Porter et al., 2001 and Cheah et al., 2002), therefore prompting 

the adoption of a similar approach to fabricate the NESD with controlled micro-architecture 

and higher consistency than conventional unsighted techniques. Free-form prototyping 

technology was used to design the NESD via a three-dimensional (3D) crosslinked alginate 

scaffold model incorporating DA-loaded CAP nanoparticles. Prototyping provides an 

alternative that aims to improve the NESD design by employing archetype data manipulation 

to pre-assemble the complex internal scaffold architectures and nanostructures of the NESD 

in conjunction with a Box-Behnken statistical design for optimization and an integrated 

corporeal manufacturing approach that is consistent, reproducible and formulation-specific.  

 

While the formulation and development of DA-loaded CAP nanoparticles, for incorporation 

into a crosslinked-alginate scaffold, was previously discussed in Chapter 3, the present 

chapter addresses the development of crosslinked-alginate scaffolds which formed part of the 

NESD. 

 

Alginate was selected as the ideal polymer for the formulation of the scaffolds. The polymer is 

a hydrophilic polymer, has been used extensively in both the food and pharmaceutical 

industry for it's desirable gelling, degradation and biocompatible properties (Chan et al., 

2002). Alginate is a co-polymer extracted from various types of brown algae and is made up 

of D-mannuronic acid (M) and L-guluronic acid (G). The monomers may be varied in 

concentration so as to impart various characteristics to the system in which it is employed 

(Martinsen et al., 1989). Furthermore, alginates may be crosslinked with a selection salts 

from Hofmeister series such as calcium, barium and zinc, resulting in the ability to form a gel 

(Ciofani et al., 2007) with decreased degradation kinetics. In terms of bioadhesivity, the 

alginates are anionic polymers with carboxyl end groups and therefore have excellent 
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mucoadhesivity which has desirable properties for drug absorption and bioavailability 

(Rastogi et al., 2007). 

The biocompatibility of these polymers has been extensively discussed in literature and the 

oral administration thereof proves non-toxic however there is still a significant lack in in vivo 

data for intravenous as well as implants (Becker et al., 2000; Orive et al., 2005; Ciofani et al., 

2007). Alginate-based drug delivery systems have been researched for their possible 

employment as drug delivery systems for the treatment of various ailments. 

Table 4.1: Illustrates alginate-based drug delivery systems that have are being investigated 

for the treatment of various diseases 

Drug delivery system Treatment Reference 

Intratumoural injection of 
hollow chitosan-alginate 
microspheres 

Cancer Liu et al., 1997 
 

Ophthalmic drops 
containing gatifloxacin-
loaded alginate/hydroxyl 
propylmethyl cellulose 

Bacterial infections Liu et al., 2006 

Stomach-specific 
metronidazole-loaded 
alginate beads 

Helicobacter pylori Ishak et al., 2007 

Colon-specific delivery of 5-
aminosalicylic acid from 
chitosan calcium alginate 
microparticles 

Ulcerative colitis Mladenovska et al., 2007 

The appropriate selection of the grade as well as formulation methodology employed may 

result in variations in pore size, degradation and drug release rates (Ciofani et al., 2007).  

Biodegradable polymeric scaffolds have been employed extensively in tissue regeneration 

(Whang et al., 2000) for their ability to interact with cellular tissue and in drug delivery for their 

ability to control drug release rate (Edlund and Albertsson, 2001). Issues such as drug 

loading capacity and rate of drug release, degradation and toxicity are imperative in the 

formulation of these drug delivery devices (Sokolsky-Papkov et al., 2007). Conventional 

fabrication methods may be adapted so as to impart desired properties onto the scaffold. The 

following conventional methods have been employed for the formulation of polymeric 

scaffolds: 
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Gas-foaming under increased pressure 

Polymers are made into a solid form and placed into an incubator of gas at high pressure for 

up to 3 days at which point the pressure is rapidly decreased to atmospheric pressure. This 

method holds favour as there is avoidance of toxic solvents. However the use of heat to 

compress the polymer may damage the excipients and actives (Mikos and Temenoff, 2000).   

The average pore size present in such scaffolds is 100µm. 

 

Solvent/ particulate leaching of crystals from polymeric solutions 

A polymeric solution is immersed in a petri dish consisting of a water soluble salt (pyrogen). 

The solvent is then evaporated and the resultant material is placed in water for upto 2 days to 

leach out the salt. Modifications of the size of the salt crystals result in changes in pore size 

while salt concentration results in alterations of porosity. The employment of organic solvents 

limits the use of therapeutic active agents and may result in toxicity while the duration of the 

procedure can be extensive (Mikos and Temenoff, 2000). 

 

Phase separation/ emulsification followed by lyophilization of the emulsion 

An emulsion in formed by adding an aqueous phase to an organic phase (with dissolved 

polymer). The emulsion is then placed into a mould and quenched with liquid nitrogen 

(Calvin, 2003). The resultant material is then lyophilized to ensure the removal of excess 

solvent and the formation of a scaffold with almost nanoscopic pore sizes (13-35µm) (Mikos 

and Temenoff, 2000). The limitation in this technique is that the toxicity of solvents employed 

is highly questionable. In liquid-liquid phase separation, there is the utilization of a non-

solvent and solvent. The polymer is dissolved in the solvent and then subjected to 

temperature variations and subsequent lyophilized. This method is highly specific and 

thorough preliminary testing needs to be undertaken prior to formulation (Leong et al., 2003) 

 

Bonding of nano-fibers to form meshes 

The technique of fiber bonding involves the formation of polymer fibers by electrospinning. 

The fibers are bonded by means of immersion and subsequent evaporation of a polymer 

solution (separate from the polymeric fibers being formed). The fibrous solution is then 

heated to a temperature above the melting point of both polymers, allowing the polymers to 

fill spaces between the fiber network (Mikos and Temenoff, 2000). Excess polymer solution is 

removed using an appropriate reagent to adsorb the solution. The technique results in the 

formation of a highly porous matrix with an average pore size of 500µm (Calvin, 2003). The 

disadvantage is the possible toxicity of the solvent and the high temperature combination. 
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In the present study, lyophilization was chosen for the fabrication of crosslinked-alginate 

scaffolds. Reasons for employment of this approach include:  

• Suitable method for the formation of scaffolds employing a hydrophilic polymer- 

alginate; 

• Porosity of the scaffold could be controlled, in terms of size and shape, which 

influences  the rate of Matrix Erosion (ME) and subsequent DA release; and 

• Efficiency and reproducibility of the method is desirable. 

4.2. Materials and Methods 

4.2.1. Materials 

Alginate (Protanal® LF10/60; 30% mannuronic acid, 70% guluronic acid residues) was 

purchased from FMC Biopolymer (Drammen, Norway). Calcium gluconate [(HOCH2 

(CHOH)4COO)2Ca], barium chloride (BaCl2), cellulose acetate phthalate (CAP) 

(Mw=2534.12g/moL), poly(vinyl alcohol) (PVA) (Mw=49,000g/moL),, acetone, methanol and 

dopamine hydrochloride (DA) (Mw=189.64g/moL) were purchased from Sigma Aldrich (St. 

Louise, MO, USA). Deionized water was obtained from a Milli-Q water purification system 

(Milli-Q, Millipore, Billerica, MA, USA). All other reagents used were of analytical grade. A 

lyophilizer (Virtis, Gardiner, NY, USA)) was used to remove excess moisture and solidify the 

formulation in order to produce crosslinked alginate scaffolds. 

 

4.2.2. Processing conditions for the development of crosslinked alginate scaffolds 

A lypholization time of 36hr at 1.2mTorr and condenser temperature of -60°C was 

established as the optimum conditions for the removal of excess moisture from the alginate 

scaffold. 

 

4.2.2.1. Temperature for alginate solubilization 

Heat is an essential component in the solubilization of the alginate powder in deionised 

water. The gradual addition as well as increase in temperature allowed for the efficient 

dissolution of the alginate. A minimal temperature of 50°C was chosen to allow for sufficient 

heat to aid the dissolution process and to refrain from destroying the alginate structure (FMC 

BioAlginate, USA).  In addition, parafilm was used to seal the beakers as to prevent solvent 

evaporation from the formulation. 
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4.2.2.2. Duration required for the efficient post-curing of crosslinked alginate scaffold 

Post-curing the alginate scaffold, which entailed the further crosslinking of the 

[(HOCH2(CHOH)4COO)2Ca]-crosslinked alginate scaffolds in salt solutions (2%w/v), resulted 

in slow erosion rate of the scaffold in PBS (pH 6.8, 37°C). While a prolonged post-curing 

period holds positive implications for Matrix Resilience (MR), it can be highly detrimental to 

the DEE of the system and therefore a maximum post-curing time of 3hr was established. 

Furthermore, scaffolds were cured for up to 12hr with no significant effect (SD = 2.65) onMR. 

N=3. 

 

4.2.3. Biometric simulation of the NESD employing computer-aided prototyping  

The implicit design of the NESD required customization of the crosslinked-alginate scaffold 

for embedding the DA-loaded CAP nanoparticles with the ability to support bioadhesion and 

the physicomechanical stability for intracranial implantation of the device. CAP and 

[(HOCH2(CHOH)4COO)2Ca]-crosslinked alginate were selected for producing the DA-loaded 

CAP nanoparticles and scaffold components of the NESD respectively. The crosslinked 

scaffold was subsequently cured in a BaCl2 solution as a secondary crosslinking step. The 

componential NESD properties were modulated through computational prototyping to 

produce a viable scaffold embedded with stable DA-loaded CAP nanoparticles. The 

fundamental design parameters were pivoted on the polymer assemblage, curing methods, 

surface properties, macrostructure, physicomechanical properties, nanoparticle fixation and 

biodegradation of the NESD. In order to incorporate fine control within the complexities of 

three-dimensional (3D) design, the physical properties of the crosslinked alginate scaffold 

such as the pore size, shape, wall thickness, interconnectivity and networks for nanoparticle 

diffusion was regulated to produce a 3D prototype NESD model. The NESD topography was 

predicted for intracranial implantation with pre-defined micro-architecture and 

physicomechanical properties equilibrating frontal lobe brain tissue as the site of implantation 

to provide mechanical support during sterilizability prior to function. A suppositional 3D 

graphical model with potential inter-polymeric interactions during formation was generated on 

ACD/I-Lab, V5.11 Structure Elucidator Application (Add-on) biometric software (Advanced 

Chemistry Development Inc., Toronto, Canada, 2000) based on the step-wise molecular 

mechanisms of scaffold and nanoparticle formation, polymer interconversion and DA-loaded 

CAP nanoparticle fixation as envisioned by the chemical behavior and physical stability. A 

combination of a computationally rapid Neural Network (NN) and a modified Hierarchal 

Organization of Spherical Environments (HOSE) code approach were employed as the 

fundamental algorithms in designing the prototype NESD. The associated energy 
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expressions were chemometrically designed based on the assumption of the scaffold 

behaving initially as a gel-like structure with higher states of combinatory energy for the 

complete NESD. 

 

4.2.4. Preparation of crosslinked alginate scaffold 

A 2%w/v alginate solution in deionized water (Milli-DI® Systems, Bedford, MA, USA) was 

prepared at 50°C and a primary 0.4%w/v [HOCH2(CHOH)4COO]2Ca crosslinking solution was 

added and agitated until a homogenous mixture was obtained. The resulting mixture was 

then placed in Teflon moulds and lyophilized for 24hr at 25mtorr (Virtis, Gardiner, NY, USA). 

Thereafter the lyophilized structures were immersed in a secondary 2%w/v ZnCl2, CaCl2 or 

BaCl2 crosslinking solution for 3hr as a curing step followed by a further lyophilization phase 

of 24hr at 25mtorr. The resultant cured scaffolds were removed from the moulds, washed 

with 3×100mL deionized water to leach out unincorporated salts and air-dried under an 

extractor.  

 

4.2.5. Textural profile analysis to determine the physicomechanical behaviour of the 

crosslinked alginate scaffold 

One of the key approaches to intricate crosslinked polymeric scaffold engineering is the 

assessment of the physicomechanical properties of the scaffold matrix following 3D 

prototyping and prior to sterilization and implantation. Textural profile analysis was therefore 

conducted to characterize the 3D salient core regions of the crosslinked alginate scaffold 

using a Texture Analyzer (TA.XTplus Stable Microsystems, Surrey, UK) in terms of the 

scaffold matrix resilience (MR). Hydrated samples of the crosslinked alginate scaffold were 

analyzed. Serial Force-Time profiles were sufficient to perform the necessary computations of 

MR (N=5). The MR f the crosslinked scaffolds was calculated employing the TA, the settings 

of which are outlined in Table 4.2. Futhermore, the MR was calculated for formulations 

generated in the experimental design. 

 
 
 



 75 

Table 4.2: Parameters employed to measure the MR of hydrated/unhydrated samples 
employing the texture analyzer 

Parameter Settings 

Test Mode 

Pre-Test Speed 

Test Speed 

Post-Speed Speed 

Target Mode 

Strain 

Trigger Type 

Trigger Force 

Compression 

1.0mm/sec 

1.5mm/sec 

1.5mm/sec 

Strain 

50% 

Force 

0.05N 

 
4.2.6. Morphological characterization of crosslinked alginate scaffold 

Morphological characterization of the crosslinked alginate scaffold was instituted. Scaffold 

parameters such as the micro-structure, pore length, pore distribution and inter-pore wall 

thickness was also examined. The surface morphology of the cured and un-cured crosslinked 

alginate scaffolds were also characterized to assess the influence of crosslinking and 

subsequent curing on potential surface morphological transitions (N=10). SEM, (JEOL, SEM 

840, Tokyo Japan) was employed and photomicrographs were captured at various 

magnifications for analyzing the scaffold samples that were prepared after sputter-coating 

with carbon or gold.  

 

4.2.7. In vitro matrix erosion studies of crosslinked alginate scaffold 

Samples of the biodegradable crosslinked alginate scaffolds were immersed in 100mL PBS 

(pH 6.8, 37°C) and agitated at 20rpm in a shaking incubator (Labex, Stuart SBS40®, 

Gauteng, South Africa). At pre-determined time intervals samples were removed, blotted on 

filter paper and dried to a constant mass at 40°C in a laboratory oven. Equation 4.1 was then 

used to compute the extent matrix erosion (ME) after gravimetrical analysis. Futhermore, the 

ME was calculated for formulations generated in the experimental design. 

 

100

0
M

t
M-

0
M

ME% ×=                   Equation 4.1 

Where ME% is the extent of scaffold matrix erosion, Mt is the mass of the scaffold at time t 

and M0 is the initial mass of the scaffold.  
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4.2.8. Formulation and Statistical Optimization of the Ba-Alginate Scaffold  

An experimental strategy, namely the Box-Behnken design, was developed and employed for 

the statistical optimization of the Ba-alginate scaffold. 

 

4.2.8.1. Determination of limitations for variables employed in a Box-Behnken design 

The formulation variables listed in Table 4.3 were subjected to their higher and lower limits 

and thereafter MR was calculated for each formulation. The most influential variables were 

selected for the employment in the Box-Behnken design. 

 

Table 4.3: Illustrates the variations in formulations that were used to identify the limits for a 
Box -Behnken design to optimize Ba-alginate scaffold and their MR 

Formulation number Variables MR % 

1 Increased [alginate] (1-3% w/v) 78.72 

2 Increased lyophilization time (24-48hr) 73.43 

3 Increased post-curing time (0.5-1.5hr) 80.34 

4 Reduced [alginate] (1%w/v) 73.05 

5 Reduced [(HOCH2(CHOH)4COO)2Ca] (0.2%w/v) 80.11 

6 Increased temperature to (50-70°C) 36.47 

7 Increased [BaCl] to (0.2-0.6%w/v) 67.06 

 

•  [Alginate]- concentrations between 1-3%w/v was selected. Concentration of <1%w/v and 

<3% would not provide desirably crosslinking and >4%w/v, the solution crosslinked too 

extensively to place into moulds (also produced a heterogeneous solution). 

• [BaCl2]- concentrations between 0.2-0.6% w/v were selected.  A concentration of greater  

      0.6% w/v gave rise to excessive crosslinking. 

• Heat-the temperature limits were set 50-70ºC. The solution required at least 50ºC to allow 

for the alginate to dissolve in the deionised water. A temperature exceeding 70ºC would 

destroy the polymer's integrity. 

• Post-curing time-a minimum of 30min was required in order to facilitate the crosslinking of 

scaffolds however it was found that scaffolds post-cured for 6hr or longer even 12hr 

showed no greater MR in comparison to those crosslinked for 1.5hr. 

 

This study design, requiring a total of 27 experimental runs (formulation combinations), was 

generated and analyzed using Minitab® V14 (Minitab Inc®, PA, USA). A 4-factor, 3 level (post-

curing time, [Alginate], [(HOCH2(CHOH)4COO)2Ca] and heat) Box-Behnken design on the 
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measured responses (MR and ME %) was established for this optimization. The independent 

factors and the dependent variables used in the design are listed in 4.7. 

 

The variables listed in Table 4.4 were selected for the employment in the Box-Behnken 

design. Furthermore, the measured responses and for the design and the objectives thereof 

was established. 

 

Table 4.4: The variables for Ba-alginate scaffold used in the 4-factor, 3-level Box-Behnken 

design  

  Values  

Independent Variables Low  High 

Alginate (%w/v) 1  3 

[(HOCH2(CHOH)4COO)2Ca] (%w/v) 0.2  0.6 

Temperature (ºC) 50  70 

Post-curing time (min) 30  90 

Dependent Variables Low High Objective 

MR (%) 86 94 Maximize 

ME (%) 3 59 Minimize 

 

4.2.8.2. Optimization of Ba-alginate scaffold 

Polynomial equations relating the dependent and independent variables were generated, and 

the formulation process was optimized under constrained conditions for to obtain formulations 

displaying the desirable percentage ME (minimal) and percentage MR in the hydrated state 

(maximum). 

 

4.2.9. Corporeal assembly of the NESD 

Production of the NESD required the initial componential preparation of the DA-loaded CAP 

nanoparticles and the Ba-alginate scaffold. Once the two components were optimized (Figure 

4.11; scaffolds and Chapter 3, Figure 3.20 of this dissertation) the DA-loaded CAP 

nanoparticles were incorporated via intermittent blending and lyo-fusion (spontaneous 

freezing followed by lyophilization) into the [(HOCH2(CHOH)4COO)2Ca]-crosslinked and 

subsequently Ba-alginate scaffold.  
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4.2.9.1. Assimilation of DA–loaded CAP nanoparticles and Ba-alginate scaffold into the 

NESD 

The NESD was assembled by a lyo-fusion process (Figure 4.1). Briefly, the optimally defined 

DA-loaded CAP nanoparticles (200mg) were placed into moulds containing a 

[HOCH2(CHOH)4COO]2Ca and alginate solution (2mL) obtained in accordance with set 

optimization constraints. The mixture was agitated and spontaneously frozen at -70ºC for 

24hs. Thereafter the structures were lyophilized for 48hr at 25mtorr and immersed in a 2%w/v 

BaCl2 crosslinking solution for 3hr as a curing step followed by a further lyophilization phase 

of 24hr at 25mtorr to induce fusion of the DA-loaded CAP nanoparticles and the Ba-alginate 

scaffold. 
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Figure 4.1: Schematic representation of the assimilation of DA–loaded CAP nanoparticles and Ba-alginate scaffold into the NESD 
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4.2.11. Determination of in vitro DA release from the NESD 

In vitro release studies were performed on the the final NESD utilizing a shaking incubator 

(Labex, Stuart SBS40®, Gauteng, South Africa) set at 20rpm. The NESD was immersed 

separately in 100mL phosphate-buffered saline (PBS) (pH 6.8, 37°C) contained in 150mL 

glass jars. At predetermine time intervals 3mL samples of each release media were removed, 

filtered through a 0.22µm Cameo Acetate membrane filter (Millipore Co., Bedford, MA, USA) 

and centrifuged at 20,000rpm (Reading, 2001). The supernatant was then removed and 

analyzed by UV spectroscopy at a maximum wavelength of λ280nm for DA content analysis. DA 

release was quantified using a linear standard curve (R2=0.99). An equal volume of DA-free 

PBS was replaced into the release media to maintain sink conditions. 

 

4.2.12. Determination of the thermal transition behaviour of the NESD and it’s 

constituents 

The inherent and sequential transient thermal behavior of polymers may influence the 

physicochemical and physicomechanical properties as well as the final performance of the 

system (Liu et al., 2003). Temperature Modulated Differential Scanning Calorimetry (TMDSC) 

was therefore performed to provide a distinct interpretation of the polymeric thermal 

transitions with improved sensitivity and the ability to separate reversible glass transition 

temperatures (Tg) that have minimal changes in heat capacity (∆H) from overlapping non-

reversible relaxation endotherms (Reading, 1993) (Ferrero et al., 1999) (Sandor et al., 2002). 

Thermal analysis was therefore undertaken on the DA-loaded CAP nanoparticles, the Ba-

alginate scaffold and the assimilated NESD in order to assess thermal behavior using 

TMDSC (Mettler Toledo DSC1, STARe System, Switzerland). Thermal transitions were 

assessed in terms of the Tg, measured as the reversible heat flow due to variation in the 

magnitude of the Cp-complex values (∆Cp); melting temperature (Tm) and crystallization 

temperature (Tc) peaks that were consequences of irreversible heat flow corresponding to the 

total heat flow. The temperature calibration was accomplished with a melting transition of 

6.7mg indium. The thermal transitions of native CAP were compared to the CAP 

nanoparticles. Samples of 5mg were weighed on perforated 40µL aluminum pans and 

ramped within a temperature gradient of 150-500°C under a constant purge of N2 

atmosphere in order to diminish oxidation. The instrument parameter settings employed 

comprised a sine segment starting at 150°C with a heating rate of 1°C/min at an amplitude of 

0.8°C and a loop segment incremented at 0.8°C and ending at 500°C. The instrument 

parameter settings employed are shown in Table 4.5. 
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Table 4.5: TMDSC settings employed for thermal analysis of the NESD constituents 

Segment Type Parameter Setting 
 
SINE                                                                   
Start 

 
 

150°C 
Heating rate 1°C /min 
Amplitude 0.8°C 
Period  
 
LOOP   
To segment  
Increment  
End  
Count 

0.8°C 
 
 
1 

0.8°C 
500 
436 

 
 

4.3. Results and Discussion  

4.3.1. Computer-aided prototyping for NESD design  

An output format of serial bitmap images generated via the prototyping technology employed 

enabled the step-wise 3D volumetric construction of the NESD model. 3D construction was 

initiated by ascribing an assumed height to each image in order to represent a volume unit or 

a stacked voxel depicting a prototype model of the NESD described by the grayscale 

intensity threshold images shown in Figure 4.2. Prototyping of the NESD device revealed that 

the functional properties of the NESD depended on the characteristics of the polymeric 

materials employed, the processing technique, and the subsequent interaction of fixated DA-

loaded CAP nanoparticles within the crosslinked alginate scaffold. The 3D prototype design 

of the device permitted the porosity, surface area, and surface characteristics to be semi-

optimized in the pre-cured and post-cured phases with BaCl2 for each component of the 

NESD (Figure 4.2a). Fine control of the micro-architectural characteristics influenced the 

mechanical properties of the scaffold that was significant for nanoparticle fixation and 

mechano-transduction in order to control the release of DA. A significant advantage of 

employing prototyping technology to develop the NESD was the elimination of reliance on 

individual skills that are required for conventional techniques of device fabrication. 

Commencing with a limited range of fundamental structural units a NESD with precise micro-

architectures was designed using prototyping technology with internal channels or cavities 

resembling the negative image of the final required NESD as depicted in Figures 4.2a, b and 

c. Visibly, the scaffold models depicted channels that extended through the entirety of the 

tetragon matrices in both horizontal and vertical axes with consistency in the strand layout 

after DA-loaded CAP nanoparticle fixation. At the periphery of the matrix, a region of thick 
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and blurred pore deposition was visible after curing the alginate scaffold in BaCl2 (Figure 

4.2b). This entire matrix region was approximately 5×3mm at the edge of the tetragon (Figure 

4.2. enlarged for clarity). SEM images confirmed the strut and pore widths to be in the range 

of 100-200µm. Furthermore, the unconnected pore space, when inspected qualitatively, 

comprised diminutive cavities within the matrix for controlling the outward diffusion of the DA-

loaded CAP nanoparticles from the crosslinked alginate scaffold. 

 

 

 

  

 

 

 

 
 

Figure 4.2: Three-dimensional prototype images of a) a pre-cured crosslinked-alginate 
scaffold, b) a BaCl post-cured crosslinked-alginate scaffold, and c) DA-loaded CAP 
nanoparticles embedded within the cured crosslinked alginate scaffold voids representing the 
NESD 
 
The computational design process revealed that curing of the crosslinked alginate scaffold in 

BaCl2 involved the residual crosslinking of open, approachable and chemically reactive 

molecular functional groups that possessed chemical affinity towards BaCl2 as the secondary 

crosslinker and produced an equivalent of edging and interlocking of the matrix surface 

functional groups with a superiorly compact matrix structure (Figure 4.2b). Furthermore DA 

was not covalently bonded to the CAP with no amide bond formation but interacted ionically 

via physical associations involving H-bonding and smaller force interactions through the 

influence of the external crosslinking medium. Figure 4.3a represents a structural model of 

the interactions between H2O molecules in association with CH3COO- and O2 functional 

groups of strongly hydrophilic CAP sites. DA, other ionic species and molecules revealing an 

interactive model of CAP and DA entrapment constituents are also depicted in Figure 4.3b.  
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Figure 4.3: Molecular structural models of a) interactions between H2O molecules in 
association with CH3COO- and O2 functional groups of CAP and b) CAP interactions and DA 
entrapment 
 
Figure 4.4a-e depicts a step-wise single CAP chain structural model under the influence of 

surrounding interactive forces within the emulsified medium such as solvent molecules at the 

periphery, PVA as the surfactant and DA. The affinity interactions with explicit lipophilic and 

hydrophilic orientations towards the formation of a nanoparticle wall are also shown (Figure 

4.4f-h). CAP was initially suspended in the binary acetone: methanol solvent system as 

unorganized random orientations with irregular lipophilic rings (Figure 4.4a). The addition of 

DA and ionic or physical interactions with the hydrophilic functional groups of CAP and free 

DA molecules resulted in CAP conforming to orientations of the affinity-wise molecular sites 

in terms of lipophilicity and hydrophilicity of the medium (Figure 4.4b). DA also influenced the 

overall polarity spectrum of the medium. The addition of PVA as a surfactant produced strong 

molecular associations and crosslinker ions with the subsequent energy supplied via agitation 

and processing temperatures contributing to surface interactions that produced CAP 

molecules pivoted toward surface minimization, compactness and orientations of the 

lipophilic regions (Figure 4.4c). The stronger energetic orientations and the presence of PVA 

as the surfactant tended to sphericalize the CAP strands (Figure 4.4d). The CAP strands 

sphericalized completely to produce nanoparticles under the primary influence of solvent 

diffusion phenomena and the presence of PVA with the inner core containing DA molecules 

and lipophilic regions of CAP conforming toward the periphery as the boundary between the 

outer hydrophilic medium (Figure 4.4e). Thus, DA molecules orientated within the hydrophilic 

voids of the nanoparticles shielded by the lipophilic boundary to form stable CAP 

nanoparticles.  
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Figure 4.4: Graphical models depicting a-e) the stepwise formation of DA-loaded CAP 
nanoparticles, f) a single CAP adaptation, g) DA interaction and wall initiation and h) a DA-
loaded CAP nanoparticle towards completion 
 
4.3.2. MR behaviour of crosslinked scaffolds 

Figure 4.5 depicts a typical Force-Time profile used to calculate the MR which is represented 

as a percentage of the ratio between the Area Under the Curve (AUC) of anchors 1 and 2 

(AUC 1 and 2), and2 and 3 (AUC 2 and 3) 

 

 

Figure 4.5: A typical Force-Time profile of a hydrated Ba-alginate scaffold for the calculation 
of MR 
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The Force-Time profiles for each sample, in both the hydrated and unhydrated states, was 

used to calculate the MR and thereby establish the most integral crosslinker reagent for the 

formulation of [(HOCH2(CHOH)4COO)2Ca]-crosslinked alginate scaffolds.  

 
Table 4.6: Percentage MR of crosslinked alginate scaffolds in both hydrated and unhydrated 

states. 

                                                 MR (%) 

Formulation type                         Hydrated                              Unhydrated 

 

Zn-Alginate                                  9.34                                             32.68 

                                                    7.29                                             26.18 

                                                  10.44                                             29.59 

Ba-Alginate                                62.34                                            66.44 

                                                  59.18                                            72.21 

                                                   69.21                                            66.23 

Ca-Alginate                                27.51                                            41.88 

                                                  33.15                                            39.35 

                                                      29.98                                            38.53 

 

TA results proved that the Ba-alginate scaffolds were relatively the most resilient in both the 

hydrated and unhydrated states. The unhydrated samples for both Ca-alginate and Zn-

alginate scaffolds showed greater integrity than the hydrated. The Ba-alginate scaffolds 

showed only a increase (±5%) in MR in the hydrated state in comparison to the unhydrated 

state, indicating that the scaffold may maintain its integrity in both formulation and in vivo 

conditions. MR has important implications for not only DA delivery but product storage as 

well.  In drug delivery, the MR profile of a drug delivery device provides data for the possible 

in vitro degradation and in turn the drug release behaviour of the system.  In this formulation, 

it is particularly imperative to have a rigid scaffold so as to be able to withstand the demands 

of further formulation processes involved during the incorporation of DA-loaded CAP 

nanoparticles. Ba-alginate scaffolds were chosen as the candidate formulation, due to the 

superior MR in both the hydrated and unhydrated states, for the dispersal of DA-loaded CAP 

nanoparticles. 
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4.3.3. Surface morphology of crosslinked alginate scaffold 
Figures 4.6 are microscopic images that display the morphology and pore sizes of Ba-

alginate scaffolds formulated in an adopted freeze-drying approach.  

  

  
Figure 4.6:Scanning electron microscope images of (a) Ba-alginate scaffold that was not 
subjected to post-curing (b) a typical pore present within the crosslinked alginate scaffold, (c) 
scaffold that underwent post-curing with BaCl and (d) the relation of pores in respective to 
one another 
 
The crosslinked alginate scaffold displayed an average pore size of 100-400µm with a wall 

thickness calculated at an average of 10±1.04µm. (Figure 4.6d). Scaffolds that were not 

subjected to post-curing in a secondary crosslinking BaCl2 solution revealed a "tissue-like" 

appearance (Figure 4.6a) in comparison to the evenly distributed porous granular yet 

compact appearance of post-cured scaffolds (Figure 4.6b) Ba-alginate scaffolds revealed a 

granular yet intact appearance with an even distribution of pores along its surface (Figure 

4.6c). 

 

 

 

 

a) b) 

c) d) 

100µm 10µm 

100µm 100µm 
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4.3.4. In vitro ME of the Ba-alginate scaffold 

Minimal ME (12.1%) of the Ba-alginate scaffolds occurred within the first 60 days (Figure 4.7) 

thereafter there was a mere ME loss of 2.96% in 12 days. Results confirmed that further 

crosslinking (post-curing) provided robust scaffolds.   
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Figure 4.7: ME profile for Ba-alginate scaffold in PBS (pH 6.8, 37ºC) over a period of 72 days 
(SD≤0.23) 
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4.3.5. Experimental design for the optimization of Ba-alginate scaffold 

The Box-Behnken study design, requiring a total of 27 experimental runs (formulation 

combinations), was generated and analyzed using Minitab® V14 (Minitab® Inc, PA, USA). The 

variations of the variables for each formulation are listed in Table 4.7. 

Table 4.7: Illustration of variations in formulations employed for a Box-Behnken design for the 
optimization of Ba-alginate scaffold 

Formulation 

number 

Alginate 

 (%w/v) 

Stirring Temperature 

 (°C) 

[(HOCH2(CHOH)4COO)2Ca] 

(%w/v) 

Post Curing Time 

(min) 

1 3 60 0.2 60 

2 3 60 0.6 60 

3 2 50 0.6 60 

4 2 60 0.4 60 

5 2 60 0.6 30 

6 3 60 0.4 30 

7 2 60 0.4 60 

8 2 50 0.4 90 

9 1 50 0.4 60 

10 2 60 0.4 60 

11 1 60 0.4 90 

12 2 60 0.2 90 

13 2 60 0.6 90 

14 1 70 0.4 60 

15 1 60 0.4 30 

16 2 70 0.4 90 

17 3 70 0.4 60 

18 2 70 0.4 30 

19 1 60 0.2 60 

20 2 70 0.2 60 

21 3 50 0.4 60 

22 2 50 0.2 60 

23 3 60 0.4 90 

24 2 50 0.4 30 

25 1 60 0.6 60 

26 2 60 0.2 30 

27 2 70 0.6 60 
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4.3.5.1. Measured responses for the experimental optimization of Ba-alginate scaffold 

The measured responses (MR and ME) for each of the 27 formulation employed in the Box-

Behnken design are listed in Table 4.8. 

Table 4.8: Measured responses for the experimental optimization of Ba-alginate scaffold 

 

Formulation number MR (%) ME (%) in 30 days 

1 82.95 24.12 
2 85.06 25.03 
3 84.85 58.92 
4 83.73 9.21 
5 87.89 12.183 
6 94.37 6.93 
7 83.73 9.21 
8 94.53 15.72 
9 84.813 20.68 

10 83.73 9.21 
11 82.50 3.57 
12 81.17 23.14 
13 84.78 27.63 
14 86.53 6.83 
15 81.4 37.91 
16 82.38 49.42 
17 93.45 3.21 
18 86.23 34.89 
19 83.33 8.99 
20 81.89 14.09 
21 81.10 62.19 
22 76.81 5.83 
23 80.75 6.83 
24 94.75 18.143 
25 85.07 51.26 
26 78.50 11.30 
27 84.83 38.81 
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4.3.5.2. Comparison of the experimental and fitted responses calculated for the 

experimental optimization of Ba-alginate scaffold 

The plots of the experimental versus fitted responses for MR (Figure 4.8a) and ME (Figure 

4.8b) of Ba-alginate scaffold showed R2 values of 72.23% and 68.86% respectively. These 

values show a satisfactory correlation between the experimental and fitted values for the 

responses, proving the experimental design was robust in the undertaking of this research. 
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Figure 4.8: The Regression plots for (a) MR (%) and (b) ME for the calculation of R2 values 
that determine the similarity between the predicted and experimentally determined values for 
the responses 
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4.3.5.3. Response analysis for MR of Ba-alginate scaffold 

An increased MR was seen at higher alginate (2-3%w/v) and [HOCH2(CHOH)4COO]2Ca 

concentrations (0.3-0.4%w/v) (Figure 4.9a). This was expected as at higher [alginate] an 

advanced degree of crosslinking occurs producing a superiorly robust and interconnected 

polymeric networked structure with the increased availability of [HOCH2(CHOH)4COO]2Ca. 

Higher processing temperatures (60-70ºC) and lower [alginate] (1%w/v) also provided a 

desirable MR value (Figure 4.9b). This was attributed to the enhanced molecular mobility of 

alginate polymeric chains at higher temperatures that induced participation in the crosslinking 

reaction resulting in the preferred micromechanical behavior. 

 

Figure 4.9: Response surface plots correlating the MR with a) alginate and [crosslinker] and 
b) [alginate] and processing temperature 
 

4.3.5.4. Response analysis for ME of Ba-alginate scaffold 

An increase in [alginate] (2-3%w/v) resulted in reduced ME (Figure 4.10a) as a result of a 

superiorly compact scaffold produced from a precursor solution of increased viscosity 

Furthermore an increase in [HOCH2(CHOH)4COO]2Ca resulted in a greater degree of 

crosslinking thereby increasing the scaffold rigidity and retarding ME. An increase in 

temperature (60-70ºC) and post-curing time (60-90min) retarded ME of the scaffold (Figure 

4.10b). Higher temperatures enhanced the aqueous solubility of [HOCH2(CHOH)4COO]2Ca 

(Material Data Safety Sheet, www.sciencelab.com) in water. A prolonged period of post-

curing time will allow for the optimal level of crosslinking within the formulation thereby 

reducing ME. 

 

 

 

 

a) b) 
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Figure 4.10: Response surface plots correlating scaffold ME with a) [alginate} and post-
curing time and b) processing temperature and post-curing time 
 

4.3.5.5. The main and interaction effects on the responses:  

Matrix Resilience 

The concentration of [HOCH2(CHOH)4COO]2Ca had the most significant effect (Figure 4.11a 

and 4.11b) in terms of achieving superior MR (p≤0.05) with increased concentrations 

providing higher MR values, while the processing temperature displayed the most significant 

role in matrix design (p≤0.05). A processing temperature of 50°C also provided desirable MR 

values. However this was not relevant for post-curing times of 60 minutes.  

M
e

a
n

 o
f 

M
a

tr
ix

 R
e

si
li

e
n

ce

321

88

86

84

82

80

706050

0.40.30.2

88

86

84

82

80

906030

[ALGINATE] Process Temp

[CROSSLINKER] Post Curing Time

Main Effects Plot (data means) for Resilience

 

 

a) 

a) b) 



 93 

[ALGINATE][ALGINATE]

[CROSSLINKER][CROSSLINKER]

Post Curing TimePost Curing Time

Process TempProcess Temp

706050 0.40.30.2 906030
96

88

80

96

88

80

96

88

80

[ALGINATE]

3

1
2

Process

70

Temp
50
60

[CROSSLINKER]

0.4

0.2
0.3

 

Figure 4.11: Typical (a) main effects plot and (b) interactions plot of response values for MR  
 

Matrix Erosion 

The main effects plots showed that an increase in [crosslinker] promoted ME (p=0.098) 

(Figure 4.12a). This was unexpected however this could have resulted from sequestration of 

ions where the phosphate ions in the buffer caused the sequestration of the calcium ions ion 

the crosslinker, thereby resulted in the rapid dissolution of the highly water soluble crosslinker 

from the scaffold, decreasing scaffold mass. A higher temperature coupled with decreased 

[alginate] gave rise to reduced ME (Figure 4.12b) shown in the interaction plots. Higher 

temperatures resulted in more efficient annealing of the alginate which ultimately improved 

mechanical integrity of matrix with resultant decreased ME. 
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Figure 4.12: Typical (a) main effects plot and (b) interactions plot of response values for ME 
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4.3.5.6. Analysis of a Box-Behnken design employed for the optimization of Ba-

alginate scaffold 

The assessment of the regression models can be undertaken employing residual plots 

(Figure 4.13). Residual plots are essentially a linear comparison between observed values 

and model predictions for those observations (Stewardson and Whitfield, 2004). 
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Figure 4.13: The residual plots for the responses (a) MR and (b) ME % for Ba-alginate 

scaffold 

Residual analysis for MR (Figure 4.13a) and ME (Figure 4.13b) showed the casual 

distribution of data. The normal plot of residuals displayed slight curvatures of the lines which 

occurred due to the decreased observation points (less than 50) however the plot still showed 

normal distribution of the data. The residuals versus fitted plot showed randomly scattered 

data points around the horizontal line (residual = 0), with some fanning indicative of a degree 

of non-constant variance, and were within 3 standard deviations of the mean, i.e., zero. The 

histogram supported that the residuals have a normal distribution with zero mean and 

constant variance. The residuals versus the order of the data was used to identify non-

random error, the plot showed a both a positive (clustering of formulations 4-12) and a 

negative correlation indicated by rapid changes in the signs (-/+) of the consecutive residuals 

thereafter. 
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A significant effect is indicated by a P value of ≤ 0.05 for any factor. The factors and the 

respective P-values are displayed in Table 4.9. 

 

Table 4.9: Full ANOVA analysis for the measured responses (MR and ME) 

Term p-value 

            MR                          ME 

[ALG] 

[PT] 

[CRL]                                             

[PCT] 

[ALG]2 

[PT]2 

[CRL]2 

[PCT]2 

[ALG]*[PT]              

[ALG]*[CRL]             

[ALG]*[PCT] 

[PT]*[CRL] 

[PT]*[PCT] 

[CRL]*[PCT] 

0.366 

0.940 

0.048 

0.443 

0.760 

0.387 

0.420 

0.314 

0.449 

0.877 

0.376 

0.354 

0.530 

0.563 

0.740 

0.657 

0.098 

0.710 

0.656 

0.380 

0.391 

0.649 

0.561 

0.338 

0.304 

0.648 

0.979 

0.744 

 

The complete regression equations generated for MR and ME are indicated below: 

 

MR=83.391-9.883[ALG]-1.703[PT]+313.375[CRL]+0.290[PCT]+0.692[ALG] 2+0.019[PT] 2-

184.833[CRL]2+0.003[PCT]2+0.199[ALG*PT]+4.050[ALG*CRL]-0.078[ALG*PCT]-2.463 

[PT*CRL]-0.005[PT*PCT]-0.507[CRL*PCT]                    Equation 4.2 

 

ME=344.335+21.368[ALG]-10.984[PT]+16.183[CRL]-1.180[PCT]+ 

5.605[ALG]2+0.112[PT]2+1095.29[CRL] 2+0.006[PCT] 2-0.617[ALG*PT]-

103.325[ALG*CRL]+0.37[ALG*PCT]-4.833[PT*CRL]-9.083E-04[PT*PCT] 

-1.146[CRL*PCT]                         Equation 4.3 
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4.3.5.7. Response optimization of Ba-alginate scaffold 

This was carried out employing statistical software (Minitab®, V14, Minitab Inc®, PA, USA) to 

determine the optimum level for each variable. The optimization process resulted in the 

attainment of various formulations with a significantly low desirability for all three outcomes 

therefore a selection of the most influential desired outcome was necessary to the detriment 

of the other two outcomes. MR and ME were the most important and essential characteristics 

for the scaffold and so a scaffold formulation displaying both characteristics at optimal level 

was selected. 

The formulation was optimized for the measured responses of MR and ME. Optimization was 

carried out so as to obtain the levels of [CAP], [PVA], emulsifying time and stirring speed that 

would maximize the measured responses (Palamakula et al., 2004). 

 

Figure 4.14: Optimization plots displaying factor levels and desirability values for the chosen 
optimized formulation 
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4.3.5.8. Desirability for the measured responses of the optimized Ba-alginate scaffold 

formulation 

With reference to the optimized Ba-alginate scaffold, the MR of the experimental formulation 

(82.46%) displayed favorability to the fitted formulation (88.98%). While the experimental 

formulation had slightly lower MR than fitted, this was counteracted as the ME was lower than 

predicted (only 18.23% after 7 days) (Figure 4.14). The optimized formulation proved have 

the desired characteristics of increased MR and decreased ME.  

 

4.3.6. In vitro DA release from the NESD  

DA release from the NESD could be separated in two phases: (1) diffusion of nanoparticles. 

Upon contact with this media, the scaffold will become infused with PBS thereby releasing 

nanoparticles through the pores. The gradual ME of the scaffold will result in an increased 

diffusion rate of nanoparticles out of the matrix and (2) dissolution of the nanoparticles in PBS 

thereby releasing DA. The nanoparticles (Figure 4.15a) showed a release of 0.25% in the first 

2.5hr, however the release profile for DA-loaded CAP nanoparticles incorporated into the 

scaffold (Figure 4.15b) showed a lag phase for the initial hr (prior to 6hr) of the study followed 

by the steady increase in the release of DA thereafter. A release of 5.12% was noted after 

168hr.  This type of release was attributed to the degradation and increase in pore formation 

in the scaffold. The DA release pattern was attributed to the ME behaviour of the scaffold 

(Figure 4.7). The release of DA was highest at the point where ME of the scaffold was at 

maximum (12-30hr) thereafter both DA release and ME maintain a constant profile. SEM 

images showed an increase in the number of pores and the size post-ME studies (30 days) 

allowing for the increased flow of buffer into the pores thereby facilitating a further diffusion of 

DA out of the pores. Zeta potential and size of the nanoparticles also aided in DA release. 

DA-loaded CAP nanoparticles had high zeta potentials (-35.2mV) and reduced particle sizes 

(165.4nm) illustrated in Chapter 3 Figure 3.20 of this dissertation. The charges on the 

particles would electrostatically repel them from one another assisting in their molecular 

movement through the scaffold.  
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Figure 4.15: DA release profiles for (a) DA-loaded nanoparticles (SD≤0.02) and NESD in 

PBS, pH 6.8; 37ºC), (SD≤0.16) 

 

4.3.7. Componential thermal analysis on the NESD 

TMDSC profiles portrayed the paradigms of the thermal behavior in the three componential 

elements of the NESD that included the CAP nanoparticles, the crosslinked alginate scaffold 

and the NESD as shown in Figures 4.16a, b and c. The changes in Tg, Tm and Tc that 

occurred upon the formation of DA-loaded CAP nanoparticles, the crosslinked alginate 

scaffold and the assimilated NESD when compared to native CAP employed for nanoparticle 

fabrication is depicted in Figures 4.16a-c.  
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Table 4.10: Salient thermal events for DA-loaded CAP nanoparticles, Ba-alginate scaffold 

and NESD compared to native CAP 

Temperature transition points (°C) 
Formulation Component Tg

 Tc Tm 

 
DA-loaded CAP 
nanoparticles 260 160 268 
  262  
  378  
Crosslinked  
alginate scaffold 210 158 390 

  238  
  330  
 
NESD  260 158 390 
  315  
  358  

Native CAP 
 

 
 

160-170 
 

180 
 

192 
 

Tg = glass transition temperature; Tc = crystallization temperature and Tm = melting 

temperature  

 

All components presented with triple exothermic peaks depicting a coincidental similarity in 

crystallization behaviors (Tc) (Figures 4.16a, b and c). The similarity in thermal behavior 

between the crosslinked alginate scaffolds and NESD portrayed a direct indication of the high 

degree of crystallinity imparted by the secondary crosslinker BaCl2 that was employed as a 

curing step for scaffold formation. Noteworthy was the significantly large variation in Tg and 

Tm between the native CAP (Tg=160-170°C; Tm=192°C) and the DA-loaded CAP 

nanoparticles (Tg=260°C; Tm=268°C). The apparent shifts in Tg and Tm elucidated a possible 

interfacing between CAP and DA molecules that contributed to the formation of physical 

interactions culminating into the thermal behaviour observed. The large positive shifts in 

thermal events may have also influenced the release of DA from the CAP nanoparticles as 

supported by the initial prototyping technology employed and DA release profiles discussed 

later on. The presence of transient melting endothermic peaks and further shifts in Tg 

observed on the TMDSC signals of the NESD samples clearly reflected the effect of altered 

thermal properties produced by initial crosslinking between [HOCH2(CHOH)4COO]2Ca and 

alginate and further the dispersion of DA-loaded CAP nanoparticles within the BaCl2 solution 

as a post-curing process. The altered thermal behaviour influenced the physicomechanical 

behaviour as supported by the earlier morphological, textural profile and FTIR analysis. 
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Overall, the thermal behavior observed may be due to variation in the ∆H involved, ability to 

attain near-equilibrium conditions during measurement, and the rapid rate of change in 

molecular rearrangement compared to the ∆T. These pertinent intermolecular interactions, 

which resulted in the observed thermal transitions (Figures 4.16a, b and c), may have also 

contributed substantially to the superior control of DA released from the NESD. 

 

 

Figure 4.16: Temperature modulated differential scanning calorimetry profiling for NESD 

showing endothermic and exothermic peaks generated  
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4.4. Concluding Remarks 

In this chapter, alginate was chosen as the polymer for the employment in scaffolds. The 

crosslinking of this with various agents resulted in Ba-alginate scaffolds being selected as the 

ideal candidate for it's MR. A porous structure yet high integrity was revealed in the 

micrographs of the Ba-alginate scaffolds. A ME of 15% was calculated only at 60hr, showing 

minimal rapid degradation throughout the period of investigation. The Box-Behnken design 

was employed to optimize the formulation and gave rise to 27 formulations where [alginate] 

and [Ba] were altered as well as processing factors such as post-curing time and heat. MR 

and ME % were chosen as the imperative properties to be optimized. A single candidate 

optimal formulation displaying MR of 82.455% and a ME of 18.23% in 30 das was selected. 

In this chapter, the DA-loaded CAP nanoparticles were incorporated into the Ba-alginate 

scaffold (optimal formulations) and analysed, generating for in vitro release profiles. The 

addition of the nanoparticles into a Ba-alginate scaffold significantly reduced DA release 

(5.12% release in 168hr) and was established as the main contributor to the controlled DA 

release. Significant shifts in thermal events noted with TMDSC analysis of the DA-loaded 

CAP nanoparticles and NESD supported the mechanism by which modulated release of DA 

occurred from the device. Biometric simulation and prototyping technology in conjunction with 

Box-Behnken statistical experimental designs as preparation and optimization strategies for 

the scaffold and nanoparticles proved robust in selecting optimal components for assembling 

the NESD. 
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CCHHAAPPTTEERR  55  

IINNVVEESSTTIIGGAATTIIOONN  IINNTTOO  DDRRUUGG--LLOOAADDEEDD  NNAANNOOSSTTRRUUCCTTUURREESS  FFOORR  TTHHEE  EEMMPPLLOOYYMMEENNTT  

IINN  TTRREEAATTMMEENNTT  OOFF  PPAARRKKIINNSSOONN''SS  DDIISSEEAASSEE    

 

 

5.1. Introduction 

 

Nanotechnology has widened the horizon for novel therapeutic opportunities for agents that 

cannot be formulated using conventional drug techniques; due to poor drug instability and/or 

bioavailability allowing for site specific delivery of medicine to diseased tissues and cells 

thereby dramatically increase the chances of healing in affected individuals. Polymeric 

nanofibers, an example of a nanosystem, are uniquely shaped two dimensional structures 

that may be formed employing a simple yet reproducible electrospinning technique. 

Examples of nanofiber drug delivery systems include dexamethasone-loaded PLGA 

nanofibers in neural prosthetics (Abidian et al., 2006) and ketaprofen-loaded PVA nanofibers 

for inflammation (Kenawy et al., 2007).Furthermore, the polymer fibers may be coated with 

an electro-conductive polymer which can be stimulated by an external electrical current. 

These fibers may contract/dilate according to the stimuli received so as to reduce/increase 

drug delivery at their target site. An example of this system is poly (3, 4-

ethylenedioxythiophene) for implantation into the brain (Richardson-Burns et al., 2007). 

 

Electrospinning involves the application of electricity to form nanofibers (Reneker and Yarin, 

2008). A polymeric solution of the appropriate viscosity is placed in a capillary tube/pipette. A 

high voltage is sent through an electrode that is placed within the capillary tube. This gives 

rise to an electric field which opposes the surface tension (present at the end of the capillary 

tube). As a result, a conical shaped protrusion known as the Taylor cone (Figure 3.1). The 

polymeric solution forms at the end of the tube (Welle et al., 2007).  A jet of polymeric 

solution is ejected from the tip, which is attracted to a grounded metal screen lined with foil, 

resulting in nanofibers.  

The following variables influence the length and uniformity of the fibers and can be controlled 

(Welle et al., 2007): Viscosity of the polymeric solution; flow rate of the polymeric solution; 

distance of the capillary end from screen; and voltage from the external supply. 
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Figure 5.1: A schematic representation of a rudimentary electrospinning apparatus employed 
for the formulation of nanofibers 
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The impetus of this chapter greatly revolves around the development of a controlled drug 

delivery systems for pharmacological agents used in the treatment of PD that reduces the 

dosages thereby reducing the “off” period experienced and reducing the side effect profile. 

This will increase compliance and most of all the development of a common drug delivery 

platform that can be used to deliver both previously and newly formulated drugs in a targeted 

approach to treat CNS disease states. 

 

This chapter sought to address the need for alternate nanosystems, L-dopa and NT 

nanoparticles and DA nanofibers, which may be employed for the treatment of PD.  

 

5.2. Investigation of L-dopa-loaded Poly (lactic-co-glycolic acid) Nanoparticles 

5.2.1. Materials and Methods 

5.2.1.1. Materials 

3-(3,4-dihydroxy phenyl)-l-alanine, (L-dopa), (Mw=197.19g/mol), cellulose acetate phthalate 

(CAP) (Mw=2534.12g/moL), poly(vinyl alcohol) (PVA) (Mw=49,000g/moL) was purchased from 

Sigma Aldrich (St. Louise, MO, USA), hydrochloric acid (HCl), 32%, was purchased from 

SAARCHEM (Johannesburg, South Africa). Poly (DL-lactide-co-glycolide) (PLGA), resomer 

RG504 (Mw=48000g/mol) purchased from Boehringer Ingelheim (Ingelheim, Germany) and 

dimethyl sulphoxide (DMSO) (Mw=78.13g/mol) from obtained from Merck (Johannesburg, 

South Africa). Deionized water was obtained from a Milli-Q water purification system (Milli-Q, 

Millipore, Billerica, MA, USA). All other reagents were of analytical grade and used as 

purchased. 

 

5.2.2. Preparation of L-dopa-loaded PLGA nanoparticles employing a nano-

precipitation technique 

The precipitation method adopted in this study is based on work previously reported by Fessi 

et al in 1989 which involved a lipophilic drug/polymer/acetone or ethanol (solvent)/ water 

(non-solvent) system which was then altered to a more versatile solvent-non-solvent scheme 

(Bilati et al., 2005).  The limited solubility of the polymer (PLGA) and drug (L-dopa) led to the 

employment of the nano-precipitation rather than the previously adopted emulsification-

diffusion method stated in Chapter 3, Section 3.2.5. of this dissertation. The selection of this 

method also allowed for the investigation of versatility of the NESD by means of incorporating 

drug-loaded polymeric nanoparticles, produced employing different techniques, into the Ba-

alginate scaffold. 
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Preparation of the non-solvent system: Two separate solvent systems were used; (1) 

consisted of buffer (pH 6.8, 20mL) and (2) consisted of buffer (pH 6.8, 19mL) and PVA 

(1%w/v, 1mL). 

Preparation of the solvent system: A PLGA (0.5 %w/v) solution was prepared by dissolving 

PLGA (1g) in DMSO (20mL). Three separate solutions of this PLGA (0.5% w/v) were 

prepared, to which 0.1% w/w
, 0.3% w/w and 0.5% w/w

 of L-dopa to polymer was added. Drug-free 

nanoparticles were prepared in a similar manner. 

 

Incorporation of non-solvent to solvent system to formulate L-dopa-loaded PLGA 

nanoparticles 

The solvent system was infused into the non-solvent system with a syringe and a needle of 

varying gauge (25G and 21G). Needles of different gauge sizes were employed to investigate 

the effect that friction has on the characterization of nanoparticles (will be hereon referred to 

as nanoparticles). The ratio of non-solvent to solvent was maintained at 20:1. In each case 

the infusion process took place either under moderate magnetic stirring at 300rpm (Hibi® 

magnetic stirrer, Gauteng, S.A) or utilising a three blade propeller overhead stirrer at 

1000rpm  (Heidolph®, Lebotec, Gauteng, S.A). The suspended precipitate was collected, 

centrifuged at 8000rpm (Optima® LE-80K, Beckman, USA). The sediment was collected and 

subsequently lyophilised (Virtis lyophiliser, Virtis®, Gardiner, NY, USA), refer to Chapter 4, 

Table 4.3 of this disseration for parameter and settings, for a 24hr period. 

 

5.2.3. Assimilation of L-dopa-loaded PLGA nanoparticles and Ba-scaffold into the 

NESD 

L-dopa loaded nanoparticles (200mg) were placed into moulds containing a Ba-alginate 

solution (2mL) vigorously stirred and immediately placed in a freezer set at -70ºC for 24hr.  

Thereafter the scaffolds were freeze dried for 48hr and crosslinked with calcium gluconate as 

per the method in Chapter 4 Section 4.2.9.1 of this dissertation. 

 

5.2.4. Determination of L-dopa entrapment efficiency of PLGA nanoparticles 

A calibration curve for L-dopa was determined using a known series of concentrations of L-

dopa in PBS pH 6.4. Samples were accurately weighed and completely dissolved in 0.1M 

HCl (100mL) and left under vigorous magnetic stirring (700rpm) for a period of one week. The 

L-dopa content was analyzed by UV spectrophotometry at λ280nm (Hewlett Packard 8453 

Spectrophotometer, Germany) and computed from a standard linear curve of DA in PBS (pH 
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6.8; 37°C) (R2=0.99). Chapter 3, Equation 3.1 of this dissertation was utilized to compute the 

Drug Entrapment Efficiency (DEE). 

 

5.2.6. In vitro L-dopa release studies on PLGA nanoparticles and NESD 

In vitro release studies were performed on the L-dopa-loaded PLGA nanoparticles and NESD 

utilizing a shaking incubator (Labex, Stuart SBS40®, Gauteng, South Africa) set at 20rpm. 

The L-dopa loaded nanoparticles and NESD was immersed separately in 100mL PBS (pH 

6.8, 37°C) contained in 150mL glass jars. At predetermine time intervals 3mL samples of 

each release media were removed, filtered through a 0.22µm Cameo Acetate membrane 

filter (Millipore Co., Bedford, MA, USA) and centrifuged at 20,000rpm (Redhead et al., 2001). 

The supernatant was then removed and analyzed by UV spectroscopy at a maximum 

wavelength of λ280nm for L-dopa content analysis. L-dopa release was quantified using a linear 

standard curve (R2=0.99). An equal volume of DA-free PBS was replaced into the release 

media to maintain sink conditions. 

 

5.2.7. Morphological characterization of L-dopa-Loaded PLGA nanoparticles 

Morphological characterization of the nanoparticles revealed the shape, surface, structure 

and size homogeneity and possible degree of aggregation.  Surface morphology was 

characterized by Scanning Electron Microscopy (SEM), (JEOL, JEM 840, Tokyo Japan).  

Photomicrographs were taken at different magnifications and samples were prepared after 

sputter-coating with carbon or gold (N=10). Nanoparticle size and shape was further explored 

using cryo-Transmission Electron Microscopy (TEM) (JEOL 1200 EX, Tokyo, Japan, 120keV) 

for higher definition and resolution. Samples were prepared by placing a dispersion of 

nanoparticles in ethanol on a copper grid with a perforated carbon film followed by 

evaporation and viewing at room temperature (N=10). 

 

5.2.8. Determination of polymeric structural variations due to L-dopa-loaded PLGA 

nanoparticle formation  

The structure of native PLGA, L-dopa and the PLGA nanoparticles produced were assessed 

using Fourier Transmission Infrared (FTIR) spectroscopy to assess the potential for any 

variations in vibrational frequencies and subsequent polymer structure as a result of L-dopa-

polymer interactions during nanoparticle formation. Changes in the PLGA backbone may 

alter the inherent stability and therefore affect the physicochemical and physicomechanical 

properties of the selected polymer type for the intended purpose. Samples of L-dopa-free and 

L-dopa loaded PLGA nanoparticles were blended with potassium bromide (KBr) in a 1%w/w 
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ratio and compressed into 1×13mm disks using a Beckmann Hydraulic Press (Beckman 

Instruments, Inc., Fullerton; USA) set at 8 tons. The sample disks were analyzed in triplicate 

at high resolution with wavenumbers ranging from 4000-400 cm-1 on a Nicolet Impact 400D 

FTIR Spectrophotometer coupled with Omnic FTIR research grade software (Nicolet 

Instrument Corp, Madison, WI, USA).   

 

Liquid FTIR analysis: The FTIR analysis of the liquid (DMSO) used in the formulation of  

L-dopa-loaded nanoparticles identified their chemical interaction on a molecular level that 

took place prior to precipitation. These were performed on PLGA and DMSO solutions 

employing a Bruker Tensor 27 (OPUS software) FTIR instrument (Bruker Daltonik GmbH, 

Germany) with frequency range 4000 to 400 cm-1. 

 

5.2.9. Determination of size and zeta potential of L-dopa-loaded PLGA nanoparticles 

The nanoparticle zeta potential measurements were obtained using a Zetasizer Nano ZS 

(Malvern Instruments Ltd, Malvern, Worcestershire, UK).  Each sample (1%w/v) was 

appropriately diluted with deionised water, filtered (0.22µm filter Millipore Co., 

Massachusetts, USA) to maintain the number of counts per second in the region of 600 

(Layre et al., 2006) and placed into disposal cuvettes (size) or capillary cells (zeta potential) 

(Malvern Instruments Ltd, Malvern, Worcestershire, UK. The viscosity and refractive index of 

the continuous phase were set to those specific to deionized water. Measurements were 

taken in triplicate with multiple iterations for each run in order to elute size intensity and zeta 

potential distribution profiles. 

 

5.3. Results and Discussion  

5.3.1. Formulation of L-dopa-loaded PLGA nanoparticles 

L-dopa is slightly soluble in the non-solvent system. Hence the pH was altered to 6.7 by 

adding HCl to the solution and thereby decreasing the solubility of L-dopa even further. At pH 

6.7, L-dopa is almost unionized in the non-solvent system and therefore remains in the 

solvent system, thereby increasing the DEE within the polymer during the process of 

precipitation at the step of infusion. Equation 5.1 further motivates the employment of PBS 

pH 6.7: 

 

( )
x

xpKapH −−= 100log        Equation 5.1 
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Where pH is that of the PBS in which L-dopa is unionized, pKa = 9.7 and is that of the grade 

of L-dopa being employed and x = 0.1 and is the % ionization of L-dopa that occurs at pKa 

9.7. 

 

5.3.2. L-dopa entrapment efficiency of PLGA nanoparticles 

A calibration curve was set up as shown in Figure 5.2 and the DEE for L-dopa-loaded 

nanoparticles was calculated to be 61.22%. L-dopa is slightly soluble in water, 66mg in 40mL, 

(Budavari, 1996) water during the infusion process the L-dopa dissolved into the non-solvent 

(water) from the solvent system, this is referred to as the leaking of L-dopa. Hence the 

solvent system was adjusted to pH 6.7 which would prevent the L-dopa from going into 

dissolution in the non-solvent system, thus enhancing the DEE (14.8±0.7). 
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Figure 5.2: L-dopa calibration curve at 285nm in PBS (pH 6.8; 37ºC) 

 

5.3.3. In vitro L-dopa release from PLGA nanoparticles and the NESD 

L-dopa release from the nanoparticles over a 75hr period was 4.21% (Figure 5.3a). The 

second hour saw the majority of L-dopa release (0.019%), in comparison to the total amount 

of L-dopa release. L-dopa release over the sampling period occurred gradually with minimal 

increment of L-dopa release. The scaffold retarded the release of L-dopa significantly which 

can be attributed to the Mw of PLGA (Mw=48000) and the hydrophobicity of it's constituents 

(PLA and PGA) which imparts high erosion resistance (von Burkersroda et al., 2002). The 

capacity of the PLGA polymer to undergo hydrolysis and consequently biodegradation is 

influenced by the crystalline properties of the PLGA polymer (Jain, 2002). L-dopa release 

from the PLGA nanoparticles dispersed within the scaffold (Figure 5.3b) displayed a lag 

y   = 11.383x 
R2 =  0.9997 



 111 

phase of 2hrs compared to the native nanoparticles. It can therefore be deduced that the 

scaffold aided in controlling DA release by creating diffusion resistance pathways. 
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Figure 5.3: L-dopa release profiles from (a) L-dopa-loaded PLGA nanoparticles (SD≤0.0012) 
and (b) NESD in PBS (pH 6.8; 37ºC); (SD≤0.006) 
 

5.3.4. Morphology of L-dopa-loaded PLGA nanoparticles 

Figure 5.4a shows uniformly distributed L-dopa-loaded PLGA nanoparticles and presence of 

aggregation. Figure 5.4b depicted an isolated L-dopa-loaded PLGA nanoparticle indicating 

PLGA and encapsulated L-dopa 

 

 
Figure 5.4: TEM images of (a) an isolated L-dopa-loaded PLGA nanoparticle and (b) a 
cluster of L-dopa-loaded PLGA nanoparticles  
 

 

 

 

 

 

b) 

a) b) 

a) 
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5.3.5. Structural polymeric variation of polymer, L-dopa and L-dopa-loaded PLGA 

nanoparticles 

L-dopa is decarboxylated to DA by the enzyme dopa decarboxylase. The only structural 

difference between L-dopa and DA is the presence of a -COOH (2500cm-1-3000cm-1), 

positioned on the terminal group of alanine, on L-dopa displayed in the FTIR (Figure 5.5). 

The -C=O that forms part of -COOH group is displayed at 1748.93cm-1. These groups 

indicated the presence of L-dopa in the L-dopa-loaded PLGA nanoparticles. The primary 

amine and the aromatic -OH groups present on both molecules L-dopa and DA are essential 

for activity of the molecules. FTIR of both the native L-dopa and L-dopa-loaded PLGA 

nanoparticles have peaks of 1087.36cm-1 which falls in the range in which an aliphatic -C-N 

stretch occurs. However, the peak of the aromatic -OH in the L-dopa-loaded PLGA 

nanoparticles group which occurs very strongly in the 3200-3600cm-1 range, could be masked 

by the peaks occurring in the polymer over the same wavelength range. The FTIR spectra 

indicated that PLGA and L-dopa (native) maintained its backbone structure in the formation of 

L-dopa-loaded PLGA nanoparticles. There was an absence of any newly formed compounds 

that may have aided in retarding L-dopa release. However the FTIR spectra confirmed that 

nanoparticles were made up of both L-dopa and PLGA. 

 

Figure 5.5: FTIR spectra for L-dopa, PLGA, L-dopa free and L-dopa-loaded PLGA 

nanoparticles 
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Proposed PLGA and DMSO employing liquid FTIR analysis 
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Figure 5.6:  Proposed PLGA and DMSO chemical interaction 
 

 
Figure 5.7: Liquid FTIR spectra for PLGA and DMSO 
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In Figure 5.7, the broad band in the 3200-2600 cm-1 region is due to the oxygen-hydrogen (O 

-H) stretch of the hydroxyl group. The IR spectra of carboxylic acid derivatives resulted in the 

formation a strong C=O stretch in the 1690-1760 cm-1 region (as indicated in the 1765.14 cm-

1 band). The C-O bond occurred over the 1080-1300 cm-1 region (as indicated in the 1170.64 

cm-1 band). The thiocarbonyl (C=S) and S-OR ester possessed a stretched frequency  at 

1050-1200 cm-1 and 700 and 900 cm-1 region respectively. These spectra are supported by 

the chemical reaction in Figure 5.6. 

 

5.3.6. L-dopa-loaded PLGA nanoparticle size and stability 

The L-dopa-loaded nanoparticles showed a smaller size (113nm), and zeta potential (-

32.8mV) in comparison to L-dopa-free nanoparticles (175nm, 0.019 and -23mV). The 

reduced size of the L-dopa-loaded nanoparticles could be attributed to the disturbance of 

interfacial turbulence due to the presence of the L-dopa. The principles of interfacial flow and 

turbulence is explained by the Maragoni effect (Fessi et al., 1989) in that liquids with high 

surface tensions will pull on their surrounding media more strongly in comparison to liquids 

with low surface tension. Turbulence arises from the spontaneous agitation of these liquids 

with different surface tensions resulting in changes in flow. The negative zeta potential may 

be attributed to the presence of carboxyl groups of PLGA.  The use of the overhead stirrer 

was seen to have the potential to decrease particle size (143.2nm) in relation to the magnetic 

stirring, nanoparticle size (194.5nm), but also resulted in an irregular zeta potential value at 

0.072mV.  The addition of PVA under magnetic stirring did not produce favourable results on 

particle size (213.2nm) and zeta potential (-14.5mV). It however stabilized the irregular zeta 

potential values that resulted from the use of the overhead stirrer.  The irregularities that 

occurred in particle size range was due to the surfactant that suppressed interfacial flow, 

which is a crucial stage in the nano precipitation method. The effect of varying needle gauge 

size had no significant effect on nanoparticle size, distribution and zeta potential.  
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5.4. Investigation of NT-loaded CAP Nanoparticles  

5.4.1. Material and Methods 

5.4.1.1. Materials 

Cellulose acetate phthalate (CAP) (Mw=49,000g/moL), poly(vinyl alcohol) (PVA), acetone, 

methanol and NT ((−)-1-Methyl-2-(3-pyridyl)pyrrolidine) (Mw=162.23g/mol) (NT) were all 

purchased from Sigma Aldrich (St. Louise, MO, USA). All other reagents were of analytical 

grade and used as purchased. 

 

5.4.2. Preparation of NT-loaded CAP nanoparticles 

NT-loaded nanoparticles were prepared using an adapted emulsification–diffusion technique, 

previously reported (Piñón-Segundo et al., 1996). Briefly, 500mg of CAP and 50mg NT were 

dissolved in acetone and methanol (3:7 mixture), to which, a 1%w/v PVA solution was added. 

The solution was agitated for 30min using a magnetic stirrer (Fried Electric, Haifa, Israel) set 

at 700rpm. A submicronized oil in water emulsion was spontaneously formed due to 

immediate reduction of the interfacial tension with rapid diffusion of organic solvent into the 

aqueous phase representative of the Marangoni Effect (Poletto et al., 2008). Excess solvent 

was evaporated from the suspension using a Rotavap (Rotavapor® R210, Switzerland) at 

60°C for 1hr and the resulting solution was centrifuged (Optima® LE-80K, Beckman, USA) at 

20,000rpm for 20min.  The sediment layer containing nanoparticles was removed and 

lyophilized for 24hr hours at 25mtorr to obtain a free-flowing powder. 

 

5.4.3. Determination of NT entrapment efficiency of CAP nanoparticles 

A calibration curve for NT was determined using a known series of concentrations of NT in 

PBS pH 6.8. In order to assess the entrapment efficiency of NT within the CAP nanoparticles, 

post-lyophilized powdered samples were accurately weighed and completely dissolved in 

PBS (pH 6.8; 37°C). The L-dopa content was analyzed by UV spectrophotometry at λ269nm 

(Hewlett Packard 8453 Spectrophotometer, Germany) and computed from a standard linear 

curve of DA in PBS (pH 6.8; 37°C) (R2=0.99). Chapter 3, Equation 3.3 of this dissertation was 

utilized to compute the Drug Entrapment Efficiency (DEE). 
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5.4.4. In vitro NT release studies from CAP nanoparticles 

In vitro release studies were performed on the NT-loaded nanoparticles utilizing a shaking 

incubator (Labex, Stuart SBS40®, Gauteng, South Africa) set at 20rpm. The NT-loaded 

nanoparticles were immersed separately in 100mL PBS (pH 6.8, 37°C) contained in 150mL 

glass jars. At predetermine time intervals 3mL samples of each release media were removed, 

filtered through a 0.22µm Cameo Acetate membrane filter (Millipore Co., Bedford, MA, USA) 

and centrifuged at 20,000rpm (Redhead et al., 2001). The supernatant was then removed 

and analyzed by UV spectroscopy at a maximum wavelength of λ269nm for NT content 

analysis. NT release was quantified using a linear standard curve (R2=0.99). An equal 

volume of NT-free PBS was replaced into the release media to maintain sink conditions. 

 

5.4.5. Morphological characterization of the NT-loaded CAP nanoparticles 

Morphological characterization of the nanoparticles revealed the shape, surface, structure 

and size homogeneity and possible degree of aggregation.  Surface morphology was 

characterized by Scanning Electron Microscopy (SEM), (JEOL, JEM 840, Tokyo Japan).  

Photomicrographs were taken at different magnifications and samples were prepared after 

sputter-coating with carbon or gold (N=10). Nanoparticle size and shape was further explored 

using cryo-Transmission Electron Microscopy (TEM) (JEOL 1200 EX, Tokyo, Japan, 120keV) 

for higher definition and resolution. Samples were prepared by placing a dispersion of 

nanoparticles in ethanol on a copper grid with a perforated carbon film followed by 

evaporation and viewing at room temperature (N=10). 

 

5.4.6. Determination of size and zeta potential of NT-loaded CAP nanoparticles 

The nanoparticle zeta potential measurements were obtained using a Zetasizer Nano ZS 

(Malvern Instruments Ltd, Malvern, Worcestershire, UK). Each sample (1%w/v) was 

appropriately diluted with deionised water, filtered (0.22µm filter Millipore Co., 

Massachusetts, USA) to maintain the number of counts per second in the region of 600 

(Layre et al., 2006) and placed into disposal cuvettes (size) or capillary cells (zeta potential) 

(Malvern Instruments Ltd, Malvern, Worcestershire, UK. The viscosity and refractive index of 

the continuous phase were set to those specific to deionized water. Measurements were 

taken in triplicate with multiple iterations for each run in order to elute size intensity and zeta 

potential distribution profiles. 
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5.5. Results and Discussion  

5.5.1. Calibration curve for NT in PBS (pH 6.8; 37ºC) for the determination of the 

concentration of NT in CAP nanoparticles 

Figure 5.8 displays a calibration curve obtained for NT in PBS (pH 6.8; 37ºC) employing a UV 

spectrophotometry at λ269 (Hewlett Packard 8453 Spectrophotometer, Germany). 
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Figure 5.8: NT calibration curve at 269 in PBS (pH 6.8; 37ºC) 

 

Series concentrations of NT were made up ranging from 0.01mL to 0.04mL. A calibration 

curve for NT was constructed (Figure 5.7) and employed for the determination of DEE%.   

 

5.5.2. NT entrapment efficiency of CAP nanoparticles 

The DEE was calculated at 58%±2.47, this was much lower in comparison to the other 

nanosystems formulated in this study. This may be attributed to the water solubility of NT 

(50mg/100mL) being lower than that of DA (100mg/mL), causing the NT to diffuse into the 

organic phase thereby decreasing the DEE. 

 

 

 

 

 

 

 

 

y   =  5.12 x 
R2 = 0.9991 
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5.5.3. In vitro NT release from CAP nanoparticles 

Figure 5.9 is illustrates the in vitro release profile of NT from the CAP nanoparticles over a 

25hr period.  
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Figure 5.9: Profile of NT release from CAP nanoparticles (SD≤0.01) in PBS (pH 6.8; 37ºC) 

 

The release profiles for NT further confirmed the decreased solubility of NT in PBS (pH 6.8; 

37ºC). The drug delivery system showed enhanced control release of NT (0.415% release in 

24hr) as the phenomenon of NT release was regulated by dissolution of the polymer and 

thereafter NT. This process occurred at a slower rate due to poor solubility of NT in an 

aqueous environment. 
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5.5.4. Surface morphology of NT-loaded CAP nanoparticles 

Figure 5.10 is a microscopic image that displays the morphology and sizes of NT-loaded CAP 

nanoparticles formulated in an adopted emulsification-diffusion approach 

 

Figure 5.10: TEM image of NT-loaded CAP nanoparticles  

 

TEM images (Figure 5.10) of NT-loaded CAP formulations revealed uniform spherical shaped 

NT-loaded CAP nanoparticles with a size range of 25-100nm and embedded NT particles 

with a size range of 2-20nm within their structure. A helical arrangement/ association was 

present in the images and this instability was further confirmed by the undesirable zeta 

potential. 

 

5.5.5. NT-loaded CAP nanoparticle size and zeta potential 

Results revealed a particle size of 172nm, this shows that while the particle size was in the 

desirable range (<200nm), the variation in size (PdI value) was significantly high. The zeta 

potential profile for NT was erratic displaying two peaks in the distribution curves with a value 

of -15.4mV revealing that the formulation did not display suitable stability. The method 

employed for the formulation of NT nanoparticles was not reproducible in that there was an 

absence in uniformity of particle size which could be attributed to the low zeta potential that 

may have caused the particles to agglomerate resulting in a variation in particle size. 
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5.6. Investigation of DA-loaded Polymeric Nanofibers 

5.6.1. Materials and Methods 

5.6.1.1. Materials 

Cellulose acetate phthalate (CAP) (Mw=2534.12g/moL), poly(vinyl alcohol) (PVA) 

(Mw=49,000g/moL),, acetone, methanol and dopamine hydrochloride (DA) (Mw=189.64g/moL)  

were all purchased from Sigma Aldrich (St. Louise, MO, USA). Deionized water was obtained 

from a Milli-Q water purification system (Milli-Q, Millipore, Billerica, MA, USA). All other 

reagents were of analytical grade and used as purchased. 

 

5.6.2. Preparation of DA-loaded polymeric nanofibers  

DA (0.9g) was added to a PVA solution (9%w/v) and a CAP in acetone solution (0.16%w/v) and 

agitated for 15min @50°C using a magnetic stirrer (Fried Electric, Haifa, Israel) to produce 

DA-loaded PVA and DA-loaded CAP nanofibers respectively. Polymeric solutions (1mL), DA-

free and DA-loaded, were placed into 5mL pipettes and secured to a custom-built 

electrospinning device equipped with a voltmeter. The voltage was increased at 0.5Kv/sec 

until the Taylor Cone was visible and allowed for the spinning of fibers which were collected 

on an aluminum screen for analysis. The voltage was set at 12kV at a distance of 3cm and 

14Kv at a distance of 1cm, from the pipette stand to the aluminium screen, for the DA-loaded 

PVA and DA-loaded CAP nanofibers respectively. DA-free polymeric nanofibers were formed 

in a similar manner.  

 

5.6.3. Determination of DA entrapment efficiency of polymeric nanofibers 

In order to assess the entrapment efficiency of DA within the CAP and PVA nanofibers, 

electrospun samples were accurately weighed and completely dissolved in PBS (pH 6.8; 

37°C). The DA content was analyzed by UV spectrophotometry at λ280nm (Hewlett Packard 

8453 Spectrophotometer, Germany) and computed from a standard linear curve of DA in 

PBS (pH 6.8; 37°C) (R2=0.99). Chapter 3, Equation 3.3 of this dissertation was utilized to 

compute the Drug Entrapment Efficiency (DEE). 

 

5.6.4. Morphological characterization of DA-loaded polymeric nanofibers 

Morphological characterization of the nanofibers revealed the shape, surface, structure and 

size homogeneity and possible degree of aggregation.  Surface morphology was 

characterized by Scanning Electron Microscopy (SEM), (JEOL, JEM 840, Tokyo Japan).  

Photomicrographs were taken at different magnifications and samples were prepared after 

sputter-coating with carbon or gold (N=10). Nanofiber size and shape was further explored 
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using cryo-Transmission Electron Microscopy (TEM) (JEOL 1200 EX, Tokyo, Japan, 120keV) 

for higher definition and resolution. Samples were prepared by placing a dispersion of 

nanofibers in ethanol on a copper grid with a perforated carbon film followed by evaporation 

and viewing at room temperature (N=10). 

 

5.7. Results and Discussion  

5.7.1. DA entrapment efficiency of polymeric nanofibers 

DEE was calculated as 85%±3.63 and 78%±2.60 for the DA-loaded PVA and CAP nanofibers 

respectively.  This result proved that DA had a greater likelihood to be entrapped into the 

PVA fibers due to its hydrophilic nature.   

 

5.7.2. Size and morphology of DA-loaded polymeric nanofibers 

Figures 5.11-5.13 are microscopic images that display the morphology and sizes of DA-

loaded PVA and CAP nanofibers formulated in an employing an electrospinning technique. 

 
Figure 5.11: SEM images of (a) DA-loaded PVA nanofibers revealed longitudinal solid fibers 
with a minimal length of 20µm and (b) DA-loaded CAP nanofibers showed artifacts in the 
structure  
 

 
Figure 5.12: TEM images of DA-loaded PVA nanofibers (a) displaying an uneven distribution 
of PVA and DA along its length and (b) a closer look showed fibers of minimal diameters of 
5nm  

a) b) 

b) a) 

1µm 0.5µm 

50nm 10nm 
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Figure 5.13: TEM image of DA-loaded CAP nanofibers revealed a diameter of 1.5µm  
 
SEM and TEM images indicated a larger diameter in the DA-loaded CAP (Figure 5.11b and 

Figure 5.13) nanofibers in comparison to the DA-loaded PVA nanofibers (Figure 5.11a and 

Figure 5.12) this could possibly be due to the presence of an ideal voltage in the DA-loaded 

PVA formulation that lead to an increased elongation of nanofibers. The employment of a 

highly volatile organic solvent (acetone) which resulted in the rapid evaporation of the 

acetone and the clumping of the polymeric material thereby increasing diameter. Despite the 

evaporation of the acetone, TEM images of DA-loaded CAP nanofibers (Figure 5.13) showed 

a greater degree of uniformity in structure in comparison to DA-loaded PVA nanofibers 

(Figure 5.12a and b) which showed an uneven distribution of mass along its length, this could 

be due to the continuous replacement of the DA-loaded CAP solution that took place in 

formulation.  
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5.8. Concluding Remarks 

 

L-dopa-loaded PLGA nanoparticles were formulated employing an adopted nanoprecipitation 

method overcoming difficulties such as limited solubility of the L-dopa. NanoZS analysis 

disclosed particles, formulated under different processing techniques, of 113-213.2nm. FTIR, 

both solid and liquid, was conducted on the formulations that showed the various reactions 

that took place at the time of formulation. DEE was calculated as 61.244% as a result of the 

L-dopa affinity to the solvents modified in the development of the methodology of the system. 

TEM images sought to identify the aggregation of the particles with high yields. In vitro L-

dopa release from the PLGA nanoparticles and NESD again proved that the scaffold 

provided the foundation for controlled delivery of L-dopa. 

 

NT-loaded CAP nanoparticle formulations showed a decrease in DEE% in comparison to the 

other nanosystems evaluated. The particles displayed promising particle sizes however zeta 

size profiles and TEM images revealed aggregation and thereby instability of these 

formulations. 

 

Electrospinning technology was employed in the formation of DA-loaded PVA and CAP 

nanofibers of minute diameters and smooth morphologies (indicated from SEM/TEM images). 

DEE was noted as 85% and 78% for DA-loaded PVA and CAP fibers respectively. The novel 

approach and ideal properties of these fibers showed great promise for their prospective 

employment in drug delivery systems however issues such as instability and low yield need 

to be addressed. 

 

Overall, the results for all formulations showed that the methodology requires further 

optimization prior to it's evaluation in the in vivo environment however the drug delivery 

system showed potential for the employment as an alternative treatment for various diseases. 
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CCHHAAPPTTEERR  66  

CCYYTTOOTTOOXXIICC  EEVVAALLUUAATTIIOONN  OOFF  NNAANNOO--EENNAABBLLEEDD  SSCCAAFFFFOOLLDD  DDEEVVIICCEE  OONN  CCAARRCCIINNOOMMIICC  

BBRRAAIINN  AANNDD  FFRREESSHHLLYY  IISSOOLLAATTEEDD,,  HHEEAALLTTHHYY  WWHHIITTEE  BBLLOOOODD  CCEELLLLSS  

 

 

6.1. Introduction 

Cytotoxicity is a measure of the degree to which a compound is toxic to cells, possibly 

resulting in cell death. In vitro cytotoxic testing methods include the 3–(4,5–dimethylthiazol-2-

yl)–2,5–diphenyltetrazolium bromide (MTT), trypan blue (TB), sulforhodamine B (SRB) and 

(4-[3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate 

sodium salt) (WST) assays and clonogenic assays (Matsuoka et al., 2000). These tests are 

vital in the research and development process and, within the context of the current study, 

allows for cytotoxicity levels to be evaluated prior to in vivo studies. 

 

The nigrostriatal depletion of dopaminergic neurons that defines PD results in the 

augmentation of DA to rectify the neurotransmitter imbalance (Lai and Yu, 1997). An increase 

in DA concentration leads to an escalation in the production of hydrogen peroxide and 

thereby apoptotic events.  Exogenous treatment for PD (L-dopa and DA) has been postulated 

to exacerbate the degeneration present in this condition (Lai and Yu, 1997) as explained in 

Chapter 2 in this dissertation. 

 

DA, both endogenous and exogenous, is highly neurotoxic in a dose-dependent manner 

(Stokes et al., 1999). The metabolism of DA results in the production of reactive oxygen 

species which causes cytotoxicity in cells (Stokes et al., 1999). DA-induced apoptosis has 

been identified in chick embryonic sympathetic nerve cells (Ziv et al., 1994) at high 

concentrations (100-300µM) after a 24hr exposure period, and rat neuronal cells 

(Walkinshaw and Waters, 1995). In vivo studies in rats have also shown that intrastriatal DA 

injections (0.05-1.0µM) produced dose-dependent neurotoxic events such as neuronal loss 

and gliosis in various areas of the brain after a 24hr exposure period (Hastings et al., 1996). 

 

The auto-oxidation of DA (Figure 6.1) leads to the formation of a highly reactive quinone, a 

molecule that has the potential to alter cellular components such as DNA, lipids and proteins 

(Stokes et al., 2000). The oxidation is further accelerated by the presence of metals such as 

copper and iron, which, in the clinical setting, is elevated in PD. Enzyme-catalysed oxidation 
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of DA is also responsible for quinone formation. The excess chronic production of the 

reactive molecule may thus have significant consequences in terms of cell viability. 
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Figure 6.1: Schematic representation of one of the possible mechanisms involved in the 
metabolism of DA leading to cytotoxic and genotoxic events (Stokes et al., 1999) 
 

There are numerous methods used to assess of the viability of cells; the 3–(4,5–

dimethylthiazol-2-yl)–2,5–diphenyltetrazolium bromide (MTT) assay being one of them. The 

MTT assay is colorimetric in that it determines the survival and growth of cells (upon 

exposure to the compound, in this case) by measuring the cells ability to reduce the MTT salt 

(yellow) to it’s formazan crystal form (purple) (Freimoser et al., 1999). The reduction process 

is indicative of the functioning of the cell’s mitochondrial succinate dehydrogenase and thus 

indicates cell viability (Yedjou et al., 2006). The reaction is outlined in Figure 6.2 as follows: 
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Figure 6.2: In vivo colorimetric reaction that occurs in living cells when exposed to MTT 
(Dojindo Laboratories, 2000) 

At the outset, this chapter sought to address the possible cytotoxicity of the NESD and it's 

components in carcinomic SK-N-MC as well as healthy white blood cell lines. The 

determination of the cytotoxic activity of these compounds allowed for the progression of the 

study into in vivo implantation of the NESD in the rat brain. 
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6.2. Materials and Methods 

6.2.1. Routine cell culture 

The SK-N-MC cells (ATCC, U.S.A.) are derived from a neuroepithelioma of human origin. 

The cells were routinely maintained in complete growth medium consisting of Minimum 

Essential medium (Eagle) with 2mM L-glutamine and Earl’s Balanced Salt Solution adjusted 

to contain 1.5g/L sodium bicarbonate, 0.1mM non-essential amino acids and 1mM sodium 

pyruvate, further supplemented with 10% heat-inactivated foetal bovine serum. All products 

were purchased from Invitrogen (BD Bioscience, California, USA). The cells were incubated 

at 37°C in a humidified incubator circulated with 95% O2 /5% CO2 (Afrox, South Africa).  

 

6.2.2. Isolation of white blood cells 

Blood (6mL) was collected by venous puncture from healthy individuals (Human Ethics 

Clearance no. M070519, see Appendix of this dissertation). White blood cells (WBCs) were 

isolated using a Ficoll- Hypaque gradient (3:1) tube (Latimer et al., 1989, US Patent 

4591557). The tubes were centrifuged for 30min at 1500rpm (Sorvall T6000D, GMI 

Incorporated, Minnesota, USA). Upon centrifugation, blood separates according to the 

weights of the different components  

 

 

 

(Figure 6.3) thereby allowing for the separation of the specific cells. The buffy coat, 

containing WBCs, was used in the WBCs cytotoxicity assay. 

 

Figure 6.3: Diagrammatic representation of the separation of blood that occurs upon it's 
centrifugation in Ficoll- Hypaque gradient (3:1) tubes (Lifelearn Inc, 2004) 
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The buffy coat was removed using a pipette (1mL) and washed three times with sterile red 

cell lysis buffer (500µL) containing ammonium chloride (0.15M), potassium carbonate (1mM) 

and ethylenediaminetetraacetic ethylenediaminetetraacetic acid (0.1mM). The buffy coat and 

red cell lysis buffer were inverted five times and thereafter placed in an incubator  (HERAcell® 

240 CO2 Incubator, Thermo Scientific, USA) (5% CO2; 37°C) for 5min. The solution was 

centrifuged for 10min at 5500rpm (Jouan MR1812, Scientific Products, South Africa), the 

supernatant removed and the process repeated until a clear solution (pure WBC) was 

obtained. The WBC sediment was resuspended in fresh RPMI-1640 media and counted 

using a hemocytometer (Neubauer 0.025mm, depth 0.1mm). WBCs were seeded into sterile 

96-well plates at a density of 30000cells/well, to a final volume of 180 µL. 20µL of each 

treatment was added to the wells (Section 6.2.4) and incubated at 37°C for 24hr. The MTT 

assay was then conducted to determine cell viability. 

 

6.2.3. Trypsinisation and cell counting / seeding of cells 

The SK-N-MC cells were trypsinised using 500µL 0.25% trypsin containing 0.1% EDTA 

(Highveld Biologicals, SA) and incubated at 37°C for 10min. The cells were resuspended in 

fresh complete medium and centrifuged at 1000 rpm for 5min to pellet the cells. The cell 

pellet was then resuspended in ~5 mL medium. The number of cells per mL was determined 

using the trypan blue exclusion assay in which viable cells appear yellow, while non-viable 

cells stain blue. Only cell suspensions with a viability in excess of 95% were used in the 

assays.  

 

Cells (180µL) were seeded into sterile 96-well plates at a density of 15 000 cells per well. 

Cells were incubated overnight to facilitate attachment to the wells. Thereafter, 20µL of each 

treatment was added to the wells as described in Chapter 6 Section 6.2.4 in this dissertation, 

and incubated at 37°C for 24 and 48hr. The MTT assay was then conducted to determine cell 

viability. 
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6.2.4. Exposure of cells to the different compounds 

Cells were exposed to the following compounds for 24hr (WBCs) and 48hr (SK-N-MC cells): 

a) DA-free NESD (0.5mL alginate) 

b) NESD (5mg DA in 1mL of alginate) 

c) DA (3.79mg) 

d) DA-loaded CAP nanoparticles (1mg) 

e) 5’FU (260.16mg) 

f) Control (cells with medium only) 

All assays were performed in triplicate. 

 

6.2.5. Calibration of MTT assay 

Cells were centrifuged at 1000rpm (Optima® LE-80K, Beckman, USA) for 3min. The cell 

pellet was resuspended in 20mL of media. 200µL of each dilution was added to eppendorfs, 

to which 50µL MTT (5mg/mL) was added. The samples were then incubated for 2hr at 37ºC. 

The samples were then centrifuged at 1000rpm (Optima® LE-80K, Beckman, USA) for 5min 

and the supernatant removed. The cell pellet was resuspended in 200µL DMSO and the 

absorbance was measured at 540nm with a microplate reader (Absorbance Labsystems 

Multiskan MS Version 2.4). Equation 6.1 was used to determine the number of viable cells in 

each sample. 

 % cell viability= [no of viable treated cells]/ [no of viable control cells] x 100%     Equation 6.1 

 

 

 

 

 

 

 

 

 

 

 

 

 



 130 

6.2.6. The MTT assay 

 

The WBCs and SK-N-MC cells were each treated with compounds (20µL) as shown in Figure 

6.4. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.4: A schematic representation of the layout of the compounds in the 96-well plate as 
used in the MTT assays on WBCs and SK-N-MC cells  
 
After the incubation period, 50µL MTT was added to each well. The plates were incubated at 

37oC for 2hr. Thereafter, the plates were centrifuged at 3000rpm for 10min and the 

supernatant removed. Formazan crystals were dissolved in 200µL DMSO, and the 

absorbance read at 540nm using a microplate reader (Absorbance Labsystems Multiskan MS 

Version 2.4) 
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6.2.7. Preparation of MTT solution 

MTT (0.5%w/v) was prepared as per United Scientific Protocol (USA). MTT (5g), obtained 

from Sigma (Johannesburg, South Africa), was dissolved in 1000mL PBS (pH 7.4). The 

solution was filter-sterilised using a 0.22µm Cameo acetate membrane filter (Millipore Co., 

Bedford, Massachusetts) and stored in the dark at 4°C until use. 

 

6.3 Results and Discussion  

6.3.1. Calibration curve of post-MTT exposure for the determination of the number of 

viable cells present in the media 

All experiments were conducted in triplicate and the results represented as mean ± standard 

error (SE). The statistical significance of all treatments were evaluated using the GraphPad 

Prism3 Instat package, using ANOVA, Student-Newman-Keuls test. A probability limit of 

p<0.05 was considered to be significant. 

The calibration curve obtained for both WBC and SK-N-MC cells (Figure 6.5a and b, 

respectively) showed a linear correlation (R2 = 0.99). This means that the resultant 

absorbance obtained at 540nm is directly proportional to the number of viable cells present in 

each well. The absorbance readings were thus used to calculate the number of viable cells 

present in the wells after the respective exposures to the different compounds.  
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Figure 6.5: MTT calibration curve for (a) WBCs and (b) SK-N-MC cells 

 

6.3.2. Cytotoxicity to WBCs  

DA-free and DA-loaded NESD reduced cell viability to 70-80% (Figure 6.6). The DA-loaded 

CAP nanoparticles did not adversely affect cell viability as ±100% cell viability was noted, 

while DA appeared to have increased the number of cells by approximately ±15%.  It was 

noted that the DA and DA-loaded CAP nanoparticles showed similar cell viability profiles 

proving that the inclusion of CAP into the formulation did not have a detrimental effect of cell 

growth. Once again, 5’FU showed a cytotoxic effect (50% cell growth) on the WBCs 

confirming its purpose in the study as a positive control. 

y   = 3E-06x 
R2 = 0.9929 

b 
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Figure 6.6: Graph displaying percentage cell viability of WBCs after a 24hr exposure period 
to the various compounds. Cell viability is reported in relation to the control cell sample which 
was equated to 100%. 

6.3.3. Cytotoxicity directed against the carcinomic SK-N-MC cells   

After a 24hr incubation period (Figure 6.6), the DA-loaded and DA-free NESD significantly (p 

<0.05) reduced the viability of the SK-N-MC cells (± 25% viability). This decrease was also 

significantly (p<0.05) greater than the exposure to 5'-FU. DA did not adversely affect cell 

viability, as 100% viability was noted, while the DA-loaded CAP nanoparticles only reduced 

cell viability to ± 75%.  

After 48hr (Figure 6.7), cell viability of the DA-free and DA-loaded particles did not differ 

significantly (p>0.05 for both) from the results obtained after the 24hr exposure period, while 

a significant reduction in cell viability was noted after 48hr exposure to the DA-loaded CAP 

nanoparticles (p<0.05). This is also seen for the 5'-FU-treated cells. DA did not significantly 

reduce cell viability after 48 hr.  
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Figure 6.7: Graphs displaying percentage cell viability of SK-N-MC cells after exposure 
periods to the various compounds. Cell viability is reported in relation to the control cells 
which was equated to 100%. 
 
6.3.4. Limitations for the employment of MTT assay in the present study 

The following effects could have interfered with the MTT assay and resulted in erroneous 

results: 

• The colour of the media discoloured upon addition of the DA-loaded CAP 

nanoparticles and thus was noted to have lowered the pH of the media. Attempts to 

change the solvent for this sample failed to cause dissolution of the particles.   

• Upon its addition to the media, the NESD matrix absorbed some of the media.  

• The NESD size may have hindered growth of the cells competing with the cells for 

space by occupying the majority of the space within the plates and thereby space for 

the cells to grow. 

• Some of the MTT was absorbed onto the NESD, thereby preventing interaction with 

the mitochondria in the viable cells.  
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6.4. Concluding Remarks 

This chapter sought to address the possible cytotoxic effects of the NESD on WBCs and 

human carcinomic SK-N-MC cells. The use of the colorimetric MTT assay allowed for the 

determination of cell growth upon exposure to the treatment compounds. Results for the 

assays on the WBCs and SK-N-MC cells revealed that DA-free and DA-loaded NESD were 

the most cytotoxic to the cells. It was later established that these results could be attributed to 

the absorptive nature of the NESD, causing them to soak up the cell media, thereby hindering 

cell growth. In earlier studies, (Weingarten and Zhou, 2001; Lai and Yu, 1999, Clement et al., 

2002) DA had been reported to be cytotoxic to cells at higher doses (mM). In the present 

study, the concentrations of DA employed were much lower (nM) and so could have 

attributed to the growth of both carcinomic and healthy cells. DA-loaded CAP nanoparticles 

were confirmed to be detrimental to carcinomic cell growth with an increase in the exposure 

duration whereas results from the healthy WBC study showed that DA-loaded CAP 

nanoparticles promoted cell growth. The DA-loaded CAP nanoparticles may have a selective 

anti-cancer effect on the cells. Overall, results for the MTT assays on both carcinomic WBCs 

and SK-N-MC cells revealed that the NESD does not display any noteworthy unfavorable 

effects on cell survival and growth. 
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CCHHAAPPTTEERR  77  

IINN  VVIIVVOO  EEVVAALLUUAATTIIOONN  OOFF  TTHHEE  NNAANNOO--EENNAABBLLEEDD  SSCCAAFFFFOOLLDD  DDEEVVIICCEE  UUPPOONN  

IIMMPPLLAANNTTAATTIIOONN  IINNTTOO  TTHHEE  PPAARREENNCCHHYYMMAA  OOFF  TTHHEE  FFRROONNTTAALL  LLOOBBEE  OOFF  TTHHEE  RRAATT  

BBRRAAIINN  

  

 

7.1. Introduction 

Animal models are an invaluable tool in experimental medical science because they enable 

one to study the pathogenetic mechanisms and thereby the possible therapeutic strategies of 

human diseases. Once the causative mechanism is understood, PD does not naturally occur 

in animals however scientists have found neurotoxins that sufficiently mimic the disease 

(Gerlach, 1996). 

 

Mice have become the most established animal model for research into PD however there 

are several drawbacks in the lack of anatomical similarity between the mouse model and 

humans. For this reason, the monkey model has received much favor in that the anatomical 

structures present within the animal are most similar to that of the human. However, 

tremendous ethical constraints limit the use of the monkey model in in vivo drug studies 

(Halbach, 2005). The Sprague-Dawley rat model was selected for use in this study. The rat 

model held the advantage of greater brain volume for implantation of the NESD than the 

mouse model. 

 

7.1.1. Biocompatibility of implantable devices 

"The ability of a material to perform with an appropriate host response in a specific 

application" (Williams, 1999). The interest in biocompatible polymeric devices for implantation 

into the body has gained a surge of interest in the fields of orthopedics, cardiovascular and 

ophthalmics to name a few (Katz, 2001). The concept of biocompatibility is further explained 

in Figure 7.1. 
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Figure 7.1: Schematic diagrammatic representation of immunological response to implant within the CNS (adapted Fournier et al., 
2003; Polikov et al., 2005) 
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This chapter sought to develop a protocol for the surgical implantation of the NESD into the 

Sprague-Dawley rat brain model. Furthermore, issues of biocompatibility and bioerosion of 

the device were addressed while the elucidation of it's in vivo drug release profile formed the 

crux of this chapter. 

 

7.2. Materials and Methods 

7.2.1. Materials 

Solvents used for UPLC–MS/MS measurements were of UPLC grade, and all other reagents 

were of analytical grade. Double deionized water was obtained from a Milli-Q system, (Milli-

Q, Millipore, Johannesburg). Oases HLB were provided by Waters (Milford, MA, USA). 

Control blank rat plasma was supplied by healthy donors. Ammonium acetate 

(Mw=77.08g/mol), acetic acid (CH3COOH) (Mw=60.05g/mol), sodium hydroxide 

(Mw=40.00g/mol), dopamine hydrochloride (DA) (Mw=189.64g/mol) theophylline 

(Mw=180.17g/mol) from Sigma Aldrich (St. Louise, MO, USA). Healthy adult Sprague Dawley 

rats were used for the in vivo release study 

7.2.2. Technology Applied in the Present Study 

7.2.2.1.. Waters® Acquity Ultra Liquid Performance ChromatographyTM (UPLC) 

The UPLC allows for samples to be run with the shortest run time, highest sensitivity, but 

without compromising the selectivity of the assay (Dongre et al., 2008). Typically, UPLC 

refers to applications using porous sub-2 µm particles at high linear velocities (Waters 

supplies catalogue, 2008). UPLC parameters such as pH, flow rate, column type, and buffer 

concentration can be optimized to achieve the best sensitivity, peak shape and selectivity 

(Everley and Croley 2008). The UPLC allows for the identification of various compounds and 

the determination of their concentrations. Its application is with compounds that are non-

volatile in comparison to their mobile phase at the time of analysis. The concentration of the 

compounds is calculated by means of Beer-Lamberts Law:  

A = εbc            Equation 7.1 

Where A is the absorbance (calculated for each diode of the system) of the sample 

measured, ε is the molar absorbtivity of the sample, b is the pathlenght of the cuvette (1cm) 

and c is the concentration of the sample in moles per liter. 
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7.2.2.2. Evaporative Light Scattering (ELS) Detector 

The UPLC is coupled with an ELS detector which is responsible for the qualitative and 

quantitative analysis of drug loaded samples. 

The process ELS detection has three stages: 

• Nebulization: the effluent is transformed into a fine aerosol using nitrogen as a carrier 

gas; 

• Desolvation: the mobile phase is evaporated and condensed thereafter moving to the 

detector phase. The mobile phase should have a low viscosity and high volatility so as 

to increase the rate of evaporation thereby increasing the quality of the sample; and 

• Detection: the light source is exposed onto the particles, the particle size determines 

the intensity measured. 

The detector may be further coupled with a mass spectrophotometer or absorbance detector 

to assess the quality of the samples and ensure that all compounds present are identified. 

 
7.2.3.. Development of Methodology for the Surgical Implantation of the NESD into the 

Parenchyma of the Frontal Lobe of the Sprague-Dawley Rat Brain 

7.2.3.1. Pre-surgical preparation of rats 

Healthy male Sprague–Dawley rats (350±20g) were employed in this pilot study (Figure 7.2.). 

Rats were housed in cages, maintained under a 12hr light/dark cycle, fed a commercial diet, 

and given water ad libitum. 
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Figure 7.2: Schematic diagram representing the number of rats required for in vivo studies 
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Note: Rats had undergone surgical implantation with device at day 0. Sampling had taken 

place on days 3, 7, 14, 21 and 30 followed by euthanasia (n = 3). 

 

7.2.3.2. Pilot surgical technique for implantation of the NESD into parenchyma of the 

frontal lobe of the rat brain 

Animal Ethics no. 2007/76/4 (see Appendix of this dissertation).The technique for the 

insertion is analogous to the technique used for the insertion of an intracranial pressure 

monitor in the human subject. The rat was anaesthetized for the duration of the procedure 

which was performed in an aseptic manner. 

 

Rats were anesthetized with a mixture of ketamine (65mg/kg) and xylazine (7.5mg/kg). A 

small (0.5-1cm) para-midline right sided scalp skin incision was made. A hand-held twist drill 

was then used to make a controlled perforation of the skull. The resultant skull opening was 

approximately 0.5mm in diameter. The skull opening was followed by sharp incision of the 

dural lining; this was likely to be associated with a small volume of self-limiting bleeding. The 

brain parenchyma was then ready for insertion of the implant.  The cylindrically shaped 

implant had a volume of approximately 0.000354cm3 (length = 0.5cm, diameter = 0.3cm). 

The volume of the rat brain varies from 0.865 ± 0.026cm3 to 1.165 ± 0.071cm3 depending of 

the age of the rat i.e. implant was less than 20% of the rat brain volume. 

The skull defect was sealed with wax and the scalp insertion was closed with a single layer of 

appropriately sized non-absorbable suture. The rat then received Temgesic: (0.1mL diluted to 

1mL with ultra purified water), at a dose of 1mL post-operatively for pain relief with a 

rehydration treatment of 5% glucose in 0.9% saline. A series of behavioral asymmetry tests 

were performed on the rats to assess any degree of motor dysfunction present 

  
7.2.3.3. End points for experiments that induce illness in rats 

Rats that had experienced any degree of distress were removed from the study. Weight, eating 

and grooming habits were monitored periodically. Any significant fluctuations in these areas led to 

the removal of the rat affected from the study. The inclusion of a placebo NESD group allowed for 

the comparison against the experimental group in terms of the assessment of the degree of 

distress experienced by the rats. 
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7.2.3.4. Biological fluid sample collection from the rat model 

Rats received anesthesia with ketamine/xylazine mixture (as per 7.2.1.2)) prior to the sample 

collection. 

Blood: Sequential blood samples (5mL) were collected via cardiac puncture into heparin-

containing test tubes at predetermined time intervals. Plasma was separated by 

centrifugation for 8min at 1000g and stored at −70 °C until analysis. 

 

Cerebrospinal Fluid (CSF): The technique being analogous to that employed in Ethics 

Application 2005/86/5. The rats were euthanized prior to the procedure with sodium 

pentobarbitone (200mg/kg) and the skin overlapping on the neck (this is the skin where the 

head and neck meet to allow for insertion of the needle) was shaven. A device was specially 

made up consisting of a 25G needle attached to polyethylene tubing at one end and a 1mL 

syringe at the other end. The device was inserted into the cisterna magna to obtain the CSF 

(100-150µL). CSF samples were transferred to ependorfs (1.5mL) and placed on ice. 

Thereafter, the samples were centrifuged @10 000rpm (Optima® LE-80K, Beckman, USA) for 

20min, the supernatant was removed and stored in refrigerator  

@ -70ºC. 

 

Brain Tissue: The entire brain was removed and placed in formalin solution (10%v/v). 

 

7.2.3.5. Histological analysis of the rat brain tissue post-implantation of the NESD 

Rats were euthanized with sodium pentobarbitone and decapitated. Brain tissue was 

removed and placed in 10%v/v neutral buffered formalin. The tissue was then dehydrated, 

infiltrated and embedded in paraffin followed by transversion into 400µm slices and stained 

with hemotoxylin and eosin. The slides were then viewed microscopically to assess the 

presence/absence of inflammatory cell infiltration and markers of necrosis. 

 

7.2.3.6. Bioerosion studies on the NESD 

Devices were removed at various predetermined time intervals (5, 7, 14, 21 and 30 days) and 

their bioerosion was assessed using SEM (JEOL, JEM 840, Tokyo Japan).  

Photomicrographs were taken at different magnifications and samples were prepared after 

sputter-coating with carbon or gold. 
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7.2.4. Determination of in vivo drug release from Sinemet® and the NESD using UPLC 

analysis on biological fluids 

7.2.4.1. Preparation of priming solvents and mobile phases  

Strong Wash: Acetonitrile (90% v/v) and water (10% v/v). 

Weak Wash: Acetonitrile (10% v/v) and water (90% v/v). 

Mobile Phase A (98%): Ammonium acetate (7.09g) was dissolved in 1L of water, to give a 

0.1M solution. acetic acid was added to adjust the pH to 5.0 

Mobile Phase B (2%): Acetonitrile (100%v/v). 

Double deionised water (Milli-Q, Millipore, Johannesburg) of 18.2 MΩ cm−1 resistivity was 

used. The mobile phases were filtered a 0.22µm pore size Cameo Acetate membrane filter 

(Millipore Co., Bedford, Massachusetts). 

7.2.42. Preparation of standards  

Primary stock solutions of DA (100mg/mL) were prepared in doubly deionised water. The 

stock solutions were stored in polypropylene tubes with screw caps and kept in a refrigerator 

at 5 C. Working standard solutions of DA were prepared by diluting the primary solution with 

doubly deionised water. Drug-free human plasma (0.4mL) was spiked with appropriate 

working solutions of DA to produce final DA concentrations ranging from 0.0008-15.00µg/mL. 

Solutions of theophylline (internal standard, IS)) was constituted in doubly distilled water 

(1mg/mL). 

All solutions were filtered with a 0.22µm pore size Cameo Acetate membrane filter (Millipore 

Co., Bedford, Massachusetts). 

 

7.2.4.3. Solid Phase Extraction of blood and CSF 

The Generic Oasis® HLB Solid Phase Extraction (SPE) method was employed to determine 

the concentrations of methanol that would increase the purity of the analyte (DA) thereby 

allowing the determination of drug concentration in the samples. Oasis® HLB cartridges 

enabled with the Visiprep Vacuum Manifold and Standard Lid (Waters,) were conditioned with 
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methanol (1mL) and deionized water (1mL). The prepared calibration standards and plasma 

samples (as in 7.2.1.3.2.) were loaded onto the cartridges post-conditioning followed by a 

mild wash with 5% methanol (1mL). The strong wash entailed the employment of a gradient 

of concentrations (10-100%) of methanol (Figure 7.3) which were collected in separate 

testtubes (5mL) to which theophylline (0.1mL) was added. The samples were then placed in 

Waters certified vials (1.5mL) for analysis (Li et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 7.3: Diagrammatic account of the strategy for the optimization of the generic SPE 
method 
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7.2.4.4. Instrumentation and operating conditions of the UPLC system 

UPLC analyses were performed with a Waters Acquity Ultra Performance LC system 

(Waters, Milford, MA, USA) coupled with a PDA detector. UPLC separation was achieved on 

an Acquity UPLC BEH C18 column (50 mm × 2.1mm, i.d., 1.7µm particle size, Waters) 

maintained at 25 °C. The compounds were injected in the mobile phase with an injection 

volume of 3.7µl (partial-loop injection). Run time of 2min and flow rate of 0.500mL/min was 

calculated for the study. The equipment was primed with the washes and mobile phases for 

10 cycles of 5min each. Acetonitrile (100%v/v) was injected into the system so as to remove 

residue sample material from the column prior to the sample runs. Aliquots (1µL) of samples 

were injected into the UPLC system and thereafter processed. 

 

7.2.4.5. Calibration curves and limit of quantification for DA in plasma 

Analyte standard solutions (0.4mL) at 8 different concentrations, were added to 0.4mL of 

blank plasma. Acetonitrile (0.4mL) was added to each sample and centrifuged (Optima® LE-

80K, Beckman, USA) at 15000rpm for 10min. The supernatant of these samples were 

removed, subjected to the SPE procedure as detailed in 7.4.2.4. and injected into Waters 

Acquity Ultra Performance LC system (Waters, Milford, MA, USA). The analyte/IS peak area 

ratios were plotted against the corresponding analyte concentrations (expressed as ng/mL−1). 

Linearity equations and correlation coefficients (rc) were obtained by means of the least 

square method.  

The limit of quantitation (LOQ) is defined as the analyte concentrations, which gives rise to 

chromatographic peaks whose height was equal to 10 and 3 times to that of the baseline 

noise (Mandriol et al., 2006) and was calculated for DA. 

7.2.4.6. Extraction yield, precision and accuracy of the method  

Standard solutions (N=3) at three different concentrations of DA were added to 0.4mL of 

blank plasma, in order to obtain plasma analyte concentrations of 150000µg, 15000 µg and 

0.8ng for DA; these mixtures were subjected to the SPE procedure and injected into the 

UPLC system.  
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Percentage extraction yield for the samples was calculated by comparing the peak areas of 

analytes obtained employing the SPE method to those obtained from standard solutions at 

the same theoretical concentration. 

Intra-day (multiple injections of samples during a 24 hr period N=3) and inter-day (multiple 

injections of samples over 3 consecutive days, N=3 for each day) sampling provided the data 

for precision and accuracy. 

7.2.4.7. CSF and blood preparation for UPLC analysis 

Samples (plasma and CSF) were removed from the freezer (-70°C). Acetonitrile (0.4mL) was 

added to each sample and placed in the centrifuge (Optima® LE-80K, Beckman, USA) 

@15000rpm for 10min. The supernatant was removed, placed in testtubes and centrifuged 

@5000rpm for a further 5min. The resultant was thereafter subjected to the SPE procedure 

as detailed in 7.4.3. and spiked with internal standard (0.1mL). The samples were then 

placed in Waters certified vials (1.5mL) for analysis (Li et al., 2005) and analysed on the 

Waters Acquity Ultra Performance LC system (Waters, Milford, MA, USA). 
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7.3. Results and Discussion  

7.3.1. Brain damage in the rat from the surgical implantation of the NESD  

The procedure (Figure 7.4) was associated with a small amount of cortical contusion.  

However when damage to the brain was found to be of no clinically detectable neurological 

deficit. It was found that a significant number of rats suffered severe and even lethal 

complications from the surgical procedure leading to the reevaluation and development of the 

implantation procedure. 

  

 

                       

Figure 7.4: Photographic representation of the surgical procedure (a) manual drill used for 
incision, (b) actual perforation of the skull and (c) suturing of the incision 
 
7.3.2. Modifications to surgical implantation procedure 

The rats were placed in a Kopf stereotaxic frame and a straight midline incision was made 

from nasion to occiput. The skin and perisoteum was reflected exposing the dorsal surface of 

the skull. This was done in order to facilitate identification of the cranial sutures and to ensure 

the skull trephination was made in the frontal bone. An electric drill was used to decrease the 

pressure exerted on the scalp so as to minimize any excess bleeding. The mass of rats was 

increased (350-400g) as it was found that smaller rats had more complications as a result of 

surgery. 

 

 

 

a) 

c) b) 
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7.3.3. Evaluation of modifications to surgical implantation technique 

The employment of a stereotaxic frame allowed for the accurate implantation of the implant 

into the parenchyma beneath the frontal bone thereby avoiding motor and eliminating the 

outcome of paralysis in the rats. Furthermore, larger rats exhibited a more positive effect to 

the implant due to their increased brain volume. Overall, rats exposed to the modified surgical 

technique displayed good health (weight and grooming techniques). 

 

7.3.4. Biocompatibility of the NESD systems employed in the study 

7.3.4.1. Pathological diagnosis of rat brain specimens implanted with DA-free NESD 

Histological analysis of all specimens was representative of cortical grey and white matter as 

well as the ventricular and cerebellum regions of the rat brain.  

 

Day 5 and 7: There was no evidence of inflammatory cells within the brain parenchyma and 

Virchow's Robin spaces.  No evidence of ischemia or morphological features of 

demyelinating disorder.  

 

Day 14: Extremely sparse and scanty inflammatory lymphocyte were scattered in the white 

matter. Minute inflammation was present in the Virchow’s Robin spaces. There was no 

indication of ischemic injury and demyelinating disorder. 

 

Day 21: There was mild inflammation within the meningeal covering, neural parenchyma and 

in the periventricular area. Once again, there were no findings of inflammation in the 

Virchow’s Robin spaces. Mature lymphocytes were found sparsely dispersed in the white and 

grey matter. In addition congested blood vessels were present in the meninges. 

 

Day 30: Mild inflammation was identified in the cortical white and grey matter as well as 

periventricular areas. There was also mild chronic inflammation in the meninges and 

congested blood vessels. 
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7.3.4.2. Pathological diagnosis of rat brain specimens implanted with NESD 

The histological findings (Figure 7.5) in the rat brain for the NESD showed the same 

pathological features as in 7.3.5.1. 

                 

Figure 7.5: Light microscope images of histological slides of the site of implantation of the 
NESD into the brain, stained using H & E, in (a) control and (b) test brain tissue following 5 
days of implantation of the NESD 
 
7.3.5. Bioerosion of NESD post-implantation 

Figure 7.6 represents the mass loss from the NESD over a period of 30 days post-

implantation. Bioerosion was 16% at 7 days (Figure 7.7) and thereafter minimal erosion took 

place (26% bioerosion at 30 days). The erosion profile proved that the device should remain 

intact throughout the treatment period (at least 30 days) and thereby possibly contribute to 

controlled drug release. In addition, results confirmed that the device was in fact 

biodegradable and so there was no need for a second surgical to remove the device once the 

drug is depleted. 

 

 

 

b) a) 
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Figure 7.6: In vivo bioerosion profile for NESD over a period of 30 days (SD≤0.78) 
 

 

                

 

                 

Figure 7.7: Light microscope (top) and SEM (bottom) images of NESD matrix (a) pre-
implantation and (b) blood perfused post-euthanasia and removal from rat brain post-7 day 
implantation showing 16% bioerosion 
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7.3.6. SPE of DA from plasma 

The optimized SPE technique was selected to remove plasma constituent interferences and 

isolate the drug in the CSF and blood samples. The employment of HLB cartridges for the 

extraction offered the advantage of retaining polar compounds, as is DA, and thereby 

removing impurities. Serial dilutions of methanol solutions (5-100%v/v), represented in Figure 

7.6, with either the addition of an acid (CH3COOH) or a base (NaOH) was employed in the 

SPE technique. It It was noted that during the acidic phase (CH3COOH) higher integral UPLC 

peaks and extraction yields were obtained as compared to the basic phase (NaOH), in 

particular, at 70%v/v methanol with 2%v/v acetic acid. An additional wash-step of 45%v/v 

methanol produced even larger recoveries and level chromatographic baselines.  

7.3.7. Chomatograms for standards and plasma 

A typical chromatogram of a standard solution of DA (Figure 7.8), theophylline (Figure 7.9) 

and a blood sample obtained from the cardiac vein in the rat model post-implantation of the 

NESD is displayed in Figure 7.8. The chromatograms proved that the method for extraction 

was successful in eluting dopamine and internal standard. 
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Figure 7.8: A typical chromatograph depicting the peak (Rt = 0.4925) for DA employing 

UPLC at 280nm in double deionised water  
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Figure 7.9: A typical chromatograph depicting the peak (Rt = 1.579) for theophylline (internal 
standard) employing UPLC at 280nm in double deionised water  
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Figure 7.10: A typical UPLC chromatogram depicting the distinct separation of DA (Rt=0.49) 

and theophylline (Rt=1.64) at 280nm from the Sprague Dawley rat plasma samples  

 

7.3.8. Calibration curve and lower limit of quantification of DA 

Figure 7.11. displays the calibration curve for DA in plasma samples employing the UPLC 

(Waters, Milford, MA, USA) and PDA detector set at 280nm. Concentrations of 150000-

0.8ng/mL offered good linearity (R2 = 0.9811). 
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Figure 7.11: DA calibration curve at 280nm in plasma employing UPLC at 280nm in double 

deionised water  

 

The lower limit of quantification for this study was noted as 0.8ng/mL. 

 

7.3.9. Method validation for the analysis of DA in plasma employing UPLC analysis 

The method validation data (extraction efficiency, intra- and inter-day variation) for the 

analyte are summarized in Table 7.1. 

The extraction recoveries ranged from 95.89 to 101.02%, while the precision values ranged 

from 1.5 to 7.4% over the three concentrations (i.e., 0.8, 15000 and 150000ng/ml) evaluated 

over 3 consecutive days. These results indicated that the implemented solid phase extraction 

method has an acceptable accuracy and precision. 

 

Table 7.1: Illustrates the data obtained to assess the validation of the method   

Intra-day Inter-day Concentration 

added (ng/mL) 

Extraction 

yield (%) 
SD CV SD CV 

0.8 95.89 0.000007 0.036 0.000014 0.074 

15000 98.98 0.0014 0.015 0.0021 0.022 

150000 101.02 0.0021 0.041 0.0028 0.055 

 

 

y   = 4E-06x 
R2 = 0.9811 
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7.3.10. In vivo DA release profile for NESD 

The in vivo drug release profiles for the control preparation (Sinemet ®) (Figure 7.12) and the 

NESD (Figure 7.13) showed indirect proportionality to each. The drug release for the group 

receiving Sinemet® was carried out over a period of 10hr while the drug release study for the 

test group was carried over a month. The drug release from Sinemet ® (Figure 7.12) was 

quite clearly substantially reduced, approximately 10-fold, in the CSF in comparison to the 

plasma. And while Cmax
 = 0.000053% was noted at 2hr in the plasma, the peak plasma 

concentrations in the CSF only took place at 8hr with 0.000012% of DA being released.  

 

The drug release for the NESD (Figure 7.13) produced a peak at 3 days for both the CFS and 

plasma, the CSF concentration of DA being 28% while the plasma concentration was only 

1.2% of the total concentration administered. The DA release profile for plasma maintained 

low drug release throughout the 30 days of the study whereas the CSF concentration of DA 

peaked at 3 days and thereafter maintained reduced drug release for the remainder of the 

study. 

 

Overall, the NESD was implanted at the site of action and therefore drastically improved the 

delivery of DA to the brain tissue comparatively to the Sinemet ®. In addition, DA 

concentrations found in the plasma were minimalistic and therefore could result in the 

alleviation of the systemic side-effects from the oral administration of levodopa preparations. 
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Figure 7.12: In vivo profile for DA release from Sinemet® (SD≤0.000001) 
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Figure 7.13: In vivo profile for DA release from the NESD (SD≤0.003) 
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7.4. Concluding Remarks 

The in vivo chapter sought to address the biocompatibility and in vivo DA release of the 

NESD in the rat brain employing novel surgical approaches, SEM and UPLC techniques. 

A surgical protocol for implantation of the NESD into the parenchyma of the frontal lobe of the 

rat brain was developed that resulted in only minor clinical implications for the rat model post-

surgery. 

Biocompatibility was addressed in this chapter and findings proved that the placebo as well 

as the NESD had no significant effects on the brain tissue with no evidence of ischemia or 

morphological events in the brain cells. 

The bioerosion profile of the NESD mimicked that of the in vitro degradation studies with 

minimal erosion post day 7 of implantation proving the device would remain intact throughout 

the treatment period but also retained it's biodegradation characteristics. 

UPLC analysis was undertaken for the determination of DA in the plasma and CSF. Method 

development and validation studies were undertaken in the establishment of the technique. 

DA release profiles illustrated concentrations of DA in the plasma and the CSF of both the 

group receiving Sinemet ®and the NESD. The NESD proved to be superior in terms of drug 

release to the brain tissue and also reduced systemic circulation of DA thereby possibly 

decreasing side-effects experienced from the drug. 

Overall, results obtained in the chapter showed that the NESD was biocompatible, 

biodegradable and had a positive effect of the concentrations of DA in the brain. 
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CCHHAAPPTTEERR  88  
CCOONNCCLLUUSSIIOONNSS  AANNDD  RREECCOOMMMMEENNDDAATTIIOONNSS  

  
 
8.1. Conclusions 
 
In January 2008, the cause of PD still remains unknown (Richter et al., 2008) and with 

chronic treatment being limited and ineffective, the disease holds grave consequences for its 

sufferers. A cure is nowhere in sight and so pharmacological and non-pharmacological 

agents are the sole promise of a normal life for these patients. 

 

The R & D process is a lengthy one and with gene therapy still in the early stages of human 

clinical trials (Lewis and Standaert, 2008) and advancements in non-pharmacological 

treatment being leisurely, researchers need to look at the development of other possible 

agents to treat this rapidly growing disease. 

 

Young-onset/ baby boomers PD now affects 5–10% of patients while 1% of the aging 

population (60 yrs and older) will suffer from PD (Samii et al., 2004) and it's number of victims 

continue to climb. Patient's medical needs increase significantly for the years following the 

onset of PD (Fiandaca et al., 2008) and depression is now a common symptom (Barrero et 

al., 2005). The suffering continues to the patient's family and caregiver/s and so the disease 

knows no end. 

 

This research undertook to develop a drug delivery system consisting of DA-loaded CAP 

nanoparticles dispersed within Ba-alginate scaffolds for implantation into the parenchyma of 

the frontal lobe of the brain. The concept is novel in that it incorporates two unique drug 

delivery systems that complement each other in the achievement of controlled release.  

 

Extensive in vitro testing resulted in the establishment of the NESD. Preliminary 

investigations on both the Ba-alginate scaffold and DA-loaded CAP nanoparticles allowed for 

the selection of appropriate crosslinkers and polymers to be employed in their formulation. 

DA-loaded CAP nanoparticles were subjected to vigorous in vitro release studies to 

determine MDT and zetasize analysis to determine their stability and quintessentially their 

particle size and zeta potential. While the structural integrity and matrix erosion kinetics were 

imperative characteristics for Ba-alginate scaffold design. 
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Formulations of the Ba-alginate scaffold and DA-loaded CAP nanoparticles were both 

optimised employing the Box-Behnken design which saw the in vitro testing (Matrix 

Resilience and Matrix Erosion for the Ba-alginate scaffold and MDT, Particle Size and Zeta 

Potential for DA-loaded CAP nanoparticles) of 27 formulations each. A single candidate 

formulation was chosen for each system. The combinatory NESD was then subjected to 

simulated CSF and it's in vitro drug release was confirmed. 

 

The promise of the NESD lead to it's evaluation in vivo. The parenchyma of the frontal lobe of 

the brain of rat models were implanted with the NESD followed by histological, bioerosional 

and in vitro DA analysis at predetermined time intervals. 

 

Futhermore, preliminary in vitro evaluation was undertaken on other possible nanosystems 

that may be used to treat PD. Characterization and in vitro release of L-dopa-loaded PLGA 

and NT-loaded CAP nanoparticles as well as DA-loaded polymeric nanofibers showed that 

there is a possibility for these systems to be employed in the treatment of PD and that further 

testing should be undertaken. 

 

While this drug delivery system has been developed with the incorporation of DA in the 

treatment of PD, it is not exclusive to this disease as the NESD may be applicable to 

numerous other chronic CNS conditions. The addition of different combinations of polymers 

and drug may impart a range of different properties to the device thereby allowing it to be 

used for the treatment of other ailments. The strategic implantation of the device into the 

brain will circumvent the allows for targeted drug delivery and thereby allow numerous other 

CNS drugs to be delivered to the brain tissue, mostly unchanged and eliminating systemic 

side effects. 
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8.2. Recommendations 
 
Nanosystems (L-dopa-loaded PLGA and NT-loaded CAP nanoparticles and DA-loaded 

polymeric nanofibers) need to be more extensively researched both in vitro and in vivo so as 

to provide potential alternatives for the treatment of PD. 

 

Major variations in drug-loaded polymeric nanoparticle size were noticed for all formulations, 

methods and mechanisms need to be investigated so as to limit and even provide uniformity 

to particle size.  

 

In vitro drug release in the brain is still in it's early stages and therefore lacks a standard 

protocol for the conditions that need to be maintained to simulate the in vivo environment. 

 

Animal studies in the rat model have shown great promise and so these studies need to 

move to research in larger mammalian models such as apes. These results will be more 

significant in that they will more closely represent the human model (human clinical trials 

being the next stage). 

 

Fluorescent markers should be attached to the drug-loaded polymeric nanoparticles in vivo, 

so as to determine their transportation and distribution throughout the brain and even the 

body. This will allow us to evaluate the exact numbers and mechanisms of nanoparticulate 

drug delivery. 

 

The minute size of the NESD for in vivo implantation posed limitations for bioerosion studies. 

Future studies need to investigate the possibility of attaching a string to the device or the 

addition of a biocompatible colourant so as to ensure the device may be found upon 

termination of the study. 

 

Futuristically, scientists are currently attempting the construction of nanorobots. The intention 

of the design is for them to travel throughout the human body using molecular motors and 

computers, store and transport molecules, perform operations and communicate with 

physicians (Freitas, 2001).  
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