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ABSTRACT 

 

A shuttle vector was constructed which was stably maintained in Escherichia coli, 

Bacillus subtilis and Staphylococcus aureus. It was made by ligating E. coli positive 

selection plasmid pEcoR251 and S. aureus resistance plasmid pC194 via their respective 

BamHI and XhoII sites. Designated pNDW1, it was shown to be effective in genomic 

library construction. The number of restriction sites in the EcoRI (“suicide”) gene was 

increased by successive addition of XbaI and XhoI using site-directed mutagenesis. SpeI, 

NheI and AvrII generate DNA fragments with compatible cohesive ends to XbaI while 

SalI digestion gives rise to ends compatible with XhoI.  Therefore the number of different 

genomic libraries which can be made using this system is augmented by six. A principal 

impediment to full exploitation of these shuttle vectors is apparently the severe restriction 

by B. subtilis and S. aureus of DNA coming from E. coli.  
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1. INTRODUCTION 

 

1.1 The genus Bacillus  

 

Bacillus subtilis is a rod-shaped, spore-forming, non-pathogenic Gram-positive bacterium 

found in soil and vegetation. They can contaminate food, however, seldom result in food 

poisoning. They are used on vegetable and soybean seeds as fungicide. Some strains 

cause rots on potatoes and ropiness in bread. Bacillus thuringiensis is a bacterium in the 

same genus known to be used in insect control. Bacillus cereus and Bacillus licheniformis 

can cause food poisoning. Bacillus anthracis causes anthrax, an acute and sometimes 

lethal disease of humans and animals. It has been identified as a potential bioterrorism 

attack agent (Hughes and Gerberding, 2002).  

 

Bacillus species produce a wide range of hydrolytic enzymes that breakdown complex 

polymers such as polysaccharides, nucleic acids and lipids, permitting the organism to 

use these products as carbon sources and electron donors. Many Bacillus species produce 

antibiotics, of which bacitracin, polymyxin, tyrocidine, gramicidin and circulin are 

examples. Strains of Bacillus polymyxa biosynthesize a number of useful and potentially 

useful compound, including peptide antibiotics, proteases, and a wide variety of 

carbohydrates-utilizing enzymes, such as β-amylase, β-D-xylanases, pullulanase, glucose 

isomerase and polygalacturonate lyase (Malloonee and Speckman, 1989). Frequently 

these enzymes are secreted making them easier to purify. B. subtilis has proven highly 

amenable to genetic manipulation, and has therefore become widely adopted as a model 

organism for laboratory studies, especially of sporulation, which is a simplified example 

of cellular differentiation In terms of popularity as a laboratory model organism B. 

subtilis is often used as the Gram-positive equivalent of Escherichia coli, an extensively 

studied Gram-negative rod. 
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1.2 Staphylococcus Spp. 

 

Taxonomically, the genus Staphylococcus is in the bacterial family Staphylococcaceae, 

which includes three lesser known genera, Gamella, Macrococcus and Salinicoccus. The 

Listeriaceae are also a closely related family. Staphylococcus aureus forms a fairly large 

yellow colony on rich medium. S. epidermidis has a relatively small white colony. S. 

aureus is often hemolytic on blood agar; S. epidermidis is non hemolytic. Staphylococci 

are facultative anaerobes that grow by aerobic respiration or by fermentation that yields 

principally lactic acid. The bacteria are catalase-positive and oxidase-negative. S. aureus 

can grow at a temperature range of 15 to 45 degrees and at sodium chloride 

concentrations as high as 15 percent. Nearly all strains of S. aureus produce the enzyme 

coagulase: nearly all strains of S. epidermidis lack this enzyme. S. aureus should always 

be considered a potential pathogen; most strains of S. epidermidis are nonpathogenic and 

may even play a protective role in their host as normal flora. Staphylococcus epidermidis 

may be a pathogen in the hospital environment (Madigan et al., 2003). Staphylococci are 

perfectly spherical cells about 1 micrometer in diameter. They grow in clusters because 

staphylococci divide in two planes. The configuration of the cocci helps to distinguish 

staphylococci from streptococci, which are slightly oblong cells that usually grow in 

chains (because they divide in one plane only). The catalase test is important in 

distinguishing streptococci (catalase-negative) from staphylococci, which are vigorous 

catalase-producers. The test is performed by adding 3% hydrogen peroxide to a colony on 

an agar plate or slant. Catalase-positive cultures produce O2 and bubble at once. The test 

should not be done on blood agar because blood itself contains catalase (Todar, 2005). 

 

Staphylococcus aureus causes a variety of suppurative (pus-forming) infections and 

toxicoses in humans. It causes superficial skin lesions such as boils, styes and 

furunculosis; more serious infections such as pneumonia, mastitis, phlebitis, meningitis, 

and urinary tract infections; and deep-seated infections, such as osteomyelitis and 

endocarditis (Madigan et al., 2003). S. aureus is a major cause of hospital acquired 

(nosocomial) infection of surgical wounds and infections associated with indwelling 

medical devices. S. aureus causes food poisoning by releasing enterotoxins into food, and 
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toxic shock syndrome by release of super antigens into the blood stream. S. aureus 

expresses many potential virulence factors: (1) surface proteins that promote colonization 

of host tissues; (2) invasins that promote bacterial spread in tissues (leukocidin, kinases, 

hyaluronidase); (3) surface factors that inhibit phagocytic engulfment (capsule, Protein 

A); (4) biochemical properties that enhance their survival in phagocytes (carotenoids, 

catalase production); (5) immunological disguises (Protein A, coagulase, clotting factor); 

and (6) membrane-damaging toxins that lyse eukaryotic cell membranes (hemolysins, 

leukotoxin, leukocidin; (7) exotoxins that damage host tissues or otherwise provoke 

symptoms of disease; (8) inherent and acquired resistance to antimicrobial agents. 

 

For the majority of diseases caused by S. aureus, pathogenesis is multifactorial, so it is 

difficult to determine precisely the role of any given factor. However, there are 

correlations between strains isolated from particular diseases and expression of particular 

virulence determinants, which suggests their role in a particular disease. The application 

of molecular biology has led to advances in unraveling the pathogenesis of 

staphylococcal diseases. Genes encoding potential virulence factors have been cloned and 

sequenced, and many protein toxins have been purified. With some staphylococcal 

toxins, symptoms of a human disease can be reproduced in animals with the purified 

protein toxins, lending an understanding of their mechanism of action (Todar, 2005).  

 

Hospital strains of S. aureus are usually resistant to a variety of different antibiotics. A 

few strains are resistant to all clinically useful antibiotics except vancomycin, and 

vancomycin-resistant strains are increasingly-reported. The term MRSA refers to 

Methicillin resistant Staphylococcus aureus. Methicillin resistance is widespread and 

most methicillin-resistant strains are also multiple resistant. In addition, S. aureus 

exhibits resistance to antiseptics and disinfectants, such as quaternary ammonium 

compounds, which may aid its survival in the hospital environment. S. aureus responded 

to the introduction of antibiotics by the usual bacterial means to develop drug resistance: 

(1) mutation in chromosomal genes followed by selection of resistant strains and (2) 

acquisition of resistance genes as extra-chromosomal plasmids, transducing particles, 
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transposons, or other types of DNA inserts. S. aureus expresses its resistance to drugs and 

antibiotics through a variety of mechanisms.   

 

1.3 Plasmids 

 

Plasmids represent an important factor in bacterial evolution. They enable rapid short-

term adaptation of the bacterial host to changing environmental conditions and allow 

amplification of gene by transferring them within one or between many species. 

Normally, plasmids are nonessential to their hosts, conferring only an energy burden that 

can slow cell growth. They can, however, be stably maintained in a bacterial population 

even under non selective conditions. Copy number of a plasmid is maintained by 

regulation of replication. Low copy number plasmid requires a tighter regulation of 

regulation and segregation than the high copy number (Kües and Stahl, 1989).  

 

 

1.4 Staphylococcus aureus plasmids 

 

Many small plasmids conferring resistance to different antibiotics have been isolated 

from Staphylococcus aureus (te Riele et al., 1986). Since the discovery of staphylococcal 

plasmids in the early 1960s, three general classes have been identified and characterized. 

The first S. aureus plasmids discovered were of class II. These are of intermediate size 

and copy number; they encode a combination of β-lactamase and inorganic ion 

resistances, and they occur in S. aureus plus various other species such as Staphylococcus 

xylosus and Staphylococcus simulans. Plasmids of class I were discovered shortly 

afterward. These are of small size (1-5 kb) and high copy number (15-50 copies per cell); 

they usually encode a single antibiotic resistance, and they occur in many staphylococcal 

species. Most recently, a number of larger (30-60 kb) plasmids carrying multiple 

antibiotic resistances have been identified (Novick, 1989). 

 

Class II plasmids are larger (15-30Kb), have a lower copy numbers and carry some 

combination of resistance to β-lactam antibiotics (β-lactamase), macrolides and a variety 
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of heavy metal ions  such as arsenic, cadmium, lead and mercury (Novick and Roth, 

1968). Some of these plasmids are reported to be transposable. Class III consists of a 

considerably larger (30-60Kb) plasmids that carry a determinant of conjugative transfer, 

tra, plus some combination of resistance markers including gentamycin and penicillin 

Qa, some are transposable and contain a number of insertion sequence like elements 

(Gray, 1983). Staphylococcal plasmids are of particular importance in the study of 

antibiotic resistance of S. aureus because using plasmids isolated from this organism 

might help understand the how these resistant determinants are being transferred to other 

species and to other genera.  

 

1.5 Plasmid pC194 

 

Plasmid pC194 is one of the several small (2.9kb in size) found in S. aureus reported by 

Iordanescu et al. (1978). Plasmid pC194 specifies chloramphenicol-induced resistance to 

chloramphenicol mediated by the enzyme chloramphenicol acetyl-transferase (CAT), an 

enzyme that inactivates chloramphenicol by converting it successively to the inactive 3-

acetyl and 1, 3-diacetyl derivatives. It has served as a useful vector for analytical cloning 

of determinants of inducible resistance and replication in conjugation studies of another 

small plasmid, pE194 (Horinouchi and Weisblum, 1982). It can also serve as a useful 

system for studies of gene expression control mechanism since the synthesis of CAT 

appears to be under autogenous control. Plasmid pC194 is of interest because it can 

replicate in a wide variety of bacterial hosts (Goze and Ehrlich, 1980). It was also found 

to be maintained in the yeast Saccharomyces cerevisiae (Goursot et al., 1982). This 

maintenance of these plasmids in different bacterial species might be attributed to 

horizontal gene transfer as a normal phenomenon. 

 

1.6 Restriction modification system 

 

The restriction modification system (RM system) is used by bacteria, and perhaps other 

prokaryotic organisms to protect themselves from foreign DNA, such as bacteriophages. 

This phenomenon was first noticed in the 1950s. Certain bacteria strains were found to 
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inhibit (restrict) the growth of viruses grown in other strains. This effect was attributed to 

sequence-specific restriction enzymes. Bacteria have restriction enzymes, also called 

restriction endonucleases, which cleave double stranded DNA at specific points into 

fragments, which are then degraded further by other endonucleases. This prevents 

infection by effectively destroying the foreign DNA introduced by an infectious agent 

such as a bacteriophage (Figure 1.1 B). Approximately one quarter of known bacteria 

possess RM systems and of those about one half has more than one type of system 

(Wilson, 1991a; Wilson, 1991b). 

 

Restriction enzymes only cleave at specific sequences of DNA which are usually 4-6 

base pairs long, and often palindromic. Given that the sequences that the restriction 

enzymes recognize are very short, the bacterium itself will almost certainly have many of 

these sequences present in its own DNA. Therefore, in order to prevent destruction of its 

own DNA by the restriction enzymes, the bacterium marks its own DNA by adding 

methyl groups to it. This modification must not interfere with the DNA base-pairing, and 

therefore, usually only a few specific bases are modified on each strand (Wilson, 1991b). 

 

A restriction endonuclease recognizes a specific DNA sequence and introduce double-

stranded break and the modification enzyme recognizes the same sequence and protects  

it from the restriction enzyme by methylation Figure 1.1 A. It has been hypothesized that 

several restriction-modification gene complexes in bacteria are not easily replaced by 

competitor genetic elements because their loss leads to cell death (Naito et al., 1995; 

Handa et al., 2001; Figure. 1C). This finding led to the proposal that these complexes 

may actually represent one of the simplest forms of life, similar to viruses, transposons, 

and homing endonucleases. This selfish gene hypothesis (Naito et al., 1995; Kusano et 

al., 1995; Kobayashi, 2001) is now supported by many lines of evidence from genome 

analysis and experimentation. After loss of the restriction-modification gene complex, the 

restriction enzyme and modification enzyme will become increasingly diluted through 

cell division. Finally, too few modification enzyme molecules remain to defend all the 

recognition sites present on the newly replicated chromosomes. Any one of the remaining 

molecules of the restriction enzyme can attack these exposed sites. The chromosome 
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breakage then leads to extensive chromosome degradation, and the cell dies unless the 

breakage is somehow repaired. The chromosome breakage may stimulate recombination 

and generate a variety of rearranged genomes, some of which might survive. The 

principle of post-segregational killing once established in a cell, the addiction gene 

complex is difficult to eliminate because its loss, or some sort of threat to its persistence, 

leads to cell death. Intact copies of the gene complex survive in the other cells of the 

clone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Represents the action of a restriction-modification gene complex (Adapted 

from Kobayashi, 2004). A Restriction enzyme (Endonuclease) cleaves unmethylated 

DNA and modification methyltransferase protects the DNA from cleavage. B Attack on 

incoming DNA. An attack on invading DNA that is not appropriately methylated is likely 

to be beneficial to the restriction-modification gene complex and to its host. C A simple 

dilution model for post-segregational killing. 

 

 



 8 

1.7 Types of Restriction Modification Systems 

 

There are three kinds of restriction modification systems: type I, type II and type III, all 

with restriction enzyme activity and a methylase activity. They were named in the order 

of discovery, although the type II system is the most common. Type I systems are the 

most complex, consisting of three polypeptides: R (restriction), M (modification), and S 

(specificity). The resulting complex can both cleave and methylate DNA. Both reactions 

require ATP, and cleavage often occurs a considerable distance from the recognition site. 

The S subunit determines the specificity of both restriction and methylation. Cleavage 

occurs at variable distances from the recognition sequence, so discrete bands are not 

easily visualized by gel electrophoresis (Wilson and Murray, 1991). Type II systems are 

the simplest and the most prevalent. Instead of working as a complex, the 

methyltransferase and endonuclease are encoded as two separate proteins and act 

independently (there is no specificity protein). Both proteins recognize the same 

recognition site, and therefore compete for activity. The methyltransferase acts as a 

monomer, methylating the duplex one strand at a time. The endonuclease acts as a 

homodimer, which facilitates the cleavage of both strands. Cleavage occurs at a defined 

position close to or within the recognition sequence, thus producing discrete fragments 

during gel electrophoresis. For this reason, Type II systems are used in labs for DNA 

analysis and gene cloning. Type III systems have R and M proteins that form a complex 

of modification and cleavage. The M protein, however, can methylate on its own. 

Methylation also only occurs on one strand of the DNA unlike most other known 

mechanisms. The heterodimer formed by the R and M proteins competes with itself by 

modifying and restricting the same reaction. This results in incomplete digestion (Wilson 

and Murray, 1991). 

 

A hypothesis was proposed that the certain type II RM systems may represent selfish 

genetic elements in the sense that they can maintain and increase their copy number even 

when they do not confer any advantageous phenotype on their host cells (Kobayashi, 

2001; Naito et al., 1995). This hypothesis was based on the observation that certain type 

II RM systems on a plasmid can increase stability of a plasmid by selectively killing cells 
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that failed to retain the plasmid, thereby causing an increase in their relative frequency in 

the viable bacterial population. Analysis of bacterial genomes provided evidence that RM 

systems can move between bacterial genomes, which seems to be consistent with the 

behavior as selfish DNA elements (Kobayashi, 2001; Naderer et al., 2002; Nobusato et 

al., 2000). The selfish hypothesis was given strong support when the RM system on a 

chromosome was found to multiply in tandem in a manner dependent on a functional 

restriction gene (Sadykov et al., 2003). This was reminiscent of the induction of the 

replication of prophage genomes. Type II RM systems show similarities to viruses in 

their regulation of gene expression (Kobayashi, 2004). When they enter a new host, they 

have to establish themselves in the host without excessive killing the host cells, just like a 

temperate bacteriophage establish themselves in the host cells as prophages. It is 

postulated that the RM gene system express the modification activity before restriction 

activity to protect the host chromosome by methylation. The methyl-transferases of type 

II RM systems were shown to function as transcriptional regulators required for 

coordinated expression of the restriction and the modification enzyme (Som and 

Friedman, 1993). 

 

 In some type II RM systems, a third regulatory protein, called C protein, plays the role of 

delaying expression of their restriction enzymes (Nakayama and Kobayashi, 1998; Tao et 

al., 1991). After establishment, the type II RM system are expected to tight regulate their 

gene expression to maintain constant cellular levels of restriction enzyme and 

modification enzyme to prevent attack on the host, just as a prophages do until critical 

events such as gene loss happens to trigger the attack. Type II RM systems are of 

particular importance because the plasmid used in this study has an EcoRI endonuclease 

gene of the EcoRI RM system. The EcoRI system is composed of the ecoRIR (R) and 

ecoRIM (M) genes, which encode EcoRI R and M proteins, respectively (Liu et al., 

2007). The R gene is located upstream of the M gene. It has been proposed that the R and 

M genes constitutes an operon, in which expression of the two genes is coordinately 

controlled by a promoter located immediately upstream of the R gene (Liu et al., 2007). 

In addition, a specific promoter for the M gene has been proposed to be present within 

the R. gene. This postulated M gene-specific promoter, which should allow expression of 
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the M gene in the absence of the R gene, might play a role for sequential expression of 

the modification activity and restriction activity when the EcoRI gene system enters a 

new host cell (Liu et al., 2007). 

 

1.8 Positive selection vectors 

 

Non-recombinant transformants in DNA cloning experiments are a problem that is 

especially troublesome when the relative amount of target DNA is low or when the 

percentage of recombinants must be maximized, as when constructing a genomic library. 

Several approaches have been taken to resolve this problem such as treatment of the 

vector with phosphatase prior ligation and cutting the vector with restriction enzymes that 

produce ends that are non-complementary so that the inserts will have the complementary 

ends that could easily ligate to the vector. These methods have disadvantages of being 

subjected to the variable efficiencies of the enzymatic reactions and purifications used to 

prepare the vector for cloning. A number of positive selection vectors have been 

generated which employ genetic means to eliminate transformants carrying religated or 

uncut vector. Such vectors typically rely upon the inactivation of a lethal gene, 

inactivation of a dominant function conferring cell sensitivity to metabolites, removal of 

a lethal site or the depression of an antibiotic-resistance function. Positive selection 

vectors have the advantages of being simpler to use, more efficient, and more reliable 

than biochemical methods for the selection of recombinants (Kuhn, 1986). 

 

 These plasmids have proven useful for the selection and expression of a number of genes 

from a variety of organism. A number of positive-selection vectors have been constructed 

for example Cheng and Modrich (1983) have constructed a plasmid that has a functional 

endonuclease gene and a non functional modification gene. This plasmid is under the 

control of the PL promoter of the bacteriophage lambda (λ). When this plasmid is 

introduced in a host that has a functional methyltransferase activity the endonuclease 

activity is inhibited. If it is introduced into a lambda lysogen the endonuclease gene is 

controlled and insertion of DNA into the unique restriction sites on the endonuclease 

gene abolishes the endonuclease activity (Cheng and Modrich, 1983).   
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Kuhn et al. (1986) have also constructed a series of positive selection plasmid vectors. 

The principle of selection in these plasmids is based on the separation of the EcoRI 

restriction and modification functions. The vectors carry either a wild-type or mutant 

endonuclease gene, the expression of either of which is lethal in the absence of active 

EcoRI methylase. DNA cloned into any of the several unique restriction sites within the 

endonuclease gene disrupts its lethal function, allowing induced transformed cells 

carrying recombinant plasmids to survive, while cells carrying non-recombinant plasmids 

are killed. These vectors have an advantage over the other positive selection vectors 

because their expression is induced chemically rather than thermally (such in the case of 

plasmids employing induction by lambda promoters by inactivation of a temperature 

sensitive lambda repressor). Expression of this vectors constructed by Kuhn et al (1986) 

is under the control of the lac operon.   

 

1.18.1 Plasmid pEcoR251 

 

Plasmid pEcoR251 is about 3.3kb in size. The EcoRI endonuclease gene is placed under 

the control of the PR promoter of phage lambda (λ) and this plasmid can therefore be 

maintained in a λ lysogen of E. coli since the phage λ infects E. coli. This plasmid has an 

ampicillin resistance gene which can be used to select for transformants containing this 

plasmid. When a piece of DNA is inserted into the one of the unique restriction sites in 

the endonuclease gene, the endonuclease gene is disrupted leading to the endonuclease 

activity being destroyed. This property can be used to select for transformants in a non-

lysogen that have incorporated an insert in the endonuclease gene and those that did not 

incorporate an insert will die due to the expression of a functional EcoRI endonuclease 

(Dabbs et al., 1990).  

 

In a λ lysogen the expression of the suicide gene is under the control of the PR promoter 

and the regulation of the expression of the endonuclease gene is by a λ repressor protein 

called CI857. In a lysogen the CI repressor silences the lytic genes (Svenningsen et al., 

2005).  Plasmid pEcoR251 is constructed by fusing the 180bp fragment of the phage λ 

chromosome bearing the PR promoter and the first 96bp of the cro gene. The 
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endonuclease gene is fused in frame with the cro gene and the expression of this gene is 

under the control of the PR promoter (Zabeau and Stanley, 1982). In a λ lysogen the 

prophage expresses a repressor protein that binds to the cro operator region and thus 

inhibiting the expression of the EcoRI endonuclease gene. Figure 1.2 shows the 

regulation of the expression of the suicide gene by the repressor protein. In a non lysogen 

there is no repressor protein being expressed to block transcription of the EcoRI suicide 

gene, hence the death of cell containing this plasmid.  

 

 

 

 Repressor protein binds to Operator region 

 

 

  

 

 

 

Figure 1.2: Regulation of the expression of the suicide gene. O is the operator region of 

the cro gene 

 

 

1.9 Regulatory element from lambda phage 

 

PL and PR promoters of the λ phage are widely used as promoters for the expression 

vectors. This type of vectors can be regulated in combination with a λ cI857 repressor 

gene which codes for a temperature-sensitive repressor. At 28-30˚C, this repressor is 

active and represses the transcription from the λ promoters. At 42˚C, the temperature-

sensitive repressor protein is inactive and transcription from the λ promoters is 

derepressed. A λ prophage can be used as a carrier for the cI857 repressor gene only if 

the regulatory unit lacks lytic functions resident on prophages. Otherwise cells would be 

killed after heat induction (Mieschendahl and Müller-Hill, 1985). With this properties of 

O      Cro        EcoR gene PR promoter 
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the λ lysogen together with the properties of the EcoRI endonuclease gene provide a 

better system for selection of recombinants transformants. When cells carrying a plasmid 

that encodes a suicide gene which is controlled by the PR promoter are grown on a non-

lysogen only recombinant transformants will be observed and when grown in a lysogen 

the expression of the endonuclease gene is repressed by the temperature-sensitive 

repressor protein 

 

1.10 Justification and Aim 

 

Antimicrobial resistance in pneumococci, enterococci and staphylococci is a norm. S. 

aureus is a pathogen of greatest concern because of its intrinsic virulence, its ability to 

cause array of life-threatening infections and its capacity to adapt to different 

environmental conditions. The mortality rate of S. aureus remains approximately 20-40% 

despite the availability of effective antimicrobials (Mylotte et al., 1987) and is now the 

leading overall cause of nosocomial infections. As more patients with S. aureus are 

treated outside the hospital setting, it is an increasing concern in the community. S. 

aureus isolates from blood samples world wide are increasingly resistant to a great 

number of antimicrobials. Inevitably this has left fewer effective bactericidal antibiotics 

to treat infection caused by the multidrug resistant S. aureus. Even when new antibiotics 

are used against S. aureus it can develop mechanisms to neutralize the antibiotic. This 

simply means that new antibiotics have to be discovered or that other ways of treating 

infection have to be used. The use of bacteriophages as therapeutic agents is probably the 

way to go. The bacteriophage expresses some proteins that inhibit the growth of the 

pathogen. So genes responsible for the inhibition of the growth of the bacteria have to be 

screened. This can be accomplished by having a vector that can be used to construct a 

genomic library in which the screening can be done. Therefore the aim of this work was 

to construct a shuttle vector for E. coli, B. subtilis and S. aureus that will facilitate the 

construction of genomic library in E. coli and screening these in S. aureus or B. subtilis. 

Also to increase the versatility of the shuttle vector by introducing unique restriction 

sites.   
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 2. MATERIALS AND METHODS 

 

2.1 Bacterial strains and plasmids used in this work 

 

Strains   Characteristics   Source 

Escherichia coli 

 MM294-4  endA1, hsdR17, gyrA   E. Dabbs 

 λ MM294-4  λ lysogen of MM294-4  E. Dabbs 

 MJ109   recA1, endA1, gyrA96, thi, hsdR17,  

                                   supE44, relA1, ∆(lac-proAB)/F' 

                                              [traD36, proAB
+
, lacI

q
, lacZ∆M15] Y. Shibayama 

 

B. subtilis 

 IA3   cysE14, purA26, trpC2  E. Dabbs 

 168                              (pC194) Cm trpC2                              Bacillus Genetic 

                                                                                                 Genetic Stock Centre 

                                                                                                  (BGSC) 

 QB944 KIT-1            cysE14 purA26 trpC2    BGSC 

 QB934 KIT-3            glyB133 metC3 tre-12 trpC2             BGSC 

 QB922 KIT-5           gltA292 trpC2                                        BGSC 

 QB917 KIT-8           hisA1 thrC5 trpC2  BGSC    

  

ND1   iri
-
 mutant of IA3 which is 

    Rifampicin resistant   This work 

 ND3   Mutant of IA3 which is 

    Streptomycin resistant   This work 

 

 

B. polymyxa  

ATCC 842   Wild type isolates    BGSC 
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_______________________________________________________________________  

S. aureus                  Microbiology  

                            Department (Wits) 

Streptomyces pseudogriseolus  M. Chengalroyen 

 

           

________________________________________________________________________ 

Plasmids  Characteristics    Source 

 

pDA71   E. coli-Rhodococcus shuttle vector  Quan and Dabbs  

(1993) 

pDA71*  E. coli-Rhodococcus shuttle vector 

   with the EcoRI suicide gene interrupted E. Dabbs 

pUC19   E. coli cloning vector with lacZ´ gene Fermentas 

pC194   S. aureus original isolate with Cm
R   

BGSC
 

pEcoR251  E. coli suicide vector with Amp
R 

 

   resistance gene    E. Dabbs 

pNDW1  E. coli-B. subtilis shuttle vector  This work 

pNDW4  pNDW1 with a 1.8Kb PstI fragment  This work 

pNDW2  E.coli-B. subtilis shuttle vector joined  

   in different restriction sites   This work 

pNDW3  E.coli-B. subtilis shuttle vector joined  

   in different restriction sites   This work 

pNDW5  pNDW1::  XbaI restriction site  This work 

pDA71 -1  pDA71:: XbaI restriction site   This work 

pNDW6  pNDW5:: fragment of genomic DNA This work 

pNDW7  pNDW5:: XhoI site    This work 

pEcoR251-1  pEcoR251::XhoI site    This work 
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2.2 Media and growth conditions 

 

Luria-Bertani (LB) (Appendix) media was used for growing E. coli and Bacillus strains 

and Brain Heart Infusion (BHI) (Appendix) media was used to grow S. aureus. Liquid 

cultures were achieved by inoculating a single bacterial colony into 5ml LB medium and 

incubated at 37°C overnight. For short-term storage, E. coli strains were kept on LB-agar 

plates at 4ºC and Bacillus strains were kept on LB-agar at room temperature. S. aureus 

was kept on BHI agar plates at room temperature. 

 

2.3 Determination of minimum inhibitory concentration (MIC) 

 

The minimum inhibitory concentration of antibiotics was determined on LB-agar plates 

for E. coli and B. subtilis by agar dilution method. Freshly grown colonies were 

inoculated into 200µl of sterile distilled water per well of the replicator plate. This was 

then transferred to the antibiotics plates with a multipoint inoculator. Antibiotic-free 

plates were used as positive controls. The spot test results were analyzed after incubation 

at 37°C for 24 hours.  

 

2.4 DNA preparation 

 

2.4.1 E. coli bulk plasmid preparation 

 

A single colony was used to inoculate 100 ml of LB with appropriate selective agent for 

the maintenance of the plasmid. The culture was grown with gentle agitation at 37°C for 

overnight. Cells were harvested by spinning in a JA-10 rotor (Beckman) at 6 000 

revolutions per minutes (rpm) for 10 minutes (min) and then resuspended in 5 ml of 

solution I (Appendix). A 10 ml of solution II (Appendix) was then added to the cell 

suspension and mixed gently by inversion. The mixture was left to stand at room 

temperature for 15 min. Then 7.5 ml of solution III (Appendix) was added and shaken 

vigorously and then left on ice for 15 min.  
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The cell debris were removed by spinning in a pre-chilled (4°C) JA-20 rotor at 15 000 

rpm for 10 min. The supernatant was transferred to a sterile JA-20 centrifuge tube and the 

DNA was precipitated with 12ml of isopropanol. The precipitation process was allowed 

to continue at room temperature for 15minutes. This was followed by centrifugation of 15 

000 rpm for 15 min at room temperature. The supernatant was decanted off and the DNA 

pellet washed with 2ml of ethanol. The ethanol was gently poured off and the DNA pellet 

was vacuum-dried for 20 min. The DNA was then re-suspended in 4ml TE buffer 

(Appendix) for 2 hours with gently agitation. Thereafter, 4.1 g of cesium chloride (CsCl) 

was added and dissolved by gently mixing and then 600µl of 1% ethidium bromide 

(EtBr) solution was added. The refractive index was adjusted to between 1.387 and 1.389 

(0.001 units =100mg CsCl if the index was below or 0.001 units= 100µl TE if the index 

was above). The mixture was loaded into a Beckman Quick-seal tube using a Pasteur 

pipette. The tube was sealed, balanced and ultra-centrifuged overnight at 45 000rpm in a 

Beckman vertical VTi 65.2 rotor. The plasmid DNA was extracted from the tube using a 

needle attached to a hypodermic syringe. DNA was purified in section 2.5.1.3 

 

2.4.2 B. subtilis bulk genomic DNA preparation 

 

A B. polymyxa culture was grown for 8 hours in 200ml LB at 37°C. Cells were harvested 

by centrifugation in a Beckman JA-10 rotor at 6 000rpm for 10 min at room temperature. 

The cells were resuspended in 5 ml of TE buffer to which 5mg/ml of lysozyme was 

added and incubated for 1 hour at 37°C. The cells were centrifuged at 8 000rpm for 5 min 

in a Beckman JA-20 rotor and resuspended in 4 ml TE buffer to which minute quantity of 

proteinase K was added. A 1/10 volume of Solution B (Appendix) was added to the cells 

and the tube incubated at 45°C for 30 min. The viscous solution was transferred to a 50Ti 

tube and spun at 40 000rpm for 30 minutes in a Beckman L5-50 ultracentrifuge. The 

supernatant was transferred to a clean JA-20 centrifuge tube and 4.4 g of CsCl was 

added. The contents of the tube were mixed by inversion of the tube for several times. 

The solution was centrifuged at 15 000 rpm in a Beckman JA-20 rotor for 15 min. The 

liquid was decanted, 600µl of 1% EtBr solution was added to it and the refractive index 

adjusted to between 1.391 and 1.392. The solution was loaded into a Beckman Quick seal 
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tube and centrifuged for overnight at 45 000 rpm in a VTi65.2 rotor in a Beckman L5-50 

ultracentrifuge. The genomic DNA was extracted from the tube using a needle attached to 

a hypodermic syringe. DNA was purified in section 2.5.1.3.  

 

2.4.3 E. coli mini plasmid preparations 

 

Individual bacterial colony was inoculated into 1ml of LB containing the appropriate 

selective agent. This was incubated at 37°C with agitation for overnight. The culture was 

transferred into sterile Eppendorf tube and the cells harvested by microfuging for 1 min. 

The supernatant was decanted off and the pellet resuspended in 80µl of solution I by 

vortexing. Then 160µl of solution II was added to the cell suspension and mixed by 

gently inversion of the tube. The tube was left to stand at room temperature for 15 min. 

Thereafter, 120µl of solution III was added and the mixture shaken vigorously and kept 

on ice for 5 min. Cellular debris was removed by microfuging in the cold room (4°C) for 

10 min. The supernatant was collected into a new sterile Eppendorf tube and placed in a 

water bath (42°C) for 2 min to warm the supernatant. Isopropanol (220µl) was added and 

the precipitation process allowed continuing at room temperature for 5 min followed by 

centrifuging at room temperature for 5 min. The pellet was washed with 150µl ethanol 

and vacuum-dried for 20 min. The DNA was then resuspended in 100-150µl of sterile 

distilled water containing freshly boiled ribonuclease (RNaseA) (1µl of 10mg/ml). A 

small aliquot was analyzed on an agarose gel.  

 

2.4.4 B. subtilis mini plasmid preparation 

 

Single colonies were inoculated in 1ml LB containing appropriate selective agent and 

grown for overnight at 37ºC. The culture was transferred into sterile Eppendorf tube and 

the cells harvested by microfuging for 1 min at room temperature. The pellet was re-

suspended in 200µl of TE buffer to which lysozyme (5mg/ml) were added. The 

suspension was incubated for 1 hour in a 37ºC water bath with inversion of the tube in 10 

min intervals. Thereafter, 40µl of TE-SDS (10%) was added and the tube mixed by 

inversion and left to stand at room temperature for 10 minutes. A volume of 40µl of 5 M 
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KAc (pH 6.0) was then added and the mixture was shaken vigorously and left on ice for 5 

min. The mixture was microfuged for 5 min in the cold room (4ºC) and the supernatant 

was transferred into a fresh Eppendorf tube. DNA was purified by phenol-chloroform 

extraction in 2.5.1.4 and precipitated by salt and ethanol precipitation in 2.5.1.1. 

 

2.5 DNA manipulations and cloning techniques 

 

2.5.1 DNA precipitation 

 

2.5.1.1 Salt and ethanol precipitation 

 

DNA was precipitated from aqueous solution with 1/3 volume of 1M NaCl and 2 

volumes of ethanol. The mixture was microfuged at 4°C for 20 min. The supernatant was 

decanted and the remaining liquid removed by blotting on a paper towel. The DNA pellet 

was vacuum-dried for 10-20 min and resuspended in the appropriate volume of sterile 

distilled water. RNaseA (10mg/ml) was used to remove contaminating RNA. 

 

2.5.1.2 Isopropanol DNA precipitation 

 

After the addition of isopropanol (220µl), the solution was mixed by inversion and left to 

stand at room temperature for 5 min. The solution was then centrifuged at room 

temperature for further 5 min. The pellet was washed with 150µl of 96% ethanol and 

vacuum-dried for 20 min. The plasmid was resuspended in an appropriate volume of 

sterile distilled water containing RNaseA.  

 

 2.5.1.3 DNA precipitation from CsCl gradient 

 

Ethidium Bromide (EtBr) was removed from the DNA by thorough mixing with 0.1 

volume of butanol. EtBr suspended in butanol forms a top layer in the tube, which is 

removed. This procedure was repeated at least 3 times until there were no traces of EtBr. 

This left the DNA in CsCl solution. The DNA was stored at -20°C until required. The salt 
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was removed by adding 2 volumes of sterile distilled water and 2.5 volumes of 96% 

ethanol and precipitated by centrifugation at 4°C for 20 min. The pellet was vacuum-

dried and resuspended in appropriate volume of sterile distilled water. 

 

2.5.1.4 Phenol-chloroform extraction 

 

The DNA solution in water was extracted by addition of 1/3 volume TE-saturated phenol 

(Appendix), mixed by inversion and microfuged at room temperature for 5 min to 

separate the organic and aqueous phases. The upper aqueous layer was transferred into a 

new sterile Eppendorf tube and where necessary, as in the case of extracting DNA from 

agarose gels, a further phenol step was performed. Then 1/3 volumes of chloroform was 

then added to the aqueous layer and mixed gently by inversion. The organic and aqueous 

layers were separated by microfuging at room temperature for 2 min. The upper aqueous 

layer was transferred into a sterile Eppendorf tube and the DNA was precipitated by the 

addition of 1/3 volume of NaCl (Appendix) as described in 2.5.1.1. 

 

2.5.2 Restriction enzyme digestion     

 

Enzymes were obtained from Fermentas, Boehringer Mannheim, New England Biolabs, 

Amersham or Promega and used according to manufacturer’s instructions. The total 

volume of digestion was 15µl (13.5µl DNA and 1.5µl 10× buffer). The mixture was 

tapped briefly to ensure even buffer distribution and spun down for a couple of seconds. 

0.3-1µl of restriction endonuclease was added and the contents mixed and re-spun 

briefly. Digestions were incubated at the appropriate temperature for maximal enzyme 

activity for at least 4 hours. For double digestions an appropriate buffer in which both 

enzymes showed suitable activity was selected, otherwise the digestions were performed 

sequentially starting with the enzyme that require a lower incubation temperature.  
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2.5.3 Ligation of DNA    

 

T4 DNA ligase (Fermentas) was used for all ligations procedures. The total volume for 

ligation was kept minimal at 20µl. Ligation buffer and the appropriate volume of  sterile 

distilled water were added to the DNA sample, mixed by tapping and microfuged for a 

couple of seconds. Subsequently, 1µl of ligase was added, remixed and re-spun. Ligation 

was performed in a water bath at 22°C for 16-22 hours. 

 

2.5.4 Alkaline phosphatase treatment  

 

Calf intestinal alkaline phosphatase (Boehringer Mannheim)  was used to prevent the 

vector from re-ligating to itself. The alkaline phosphatase removes the 5´-phosphate that 

is necessary for the ligation by DNA ligase. Following the digestion of vector DNA, 1µl 

of calf intestinal alkaline phosphatase was added to the reaction mixture. Addition of 10× 

dephosphorylation buffer was added (1/10 volume). The reaction mixture was incubated 

at 37°C for overnight. Immediately after incubation, the enzyme was removed by a 

phenol-chloroform DNA extraction as previously described in 2.5.1.1. 

 

2.6 Gel electrophoresis 

  

2.6.1 Agarose gel electrophoresis 

 

Agarose solutions stock solutions were prepared in 0.5× TBE buffer (Appendix) at 

concentrations of 0.4%, 0.8% or 1.2% depending on a fragment size to be separated. The 

solutions were sterilized by autoclaving (121°C, 20 minutes). Fragment sizes ≥10kb were 

analyzed on 0.4% agarose gels, 2-10kb on 0.8% agarose gel and ≤3kb on 1.2% agarose 

gel. Gels were prepared by melting the agarose stock solution in a microwave oven. A 

volume of 25ml of the melted agarose was mixed with 2.5µl of a 1% EtBr solution 

(Appendix). The mixture was poured in a gel tray with a 12-tooth well comb and allowed 

to polymerize at 4°C for 20 min. Combs were removed when the gel had completely set. 
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The electrophoresis buffer was 0.5× TBE mixed with 1% EtBr solution. DNA samples 

were loaded with 2µl of bromophenol blue tracking dye. GeneRuler 
TM

 DNA 1KB ladder 

Plus mix (Fermentas) was used in all electrophoretic runs using a Hoefer PS 500xdc 

power supply. The process was carried out at room temperature, 80V and a current of 21-

28mA, until the dye front reached the bottom of the gel. DNA sizes were quantified from 

standard curve generated from migrations distances of known molecular weight marker 

sizes run on the same gel. The concentrations were estimated by comparing the intensity 

of the bands to bands of similar intensity and known concentration. The DNA was 

visualized and captured using the UVP BioDoc-It
TM 

system.  

 

2.6.2 The freeze-squeeze method of extracting DNA from agarose gels 

 

DNA was digested with appropriate restriction endonuclease and fragments were 

separated on agarose gel. The fragment of interest was excised from the gel with a scalpel 

while viewing under long wavelength UV light (366nm).  The gel slice was transferred 

into a sterile Eppendorf tube where it was crushed with a sterile spatula. The crushed 

slice of gel was kept at -70ºC for 30 min and it was thawed at room temperature. 

Following thawing it was microfuged for 6 min and the supernatant collected into a 

sterile tube. A second round of crushing, freezing, thawing and centrifuging was done. 

The DNA which was suspended in the collected supernatant was purified by phenol-

chloroform extraction in 2.5.1.4. The DNA was re-suspended in appropriate volume of 

sterile distilled water.    

 

2.7 Transformations 

 

2.7.1 E. coli standard CaCl2 transformation 

 

A flask containing 20 ml of pre-warmed LB supplemented with 0.5% glucose (Appendix) 

was inoculated with 200µl of an overnight culture of E. coli MM294-4. The culture was 

incubated with vigorous shaking at 37ºC until the OD600 of 0.2-0.4 had been reached. 

That OD was generally obtained by incubating for a minimum of 1hour 45 min - 2 hours. 
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The flask was chilled in an ice-water slurry for 5 min and the cells were harvested in a 

pre-chilled Beckman JA-20 rotor at 10 000 rpm for 5 min at 4ºC. The supernatant was 

discarded and the cells re-suspended in 10 ml of ice cold transformation buffer (CaCl2 

transformation buffer) (Appendix). The cell suspension was placed on ice for 15 min and 

re-centrifuged at 10 000 rpm for 5 min. The supernatant was decanted and the cells re-

suspended in 1.3 ml of transformation buffer. The cells were left on ice for 2-24 hours in 

the cold room (4ºC). 

 

 Aliquots 100µl of the cell suspension were placed into pre-chilled sterile Eppendorf 

tubes and about 3µl of plasmid DNA was added and mixed with the cells by bubbling air 

through. The DNA plus cell suspension was left on ice for 15 min to allow for diffusion. 

The cells were then heat-shocked at 42ºC for 90 seconds. A volume of 1ml of pre-

warmed LB was added to the cells after heat shocking and incubated for 60- 90 min at 

37ºC to allow phenotypic expression of the resistance genes. The cells were then spread 

onto LB-agar containing an appropriate selective agent and further incubated for 

overnight at 37ºC. Colonies were visible after the overnight incubation for E. coli strains. 

 

2.7.2 B. subtilis electroporation 

 

A pre-culture of B. subtilis IA3 grown on LB was inoculated into 5ml of LB 

supplemented with 10.3% sucrose and grown for 4 hours at 37ºC. After incubation 1ml of 

the culture was microfuged for 1 minutes and the supernatant was decanted. The cells 

were re-suspended in ice-cold SHMG buffer (Appendix). The cells were washed twice in 

SHMG buffer and re-suspended in 500µl of the same buffer. A volume of 100µl of the 

cell suspension was transferred into a pre-chilled sterile Eppendorf tube and 5µl of the 

DNA was added, mixed by bubbling air through. The mixture was placed on ice for 15 

min to allow diffusion. The mixture was then transferred into pre-chilled Bio-Rad 

electroporation cuvette and electroporated using capacitance of 25µFD, voltage of 2.0kV 

and resistance of 200Ω and the time constant was recorded. After the electroporation 1ml 

of warm LB was added to the cells immediately and transferred into Bjorn bottles and 

incubated at 37ºC with shaking for overnight to allow phenotypic expression. After 
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incubation the cells were spread on selective media and further incubated for 2 days for 

growth to be observed.   

 

2.7.3 Protoplast transformation of B. subtilis and S. aureus  

 

This is a method described by Cohen and Cheng (1979) with modification by Zhang et al. 

(2005). Mid-log phase culture, freshly grown in LB at 37ºC to OD600 of 0.6 were 

harvested and resuspended in 500µl volume of SMMP buffer (Appendix). Lysozyme was 

added to a final concentration of 10mg/ml and incubated for 2 hours at 37ºC with gently 

agitation. The treated cells were then harvested and washed once by resuspending them 

gently in 500µl SMMP buffer and pelleted the second time. The washed protoplast was 

brought to 500µl volume with SMMP buffer. An amount of 1pg to 5µg of DNA in 7.75µl 

of TE buffer was mixed with equal volume of 2X SMM buffer (Appendix) in a sterile 

Eppendorf tube. 77.5µl of the protoplast suspension was added to the DNA, followed by 

the addition of 232µl of 40% PEG (w/v) solution (Appendix) and the contents of the tube 

gently mixed. After 2 min of exposure to PEG, 775µl of SMMP buffer was added to the 

mixture to dilute the PEG. Protoplast was recovered by centrifugation for 10 min and the 

resuspended in 200µl of SMMP buffer. The resuspended protoplast was incubated for 2 

hours at 30ºC to allow phenotypic expression carried by the plasmid. After incubation the 

suspension was spread on DM3 regeneration plates (Appendix) which were 

supplemented with 15µg/ml of chloramphenicol and incubated overnight at 37ºC. 

 

 

2.7.4 Electroporation of S. aureus 

 

S. aureus cells were prepared for electroporation by inoculating a fresh colony into 5ml 

of BHI broth and incubated overnight at 37ºC. The overnight culture was then diluted 

100X on BHI broth and grown at 37ºC until the OD600 was <0.5. The cells were washed 

twice in electroporation buffer (Appendix) at 4ºC. An aliquot of 100µl of the S. aureus 

cells was transferred into an Eppendorf tube and 5-10µl of DNA was added. This was 

mixed by bubbling air through and left to stand on ice for 10 min to allow diffusion. The 
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mixture was then transferred into a pre-chilled electroporation cuvette and electroporated 

(25µF, 2.0kV and 200Ω). BHI broth was added immediately to the electroporated cells 

and incubated for 1 hour at 37ºC for the expression of the antibiotic resistance markers. 

After incubation the cells were plated on BHI agar plates supplemented with an 

appropriate selectable marker and incubated for overnight. 

 

2.8 Preparation of DNA for sequencing 

 

DNA was prepared using the E. coli mini plasmid preparation method in 2.4.3. There 

were modifications done on this procedure. After the cell debris was precipitated and the 

supernatant collected into a new tube, the DNA was extracted by the phenol-chloroform 

extraction method in 2.5.1.4 to remove any protein and other cellular components that 

might be in the supernatant. The DNA was then precipitated with isopropanol as in 

2.5.1.2. After DNA had been prepared the concentration and purity of the DNA was 

analyzed on agarose gel. Sequencing performed by Inqaba Biotechnology Industries (Pty) 

Ltd 

 

2.9 Mutagenesis 

 

2.9.1 N-methyl-N´-nitro-N-nitrosoguanidine (NTG) mutagenesis 

 

A volume of 300µl of an overnight bacterial culture was microfuged for 30 seconds and 

the supernatant was discarded. The pellet was re-suspended in 1ml of Tris-Maleate buffer 

(pH 9) and washed twice in the same buffer. After washing, the pellet was re-suspended 

in 1ml of Tris-Maleate buffer where 50µl of NTG stock solution (1mg/ml) was added. 

Immediately after the addition of NTG solution the cells were microfuged for 30 seconds 

and the supernatant discarded. The cells were washed twice in Phosphate buffer (pH 7) 

because neutral pH completely inhibits the NTG reaction. The cells were inoculated into 

5ml of LB and grown overnight at 37ºC. A volume of 100µl of the grown culture was 

spread on selective media and further incubated for overnight at 37ºC. 

 



 26 

2.9.2 Site-directed mutagenesis 

 

Numerous methods have been developed or exploited to mutate DNA. Initially all 

approaches focused on the generation of random mutations in chromosomal DNA such as 

those induced by X-rays and chemicals. While these methods of random mutagenesis 

provided a valuable tool for classical gene studies, they were limited by their inability to 

target the mutation to a specific gene or genetic element. Site-directed mutagenesis is 

widely used in the study of gene and protein functions. A Phusion
TM

 Site-Directed 

Mutagenesis Kit was used in this study. This is a PCR-base site-directed mutagenesis 

which uses two primers, one which is a mutagenic primer directed to the target site and 

the other one is non-mutagenic which aligns anywhere in the plasmid. 

 

2.10 Counter-selection for auxotrophic mutants 

 

A mutated culture from 2.9.1 grown overnight was washed 3× with 10× stock III buffer 

or sterile distilled water to remove traces of rich media. The washed cells were then 

resuspended in 1 ml of stock III buffer. It was then diluted 50× in Stock III buffer and 

grown until mid-log phase. Ampicillin was added to a concentration such that it does not 

kill the latent cell which should be the auxotrophs. After the addition of ampicillin the 

culture was grown overnight followed by diluting the culture to 10
-5

 and 100µl of the 

diluted culture was spread on LB agar plates. The plates were incubated overnight at 

37˚C. After incubation the developed colonies were patched on minimal media and rich 

media and grown incubated overnight. The colonies that grow on rich media but not on 

minimal media were identified as auxotrophic mutants. Their nutritional requirements 

were determined by patching the auxotrophic mutants in minimal media supplemented 

with different auxotrophic requirement.  

 

2.11 Rifampicin inactivation test 

 

A mutated culture from 2.9.1 which was rifampicin resistant was dilutes 100X in fresh 

LB and grown for 2 hours at 37ºC. After the 2 hours of growth rifampicin was added to a 
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final concentration of 20µg/ml and further incubated for overnight. Uninoculated LB was 

used as a control. LB agar plates with half the concentration of agar were used and were 

supplemented with 200µg/ml of streptomycin. ND3 (streptomycin resistant mutant) was 

used as an overlay organism by spreading it on the ½ LB agar plates supplemented with 

streptomycin. Once the overlay organism had dissolved properly in the plates wells were 

made by using the back of a Pasteur pipette. A volume of 80µl of the overnight culture 

was inoculated into the well made. The plates were kept at 4ºC for 4-6 hours to allow 

diffusion of the inoculated culture followed by incubation at 37ºC for overnight. After 

incubation the zones of inhibitions are measured.  

 

2.12 Plasmid curing 

 

B. subtilis 168 (pC194) was cured of its plasmid using EtBr. Cells were inoculated into 

5ml of LB and grown overnight without antibiotic. The overnight culture was diluted 

100× in fresh LB and different concentrations of EtBr were used (0.01, 0.02 and 0.03%). 

A no EtBr control was used. The cells were allowed to grow overnight followed by 

another 100× dilution in LB without a selective agent and grown overnight. The 

overnight culture was diluted to the 10
-5

 spread on LA plate with no selective agent and 

incubated for overnight. The colonies were observed and they were patched on LA plate 

supplemented with 15µg/ml of chloramphenicol (Cm) and also on LA plate with no 

antibiotic. The plates were incubated at 37˚C for overnight and the colonies that could not 

grow on the LA plate with Cm were successfully cured of the plasmid. 

 

Table 2.1: Internet sequence analysis programs used 

Program Web address 

BLAST http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi 

NEBcutter http://tools.neb.com/BEBcutter2/index.php 

FASTA http://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi 

NEBcutter (silent 

 mutagenesis) 

http://tools.neb.com/NEBcutter2/silmutlist.php 
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3. RESULTS  

 

3.1 Bacillus-Staphylococcus-E. coli shuttle vector construction  

 

Plasmid pEcoR251 has a BamHI site downstream of the EcoRI endonuclease gene 

(figure A6.5) and this site does not fall within any known important regions of the 

plasmid. Plasmid pC194 has an XhoII site which is just after the chloramphenicol 

resistance determinant (figure A6.1) and does not interfere with the expression of this 

gene. Plasmid pC194 was digested with XhoII and pEcoR251 was digested with BamHI 

and these were ligated together using the complementary single stranded ends to give 

pNDW1 (Figure 3.2). This construct should be maintained in B. subtilis and E. coli since 

it had the origin of replication for Gram positives and Gram negatives. It was transformed 

into E. coli λ lysogen and a non-lysogen to determine the functioning of the suicide gene. 

Plasmid pEcoR251 was used as a control because it was desired that the construct 

function in a similar manner due to the suicide gene. Transformants were obtained in the 

lysogen but not non-lysogen confirming that EcoRI was functional. Plasmid DNA from 

these transformants was digested with informative restriction enzymes and the size 

expected was confirmed and the plasmid orientation determined (Figure 3.1).   

 

         1    2    3    4    5   6   7   8   9   10 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Restriction digests of pNDW1. Lane 1 and 10 are DNA markers, 2 is 

undigested, 3 is PstI, 4  SwaI, 5 StuI, 6 HindIII, 7 BglII, 8 EcoRI and 9 SfuI. 
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Figure 3.2: Restriction map of plasmid pNDW1. 

 

3.1.1 Transformation of B. subtilis with pNDW1 

 

Attempts were made to transform pNDW1 into B. subtilis IA3 but these were 

unsuccessful. To investigate why, two new constructs were made by joining pC194 

(XhoII) with pEcoR251 (BglII): pNDW2 and the other one by joining pC194 (HindIII) 

with pEcoR251 (HindIII): pNDW3. Both constructs had the suicide gene interrupted and 

in contrast to pNDW1 transformed a non-lysogen and a lysogen of E. coli with similar 

frequency, behaving in the same manner as pDA71* used as a control. Digestions of 

miniprep DNA of these constructs were done to confirm their sizes and their orientations 

(Figure 3.3 (B)). Plasmid pNDW1 was used to clone a PstI 1.8Kb fragment isolated from 

a Norcadioform brasiliensis PstI library, encodes the glucoslytransferase responsible for 

rifampicin resistance in Norcadioforms, into the PstI site on the suicide gene. This 

construct was named pNDW4 and mini DNA preparations of this construct were done to 

confirm the presence of an insert (Figure 3.3 (A)). Plasmids pNDW2, pNDW3 and 

pNDW4 were successfully transformed into B. subtilis confirming that the failure with 

pNDW1 was not because the construct was unable to replicate but because the suicide 
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gene was expressed in that organism. Restriction maps of pNDW2 and pNDW3 are 

shown in Figure 3.4. 
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Figure 3.3: (A) Lanes 2-7: pNDW4 digested with Pst I to release the inserts which are 

the lower bands. Lanes 1 and 8 are DNA markers. (B):  Lanes 2-5: pNDW2, lane 2 is 

undigested, lane 3 is HindIII digest, lane 4 PstI digest and lane 5 is StuI digest. Lanes 8-

10 is pNDW3, lane 8 is undigested, lane 9 is HindIII digest, lane 10 is PstI digest and 

lane 10 is StuI digest. Lanes 1 and 7 are DNA markers. 
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Figure 3.4: Plasmid map of constructs indicating the way in which the suicide gene was 

disrupted, (A) Restriction map of plasmid pNDW2, (B) Restriction map of plasmid 

pNDW3.   

 

3.1.2 Transformation of S. aureus with pNDW1  

 

Transformation of S. aureus by pNDW1 using electroporation was successful using the 

conditions of Wada and Watanabe (1998). pC194 was used as a control since this 

plasmid was originally isolated from S. aureus. Transformants were observed with both 

but for pNDW1 the efficiency was very low. Transformants were not expected for 

pNDW1 if the suicide gene was expressed in this organism. DNA preparation of S. 

aureus transformants was re-transformed back into E. coli λ lysogen and non-lysogen to 

check the status of the suicide gene. Transformants were only observed on the λ lysogen 

showing that the suicide gene is functional. DNA preparation from 20 transformants was 

done and digested with PstI to check the size of the plasmid (Figure 3.5)  
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Figure 3.5: Plasmid preparation of pNDW1 from λ lysogen. (A) 10 of the 20 

transformants. Lane 1 and 12 are molecular weight markers. Lanes 2-11 pNDW1 from 

different transformants digested with PstI. (B) The other 10 transformants. Lanes 1 and 

12 are molecular weight markers. Lanes 2-11 pNDW1 from transformants digested with 

PstI. 
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Figure 3.6:  pNDW1 from S. aureus. Lane 1 is molecular weight marker. Lane 2 is 

undigested, lane 3 is EcoRI, lane 4 is StuI, lane 5 is HindIII, lane 6 is SwaI, lane 7 is SpeI 

and lane 8 is PstI. 
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DNA from the clone of Figure 3.5 (B) lane 11 was further digested to compare this 

pNDW1 to the pNDW1 used to transform S. aureus (figure 3.6). Since the two are 

indistinguishable I concluded that EcoRI is not expressed in S. aureus, in contrast to B. 

subtilis.  

 

3.2 Introduction of new sites into EcoRI 

 

Introduction of additional restriction sites in the suicide gene of pNDW1 would increase 

its versatility in genomic library construction and subcloning. Candidate restriction sites 

were chosen using the following criteria:  

1) The enzyme has a 6 bp palindromic recognition sequence.  

2) The restriction site should be unique in the vector. 

3) The site should towards the 5 ′ end of EcoRI (first 600bp). 

4) The enzyme should generate cohesive rather than blunt ends for better ligation.  

The Silent Mutagenesis Program on NEBcutter website was used to determine which 

restriction sites can be introduced and where mutation should be made on the suicide 

gene sequence. This program gives possible mutations that can be introduced into the 

sequence without changing the amino acid sequence of the protein. All possible 

mutations were analyzed and 11 candidates identified. Table 3.1 lists these. The bases 

that are coloured and underlined red are the mutated bases.  

 

TABLE 3.1: Candidate Additional Restriction Sites in EcoRI 

 

Enzyme Specificity Position Mutated bases underlined 

 

AvrII C CTAG G 228 211 AAAAAAATTGACCCTGACCTAGG 

CGGTACTTTATTTGTTTCA 252 

BclI T GATC A 396 379 TTAGTTGGGAAAAGAGGTGATCA 

AGATTTAATGGCTGCTGGT 420 

ClaI AT CG AT 23 40TCTAATAAAAAACAGTCAAATCGAT 

TAACTGAACAACATAAG  45 
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ClaI AT CG AT 217 199 AATGAAGCTTTAAAAAAAATCGAT 

CCTGATCTTGGCGGTACT 240 

ClaI AT CG AT 258 241 TTATTTGTTTCAAATTCATCGAT 

CAAACCTGATGGTGGAATT 282 

SpeI A CTAG T 120 103 GTTGGTGAGGTTTCAAAACTAGT 

AAAGAAAGCTCTTAGCAAC 144 

SpeI A CTAG T 321 304 GGTGAATGGAGAGTTGTACTAGT 

TGCTGAAGCCAAACACCAA 345 

XbaI T CTAG A 504 487 TTTCCTTACGTCCTTTTTCTAGA 

GGGGTCTAACTTTTTAACA 528 

XhoI C TCGA G 255 238 ACTTTATTTGTTTCAAACTCGAG 

CATCAAACCTGATGGTGGA 279 

XhoI C TCGA G 505 487 TTTCCTTACGTCCTTTTCCTCGAG 

GGGTCTAACTTTTTAACA 528 

 

SpeI is present in pC194 so was excluded. Genomic DNA of B. polymyxa was digested 

with these restriction enzymes to see which might be suitable in cloning Bacillus 

genomic DNA. Figure 3.7 shows the gel image of this.  
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Figure 3.7: B. polymyxa genomic DNA, lane: 2 undigested; 3-8 digested with: 3 ClaI, 4 

XhoI, 5 AvrII, 6 SalI, 7 PstI, and 8 XbaI. 
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These results (figure 3.7) were useful in narrowing down which restriction site should be 

introduced into pNDW1 suicide gene. ClaI digested the genomic DNA very frequently 

and so was unlikely to be useful when creating a genomic library because it is preferable 

to have the entire open reading frame of a particular gene rather than having pieces of the 

gene scattered all over the library. Also ClaI partial digestions of Bacillus genomic DNA 

might be inserted into the SfuI site already present in the suicide gene. AvrII, SalI and 

XhoI were possible candidates as they digested the genomic DNA generating large 

fragments. PstI was used as a control because it has been observed that PstI would be a 

suitable enzyme to create a genomic library of B. polymyxa genomic DNA (figure 3.37). 

XbaI seemed to digest genomic DNA comparably to PstI so I decided this would be the 

best choice.  

 

3.2.1 Introduction of an XbaI site in pNDW1 

 

To empirically confirm that XbaI sites were absent in pC194 and pEcoR251 (as predicted 

from published sequences) they were digested with this enzyme. As shown in Figure 3.8. 

XbaI did not cut either plasmid.  
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Figure 3.8:(A) Lane 1 is the molecular weight markers, lane 2 is pC194 undigested, lane 

3 is pC194 digested with SpeI and lane 4 is pC194 digested with XbaI. (B) Lanes 1 and 5 
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are molecular weight markers, lane 2 pEcoR251 undigested, lane 3 PstI digest and lane 4 

is XbaI digest. 

 

Having concluded that XbaI was the best restriction site to introduce into the pNDW1 

suicide gene a site-directed mutagenesis kit was used to introduce the mutation required. 

The following primers were used  

 

5´-TACGTCCTTTTTCTAGAGGGGTCTA-3´ and a reverse primer  

5´-AGGAAAGTGGGCTCTCAGAGAGCA-3´.  

 

 

TABLE 3.2 Mutagenic reaction mixture for XbaI site 

_______________________________________________________________________ 

Components   Volume/50µl reaction  Final concentration 

Sterile dH2O    36.7µl 

5X Phusion HF buffer   10µl     1X 

10mM dNTPs    1µl     200µM each 

Mutagenic primer   0.25µl     0.5µM 

Reverse primer   0.25µl     0.5µM 

DNA template (0.4ng/µl)  1.25µl     10pg 

Phusion hot start DNA 

 Polymerase (2U/µl)   0.5µl     0.02U/µl 

 

 

TABLE 3.3 Cycling conditions for mutagenic reaction for XbaI site 

________________________________________________________________________ 

Cycle step  Temperature  Time  Number of cycles 

Initial  

Denaturation  98ºC   30 Sec   1 

 

Denaturation  98ºC   10 sec 
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Annealing  67ºC   30 sec   25 

Extension  72ºC   4 min 

Final  

Extension  72ºC   5 min 

 

 

The PCR reaction was successful because a band of amplification was observed 

corresponding to the template size (pNDW1) (Figure 3.9). A no template control was 

used. 
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Figure 3.9: 5µl of the PCR product ran on 0.6% agarose gel. Lane 1 is Molecular weight 

marker, Lane 2 is the PCR product and lane 3 is the control reaction. 

 

The PCR product was a linear plasmid molecule therefore it was circularized with Quick 

T4 DNA ligase provided in the kit. The circularized plasmid was then transformed into E. 

coli MM294-4 λ lysogen. DNA mini preparation of 10 transformants was done and 

digested with XbaI to screen for plasmid which had acquired the XbaI site. A single clone 

had the XbaI site (Figure 3.10 lane 3). To confirm that the plasmid was pNDW1 with a 

new restriction site XbaI, restriction digestions were done on the DNA in lane 3 Figure 
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3.10. Figure 3.11 presents the gel image of the digestions and confirmed that the XbaI 

restriction site was introduced on pNDW1.  
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Figure 3.10:  Lanes 1and 12 are molecular weight markers, lanes 2-11 are the DNA 

preparations digested with XbaI. 
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Figure 3.11:  Lane 1 is the molecular weight marker, lane 2 is the undigested DNA, lane 

3 is SpeI digest, lane 4 is PstI digest, lane 5 is HindIII digest, lane 6 is EcoRI digest and 

lane 7 is XbaI digest. 
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All of the enzymes used to digest the DNA preparation linearized the plasmid except for 

HindIII which should give two fragments. Figure 3.11 confirmed that the XbaI restriction 

site was introduced in plasmid pNDW1 which was named pNDW5. The other restriction 

enzymes used indicated that XbaI linearized the plasmid as did the other enzymes. To 

check if the suicide gene was still functional after the introduction of the new site, 

pNDW5 was transformed into E. coli MM294-4 λ lysogen and E. coli MM294-4 non-

lysogen. pDA71* and pNDW1 were controls.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: E. coli transformed with pNDW1, pNDW5 and pDA71* showing the 

behavior of pNDW5 in relation to pNDW1 and pDA71*. 
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The function of the suicide gene was maintained, as shown by the transformants on plate 

C but not A (Figure 3.12). DNA preparations of pNDW5 on plate C (Figure 3.12) were 

done and the DNA was digested with XbaI to check if the transformants have plasmid 

pNDW5 (Figure 3.14). Figure 3.13 is a map of pNDW5 showing the new XbaI site 

between restriction sites BglII and PstI on the EcoRI endonuclease gene.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Restriction map of plasmid pNDW5. 
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Figure 3.14: Plasmid DNA of randomly picked transformants digested with XbaI. Lanes 

1 and 12 are molecular weight markers. Lanes 2-11 are DNA digests. 
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DNA of clones from plate C Figure 3.12 was digested with XbaI and was also digested 

with XbaI. Figure 3.15 shows the gel image of the digestions. This confirmed that the 

site was present in pNDW5 but not its parent pNDW1.  
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Figure 3.15: pNDW1 and pNDW5 digested with XbaI.  Lane 1and 11 are molecular 

weight markers. Lanes 2 and 4 is undigested pNDW1 and pNDW5, respectively. Lanes 3, 

6 and 8 are pNDW1 digested with XbaI. Lanes 5, 7 and 9 are pNDW5 digested with 

XbaI. 

 

pNDW5 was double digested with BglII and PstI to cut out the 175bp fragment that had 

incorporated the XbaI restriction site which was cloned into pUC19 pre-incubated with 

calf intestinal phosphatase via the BamHI and PstI restriction sites. pUC19 was used 

because the multiple cloning sites is flanked with sequencing primers. This construct was 

sent to Inqaba Biotechnical industries (Pty) Ltd for sequencing to confirm the presence of 

the XbaI site. Aligning the mutated and unmutated sequences using the Basic local 

alignment search tool (BLAST) showed the predicted CT→ TC base change (red and 

underlined)  
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AGAATATATCAGAGATAGCGAATTTTATGCTCTCTGAGAGCCACTTTCCTTACGTCCTTT  60                         

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

       AGAATATATCAGAGATAGCGAATTTTATGCTCTCTGAGAGCCACTTTCCTTACGTCCTTT  62 

  

 

       TTCTAGAGGGGTCTAACTTTTTAACAGAAAATATCTCAATAACAAGACCAGATGGAAGGG  120            

|  ||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

       TCTTAGAGGGGTCTAACTTTTTAACAGAAAATATCTCAATAACAAGACCAGATGGAAGGG  122 

 

      TTGTTAATCTTGAGTATAATTCTGGTATATTAAATAGGTTAGATCGACTAA  171 

      ||||||||||||||||||||||||||||||||||||||||||||||||||| 

      TTGTTAATCTTGAGTATAATTCTGGTATATTAAATAGGTTAGATCGACTAA  173 

 

Figure 3.16:  The sequence alignments of the BglII-PstI fragment of both the mutant 

pNDW5 (top sequence) and its parent pNDW1 (bottom sequence). 

 

Genomic DNA of B. polymyxa digested with XbaI was ligated to XbaI-digested pNDW5 

and transformed into E. coli MM294-4. Minipreps of 10 randomly chosen transformants 

were digested with XbaI to determine if they contain the recombinant pNDW5 plasmid. 

Figure 3.17 shows the presence of inserts of various sizes as one would expect. 
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Figure 3.17: pNDW5 clones digested with XbaI to release inserts from the plasmid. 

Lanes 1 and 12 are molecular weight markers. Lanes 2-11 are plasmid DNA (pNDW5 

clones) from transformants randomly chosen and digested with XbaI.  
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Different clones of pNDW5 (figure 3.17) did not transform S. aureus or B. subtilis but 

when a pool of clones was used transformants were observed in both hosts. This suggests 

that the individual clones that were used to transform S. aureus and B. subtilis had big 

fragment sizes (more than 1.5Kb) that could have resulted in low transformation 

efficiency and these host strains might have a restriction modification system resulting in 

no transformants.   

 

3.2.2 Introduction of more new sites  

 

ClaI, AvrII and XhoI were other candidate restriction sites to be introduced as described 

in section 3.2. However digesting parent plasmids pC194 and pEcoR251 with ClaI 

indicated that pC194 had two sites for this enzyme (Figure 3.18). AvrII, XbaI and SpeI 

are isocaudomers (i.e. generate identical single-strand ends). XhoI was selected as it cut 

B. polymyxa genomic DNA generating mainly large fragments (Figure 3.7) and digestion 

of pC194 and pEcoR251 confirmed absence of the XhoI site in both (Figure 3.18).   
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Figure 3.18: pEcoR251 and pC194 digestions. Lanes 1 and 5 are molecular weight 

markers. Lane 2 is undigested pEcoR251, lane 3 is ClaI digested pEcoR251 and lane 4 is 

XhoI digested pEcoR251. Lane 6 is undigested pC194, lane 7 is ClaI digested pC194 and 

lane 7 is XhoI digested pC194. 
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Introduction of the XhoI site was done by site-directed mutagenesis using the following 

primers: Mutagenic primer 5′-TTGTTTCAAACTCGAGCATCAAACCT-3′ and reverse 

primer 5′-ATAAAGTACCGCCAAGATCAGGGTCA-3′.  

 

TABLE 3.4 Mutagenic reaction mixture for XhoI site 

_______________________________________________________________________ 

Components   Volume/50µl reaction  Final concentration 

Sterile dH2O    37.3µl 

5X Phusion HF buffer   10µl     1X 

10mM dNTPs    1µl     200µM each 

Mutagenic primer   0.25µl     0.5µM 

Reverse primer   0.25µl     0.5µM 

DNA template (0.7ng/µl)  0.7µl     10pg 

Phusion hot start DNA 

 Polymerase (2U/µl)   0.5µl     0.02U/µl 

 

TABLE 3.5 Cycling conditions for mutagenic reaction for XhoI site 

________________________________________________________________________ 

Cycle step  Temperature  Time  Number of cycles 

Initial  

Denaturation  98ºC   30 Sec   1 

 

Denaturation  98ºC   10 sec 

Annealing  67ºC   30 sec   25 

Extension  72ºC   4 min 

Final  

Extension  72ºC   5 min 
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A PCR reaction was performed using the reaction and cycling conditions in tables 3.4 

and 3.5 above. Five micro liters of the PCR product was ran on a 0.4% agarose gel to 

check if amplification of the template had occurred (Figure 3.19). 
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Figure 3.19: PCR product ran on 0.4% agarose gel. Lane 1 is the molecular weight 

marker, lane 2 is the 5µl of the DNA template digested with XbaI, lane 3 is 5µl of the 

PCR product and lane 4 is the PCR control with no DNA template. 

 

The PCR product was ligated with T4 DNA ligase (Fermentas) and introduced into E. 

coli λ lysogen. Ten transformants were chosen and DNA digested with XhoI (Figure 

3.20).                      
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Figure 3.20: DNA preparations digested with XhoI. Lanes 1 and 12 are molecular weight 

markers. Lanes 2-11 is the DNA preparation digested with XhoI.  
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Each of these DNAs was introduced into E. coli λ lysogen and E. coli non-lysogen to 

check the function of the suicide gene. Only DNAs from lanes 2, 3 and 11 indicated that 

the suicide gene was still functional as indicated by the presence of transformants on E. 

coli λ lysogen. DNA preparations for 16 transformants of the DNAs 2, 3 and 11 were 

selected from each plate and labeled 1-16. The DNA preparations were digested with 

XhoI and run on 0.6% agarose gel. 
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Figure 3.21: DNA preparations 1-16 digested with XhoI. (A) lane 1 is molecular weight 

marker and lanes 2-9 is DNA 1-8, respectively. (B) Lane 1 is molecular weight marker 

and lanes 2-9 are DNA 9-16, respectively. 

 

DNA of the clone in lane 8 (Figure 3.21 A), named pNDW7, and from lane 2 (Figure 

3.21 B), named pNDW8 were digested with selected restriction enzymes. Plasmid 

pNDW7 had similar restriction pattern to pNDW5 in figure 3.11 but pNDW8 had 

different restriction digestion pattern because when digested with HindIII it indicating a 

partial digest.  
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Figure 3.22: Restriction digestions of pNDW7 and pNDW8.  (A) Is pNDW7. Lane 1 is 

molecular weight marker. Lane 2 is undigested DNA, lane 3 is XhoI digest, lane 4 is StuI 

digest, lane 5 is HindIII digest, lane 6 is XbaI digest and lane 7 is EcoRI digest. (B) Is 

pNDW8.  Lane 1 is molecular weight marker. Lane 2 is undigested DNA, lane 3 is XhoI 

digest, lane 4 is StuI digest, lane 5 is HindIII digest, lane 6 is XbaI digest and lane 7 is 

EcoRI digest. 

 

To check if pNDW7 has a functional suicide gene, it was transformed into E. coli λ 

lysogen and E. coli non-lysogen. Controls used were pDA71* and pNDW5. Figure 3.23 

indicated that transformants were observed on lambda lysogen (image B) not on a non-

lysogen (image C) confirming this was so.  Figure 3.25 is the plasmid map of pNDW7 
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Figure 3.23: Transformation plates indicating the behavior of pNDW7 on a lysogen and 

a non-lysogen. Image A and B is pDA71* in non-lysogen (A) and in λ lysogen (B). 

Image C and D is pNDW7 on a non-lysogen (D) and on a lysogen (C). Image E and F is 

pNDW5 on lysogen (E) and on a non-lysogen (F). 

 

To confirm the XhoI site was specific to pNDW7, DNA preparations from plate C figure 

3.23 were digested with XhoI and pNDW5 was also digested with XhoI (Figure 3.24). 

A B 

C D 

E 
F 
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Figure 3.24: Digestions of pNDW5 and pNDW7. Lane 1 is the molecular weight marker. 

Lane 2 is pNDW5 undigested, lane 3 is pNDW7 undigested, lane 4 is pNDW5 digested 

with XhoI, lane 5 is pNDW7 digested with XhoI. Lane 6 is pNDW5 digested with XhoI, 

lane 7 is pNDW7 digested with XhoI, lane 8 is pNDW5 digested with XhoI and lane 9 is 

pNDW7 is digested with XhoI.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: Restriction map of plasmid pNDW7. 

 

B. polymyxa genomic DNA was digested with XhoI and ligated into pNDW7 digested 

with the same enzyme and transformed into E. coli MM294-4: surprisingly, no colonies 



 50 

were observed. Genomic DNA of Streptomyces pseudogriseolus was then used and was 

digested with XhoI (Figure 3.26). This genomic DNA was cloned into XhoI pNDW7 

digests and transformed into E. coli MM294-4. Colonies were observed and their 

plasmids screened for inserts and indicated that genomic DNA digested with XhoI can be 

cloned into the XhoI site of pNDW7 (Figure 3.27). 
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Figure 3.26: Streptomyces pseudogriseolus genomic DNA. Lane 1 is molecular weight 

marker, lane 2 is genomic DNA undigested and lane 3 is genomic DNA digested with 

XhoI. 
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Figure 3.27: DNA preparations of transformants digested with XhoI. Lane 1 and 12 are 

molecular weight markers. Lanes 2-10 is pNDW7 clones digested with XhoI. 

 

The HindIII-BglII fragment from pNDW7 was cloned into pUC19 treated with alkaline 

phosphatase via the HindIII and BamHI sites. Sequencing confirmed the presence of an 

XhoI site at the expected position but in addition there was a three base deletion (figure 

3.28). This is in-frame and predicted to result in a valine residue deletion. However the 

endonuclease activity of the EcoRI endonuclease gene was intact.  

 

AAAAATTGACCCTGATCTTGGCGGTACTTTATTT---TCAAACTCGAGCATCAAACCTGA  57 

||||||||||||||||||||||||||||||||||   ||||| || |||||||||||||| 

AAAAATTGACCCTGATCTTGGCGGTACTTTATTTGTTTCAAATTCCAGCATCAAACCTGA  63 

 

TGGTGGAATTGTAGAGGTCAAAGATGATTATGGTGAATGGAGAGTTGTACTTGTTGCTGA  117 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

TGGTGGAATTGTAGAGGTCAAAGATGATTATGGTGAATGGAGAGTTGTACTTGTTGCTGA  123 

 

Figure 3.28: Sequence alignment of the HindIII-BglII fragments of the mutated and a 

non mutated sequence of the suicide gene. The top sequence is the mutated sequence and 

the bottom sequence is the non-mutated sequence. 
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The HindIII-BglII fragment of the original EcoRI endonuclease gene from plasmid 

pEcoR251 was sent for sequencing to check if the deletion was present prior to the 

mutagenesis or not.  

 

AAAAAATTGACCCTGATCTTGGCGGTACTTTATTTGTTTCAAATTCCAGCATCAAACCTG  67           

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

AAAAAATTGACCCTGATCTTGGCGGTACTTTATTTGTTTCAAATTCCAGCATCAAACCTG  69 

 

ATGGTGGAATTGTAGAGGTCAAAGATGATTATGGTGAATGGAGAGTTGTACTTGTTGCTG  127            

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

ATGGTGGAATTGTAGAGGTCAAAGATGATTATGGTGAATGGAGAGTTGTACTTGTTGCTG  129 

 

AAGCCAAACACCAAGGTAAAGATATTATAAATATAAGGAATGGTTTGTTAGTTGGGAAAA  187            

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

AAGCCAAACACCAAGGTAAAGATATTATAAATATAAGGAATGGTTTGTTAGTTGGGAAAA  189 

 

GAGGAGATCAAGATTTAATGGCTGCTGGTAATGCTATCGAA  228 

||||||||||||||||||||||||||||||||||||||||| 

GAGGAGATCAAGATTTAATGGCTGCTGGTAATGCTATCGAA  230 

 

 

Figure 3.29: Sequence alignment of the original EcoRI HindIII-BglII fragment aligned to 

the known sequence of EcoRI endonuclease gene. Top sequence (from pEcoR251) and 

bottom sequence (known sequence). 

 

A deletion was not present in the EcoRI gene from pEcoR251 (Figure 3.29). The deletion 

apparently arose during the mutagenesis procedure. The mutated EcoRI gene sequence 

was put on the NEBcutter website to confirm the presence of newly introduced sites. The 

output from the website indicated that the new sites were (figure 3.30).                      
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Figure 3.30: Predictions of restriction sites on original and mutated EcoRI endonuclease 

gene. (A) Is the original EcoRI sequence. (B) Is the mutated EcoRI sequence, the blue 

box indicates the new restriction sites predicted by NEBcutter program.  
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3.2.3 Introduction of the XbaI restriction site into pDA71 

 

Plasmid pDA71 is an 8.8Kb E. coli-Rhodococcus shuttle vector which has an ampicillin 

resistant determinant expressed in Gram-negatives and a chloramphenicol resistant 

determinant expressed in Gram-positives; it has been successfully used to clone more 

than thirty genes of medical or bioremediative interest (Dabbs et al., 1995). Introduction 

of XbaI restriction sites in pDA71 allows the use of SpeI, NheI and AvrII restriction sites 

to construct genomic libraries.  To introduce the XbaI restriction site into it the 175 bp 

BglII-PstI fragment from pNDW5 was used to substituted with the same fragment from 

pDA71. Plasmid pDA71 was double digested with BglII and PstI and phosphatased. 

Ligations were transformed into E. coli λ lysogen. DNA minipreps were done of 10 

transformants were digested with XbaI. Figure 3.31 shows the gel image of the 

transformants. 
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Figure 3.31: DNA preparations digested with XbaI to screen for the presence of XbaI site 

in pDA71. Lane 1 and 12 are molecular weight markers. Lanes 2-11 are DNA 

preparations digested with XbaI. 
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The DNA preparation on lane 3 Figure 3.31 was further digested with a couple of 

restriction enzymes in order to determine whether it is a correct plasmid (Figure 3.32) 

and was named pDA71-1. StuI digestion result indicated that it is a correct plasmid 

because of the presence of two StuI site giving one smaller fragment and one large 

fragment. 
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Figure 3.32: Digestion of the pDA71-1 that contains XbaI. Lanes 1 and 8 are molecular 

weight markers; lane 2 is undigested pDA71-1, lane 3 is HindIII digest, lane 4 is BglII 

digest, lane 5 is SfuI digest, lane 6 is XbaI digest and lane 7 is StuI digest. 

 

pDA71-1 was transformed into E. coli λ lysogen and non-lysogen together with pNDW5, 

pDA71* to determine if the suicide gene was functional (Figure 3.33).  
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Figure 3.33: Transformation plates indicating the behavior of pDA71-1. 

 

The plates in figure 3.33 indicates that the suicide gene is functional hence the 

transformants on a lysogen. DNA was inserted into the XbaI site of pDA71-1 to 

determine if this site is useful in cloning DNA and can be released from the plasmid by 

digestion with XbaI. Plasmid map of pDA71-1 is presented in Figure 3.35. Genomic 

DNA of B. polymyxa was digested with XbaI and ligated into XbaI digested pDA71-1. 
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This was transformed into E. coli MM294, selected for ampicillin resistance, and 

transformants screened for the presence of the plasmid that has an insert (Figure 3.34).  
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Figure 3.34: plasmid DNA of pDA71-1 clones digested with XbaI to release cloned 

DNA. Lane 1 is the molecular weight marker and lanes 2-6 are plasmid DNA with inserts 

released. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35: Restriction map of plasmid pDA71-1. 
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3.2.4 Introduction of XhoI site into plasmid pEcoR251  

 

Plasmid pEcoR251 is 3.3 kb in size and is useful in the construction of E. coli positive 

selection shuttle vectors. It can provide a Gram-negative replicon for the shuttle vector 

and a positive selection gene. The HindIII-BglII fragment of the plasmid pNDW7 

(Figure 3.25) was used as a source of the XhoI site. Plasmid pEcoR251 was digested 

with the same enzymes and phosphatased. The HindIII-BglII fragment from pNDW7 was 

used to substitute a HindIII-BglII fragment of pEcoR251. Transformants minipreps were 

screened for the presence of an XhoI site. Eight transformants were tested and all of them 

were digested with XhoI indicating that the site was present (figure 3.36). Four of the 

DNA preparations of the 8 transformants were transformed into E. coli λ lysogen and a 

non lysogen to check which of these preparations had a functional suicide gene.   
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Figure 3.36: DNA preparation of transformants digested with XhoI. Lane 1 is molecular 

weight marker. Lanes 2-9 is XhoI digests. 

 

Only DNA from lane 2 (Figure 3.36) had a functional suicide gene and was further 

digested with restriction enzymes to confirm if it is pEcoR251 with a new site. Figure 

3.37 presents the gel image of the digestions. 
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Figure 3.37: pEcoR251 with the new restriction site. Lanes 1 and 8 are molecular weight 

markers. Lane 2 is undigested, lane 3 is HindIII digest, lane 4 is BglII digest, lane 5 is 

BamHI-EcoRI digest, lane 6 is SfuI digest and lane 7 is XhoI digest. 

 

This plasmid was then transformed into E. coli λ lysogen and a non-lysogen to check the 

function of the suicide gene. Plasmids pDA71* and pEcoR251 (original) were used as 

controls. Figure 3.38 represents the behavior of the modified pEcoR251 which was 

named pEcoR251-1. 
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Figure 3.38: Transformants indicating the behavior of the modified pEcoR251. Image A 

and B is pEcoR251 on a non-lysogen and a lysogen, respectively. Image C and D is 

pDA71* on a non-lysogen and a lysogen, respectively. Image E and F is pEcoR251-1 on 

a non-lysogen and a lysogen, respectively.  
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3.3 Inactivation of rifampicin by Bacillus species 

 

Preliminary experiments were done to confirm that one of the shuttle vectors I had made 

could be used to clone Bacillus genes. Members of this genus were shown by Dabbs et al. 

(1995) to have the ability to inactivate rifampicin. B. polymyxa was a species that can 

inactivate rifampicin by glycosylation. Initially this strain was going to be used to screen 

for this inactivation gene then the focus of work changed and it was used for cloning by 

complementation in an auxotrophic mutants of B. subtilis.  

 

3.4 Genomic library construction 

   

A genomic library was constructed using plasmid pNDW1. This was done to check if this 

pNDW1 can be useful in the construction of a genomic library. The library was going to 

be used to check if there was any fragment of B. polymyxa genomic DNA that can 

complement the auxotrophic mutants, the KIT strains, in section 2.1. Genomic DNA of 

B. polymyxa was digested with restriction endonucleases to determine which restriction 

endonuclease will be used to construct a genomic library.  
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Figure 3.39:  Genomic DNA digestions. Lane 1 is molecular weight marker, lane 2 is 

undigested DNA, lane 3 is BglII digest, lane 4 is HindIII digest, lane 5 is PstI digest, lane 

6 is NarI digest, lane 7 is ClaI digest, lane 8 is SfuI digest and lane 9 is BclI digest.  
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The restriction endonuclease chose was the one that does not digest the genomic DNA 

too frequently as that could lead to pieces of gene scattered all over a genomic library. It 

is desirable to have a restriction endonuclease that does not cut genomic DNA frequently 

because the possibility of getting the entire gene in a plasmid is high. Figure 3.39 

indicates that BglII does not cut the genomic DNA as there is no difference between the 

BglII digest and the undigested genomic DNA. HindIII, ClaI, SfuI and BclI cut the 

genomic DNA too frequently with that they were not used for the library construction. 

PstI and NarI were found chosen as they do not digest the genomic DNA too frequently. 

PstI was of best choice because a PstI site is present in pNDW1 and it would be easy to 

excise the fragment cloned into that site by simple digestion with PstI. 

 

3.4.1 Vector calibration  

 

The amount of vector to be used for library construction was determined. This was to 

determine the minimum amount required to produce the least amount of transformants 

caused by mutation and plasmid re-ligating to itself. An aliquot of 200µl was digested 

with PstI and after digestion the DNA was purified by phenol-chloroform extraction. 

Ligation reaction were set up with different amount of plasmid, 2µl of T4 DNA ligase 

buffer and 1µl of T4 DNA ligase was added. The volume was adjusted to 20µl and was 

incubated at 22ºC for 16-22 hours. The E. coli MM294-4 was then transformed with the 

ligation mixture. The amount of vector which gave the least amount transformants was 

chosen. 

 

3.4.2 Genomic DNA calibration 

 

The amount of genomic DNA to be used with the plasmid amount determined above, was 

also determined by first digesting the genomic DNA with PstI and setting up ligations 

reaction to 20µl using 2µl of T4 DNA ligase buffer and 1µl of T4 DNA ligase. The only 

difference in this part was that the amount of vector determined above was kept constant 

and different amounts of the genomic DNA were used. The ligation mixtures in an 
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vector: insert ratio of 1:3 were transformed into E. coli MM294-4. The amount of 

genomic DNA that gave the most amounts of transformants was chosen. 

 

3.4.3 Construction of the genomic library in E. coli 

 

The library was constructed in a highly transformable E. coli strain MM294-4 using the 

B. subtilis-E. coli shuttle vector constructed in this study (pNDW1). The PstI library gave 

inserts that were ≥1Kb (figure 3.40). The average number of transformants obtained per 

ligation reaction was desirable, 586 transformants were obtained. The statistical 

calculation of the probability (P) that any fragment of the genome would be represented 

in the library was done using the formula of Clarke and Carbon, 1976:  

      

    

       N = In (1-P) ⁄ In [1-(a ⁄ b)]     where N=number of clones  

       P= probability (95%) 

        a= average insert size 

        b= genome size (assumed to be 4.5x 10
6
) 

 

Using the formula above the number of clones required to represent the library was 

determined to be 6 608 clones.  
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Figure3.40: Independent clone digested with PstI from library construction. Lane 1 and 

12 are molecular weight markers. Lanes 2-11 are clones digested with PstI to determine 

the insert sizes. 
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4. DISCUSSION 
    

Plasmids isolated from Staphylococcus aureus also replicate in Bacillus subtilis. That led 

to development of gene cloning technology in B. subtilis aided by the construction of 

vectors that are maintained in both B. subtilis and Escherichia coli. Gene cloning directly 

in B. subtilis as a primary host is relatively inefficient so it is preferable to conduct 

cloning steps with a shuttle plasmid in E. coli then transfer the recombinant plasmids into 

B. subtilis (Bruckner, 1992; Sullivan et al., 1984). Vectors of this type allow the use of 

well-developed techniques for the isolation and manipulation of DNA in E. coli. The 

resulting hybrid molecules can then be introduced into B. subtilis by transformation. 

Gryzan et al. (1980) have also shown that bi-functional plasmids are of great importance 

because the generation of hybrid plasmids by direct transformation of ligation mixtures 

into B. subtilis is very inefficient probably due to the inability of plasmid monomers to 

transform competent B. subtilis (Canosi et al., 1978). Most plasmids functioning in both 

B. subtilis and E. coli are based on the use of the rolling cycle plasmid isolated from S. 

aureus. In this study I have also adopted the same approach, using plasmid pC194.  

 

This was joined to plasmid pEcoR251 which carries an EcoRI endonuclease gene, giving 

a positive selection shuttle vector. The positive selection is due to insertional inactivation 

of the EcoRI endonuclease gene providing a simple method for selecting recombinant 

plasmids. E. coli-B. subtilis shuttle vectors have been previously constructed, and 

selection in these plasmids is by insertional inactivation of a resistant marker (Gryczan et 

al., 1980; Sullivan et al,. 1984)). This selection procedure can be time consuming as 

transformants have to be screened for loss of a resistant marker as an indication that 

foreign DNA has been inserted.  Vieira and Messing (1982) constructed shuttle plasmids 

that contain a fragment of the lacZ gene which is functional in α-complementation. 

Upstream of this is an array of unique restriction sites and insertion of DNA into any of 

these blocks expression, causing a loss of α-complementation and resulting in a Lac
- 

phenotype. Transformants containing inserts are readily detected directly by blue/white 

screening on medium supplemented with the chromogenic substrate X-Gal. With 

pNDW1 one has the advantage of only getting recombinant transformants because those 
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that do not contain an insert will be killed by the endonuclease activity of the suicide 

gene. 

  

Shuttle vectors based on plasmids such as pUB110, pC194 and pE194 replicate stably in 

B. subtilis, but addition of recombinant DNA may confer structural instability and 

sometimes segregational stability. The molecular basis for this is the mode of replication. 

These plasmids replicate by a rolling circle mechanism producing single-stranded DNA 

as an intermediate, and short direct repeats within this single-stranded DNA may lead to 

the deletion of one of the repeats (Bron et al., 1987; Nguyen et al., 2005). Instability is 

also observed when a relatively small foreign DNA fragment results in structural and/or 

segregational stability (Grkovic et al., 2003). However, I found that plasmid pNDW1 and 

others I made did not show any evident structural instability. With pNDW1 the Bacillus 

subtilis and Staphylococcus aureus cells carrying the plasmid or clones of the plasmid 

were selected for chloramphenicol resistance, but this phenotype was only observed when 

the cells were incubated overnight. This suggested that the enzyme chloramphenicol 

acetyltransferase was expressed at low levels such that when allowed to grow overnight 

the level of expression would be enough to cause the aforementioned phenotype.  

 

Plasmid pNDW1 without any insert was able to replicate in S. aureus suggesting that the 

suicide gene was not expressed in this species. That is in contrast to B. subtilis and E. 

coli. When pNDW4 and the same plasmid carrying a PstI B. polymyxa genomic library 

were used to transform S. aureus, transformants were observed at a high efficiency 

indicating that disruption of the suicide gene gives rise to more transformants. This 

means that this plasmid can be used in S. aureus and selection of recombinant 

transformants would be challenging because the suicide gene is not expressed in this host. 

  

A previous limitation of the EcoR-based system was that there were only four useful 

unique restriction sites: HindIII, BglII, PstI, and SfuI. I improved the shuttle vector I 

made by introducing two new restriction sites for cloning and subcloning purposes, XbaI 

and XhoI. The former generates the same single-stranded ends as AvrII, SpeI, and NheI.  

The latter produces the same single-stranded ends as SalI. The XbaI site was introduced 
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into the suicide gene between the BglII and PstI sites and the XhoI was introduced 

between HindIII and BglII site. These are both relatively early in the gene, desirable since 

studies have shown that positive selection by insertion of DNA towards the 3′ end is 

relatively inefficient (E. Dabbs, personal communication). This may be because such a 

fusion protein still possesses endonuclease activity. Bacillus genomic DNA was 

successfully cloned into pNDW5 at the XbaI site with pNDW7 and XhoI transformants 

were not obtained, probably because of the large size of inserts. Streptomyces 

pseudogriseolus genomic DNA digested with XhoI was used and transformants were 

obtained. It should be borne in mind that the B. subtilis and S. aureus recipients used in 

this work have fully functional restriction systems (Seeber et al., 1990; Waldron, 2006). 

B. subtilis has the BsuM restriction modification system. This system recognizes the 

sequence CTCGAG the same as that of XhoI (Jentsch, 1983). The DNA cloned into 

plasmid pNDW7 has the XhoI site flanking the insert and nucleic was coming from E. 

coli which lacks the appropriate modification system means that the DNA is likely to be 

attacked by the BsuM restriction endonuclease. There are other restriction modification 

systems in B. subtilis such as the BsuF (isoschizomer of HpaII), BsuR (isoschizomer of 

HaeIII) and the BsuB (PstI isoschizomer) (Jentsch, 1983). There are sites for all these in 

the plasmid pNDW1 in S. aureus there is the Sau1 type I restriction modification system 

as well as the Sau3AI type II restriction modification system which recognizes the GATC 

sequence (Seeber et al., 1990; Waldron, 2006). Future work could productively address 

elimination of these activities by gene disruption.  

 

Introduction of these sites was confirmed by sequencing and with XbaI the expected base 

change was observed. When sequencing was done for the XhoI site, the HindIII-BglII 

fragment of the suicide gene of pNDW7 had in-frame deletion of a codon, predicted to 

remove a valine. The corresponding sequence from pEcoR251 revealed that the deletion 

was not present. Therefore it has arisen during the mutagenesis procedure. Removal of 

this valine did not affect the protein as the phenotype was observed when the behavior of 

pNDW7 was determined on a lysogen and a non-lysogen. This was consistent with the 

studies done by Wolfers and co-workers (1986) that the Glu111, Glu 144 and Arg 145 are 

essential for the nucleolytic activity of the EcoRI. They made mutants in which the Glu 
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111 is replaced by Gln, Glu 144 replaced by Gln and Arg 145 replaced by Lys which lost 

most of their endonucleolytic activity. This deletion arose concomitantly with the 

mutation introduced to the EcoRI sequence though usually with Taq polymerase it is a 

one nucleotide deletion not a codon.  

 

Predictions of restriction sites on the double mutant EcoRI gene indicated that there were 

additional restriction sites in addition to those introduced (Figure 3.30). However, these 

are for enzymes that are not useful for cloning as they do not have a definite recognition 

sequence. The restriction enzymes AvaI, PspXI, BsoBI do not have unique recognition 

sequences: 5´-CYCGRG-3´, 5´-VCTCGAGB-3´, and 5´-CYCGRG-3´, respectively.  

 

I used my mutant plasmids to increase the versatility of related vectors. The BglII-PstI 

fragment of pNDW5 was used to introduce XbaI into pDA71 (giving pDA71-1) to 

increase the number of restriction sites to use for cloning. The HindIII-BglII fragment of 

pNDW7 was used to introduce the XhoI site into pEcoR251. The XbaI site in pDA71-1 

was shown to function effectively in cloning of genomic DNA. 

 

Preliminary experiments were undertaken to check if pNDW1 can be used in library 

construction and that a Bacillus gene can be cloned using this system. Auxotrophic 

mutants I made using NTG and counter-selection method did not show specific 

auxotrophic requirement. The PstI genomic library was electroporated into QB917 KIT-8 

strain to complement the histidine and threonine auxotrophy but transformants were not 

observed. Protoplast transformation was successful but the efficiency was low. This 

emphasized again the desirability of generating restriction-deficient mutants of B. 

subtilis. 

 

In conclusion, I constructed a shuttle vector with a positive selection (suicide) function 

replicating in E. coli, B. subtilis and S. aureus and showed cloning of DNA can be done 

by insertional inactivation allowing positive selection of recombinant transformants. I 

improved it by introducing two unique restriction sites allowing cloning of DNA digested 

by any of six additional restriction enzymes. These were used to introduce new restriction 
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sites into pEcoR251 and pDA71 Future work might productively focus on constructing 

non-restricting strains of S. aureus and B. subtilis.  
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6. APPENDICES 
 

APPENDIX A: MEDIA  

 

 
Luria Bertani (LB) broth 

Tryptone  3g 

Yeast extract  1.5g 

NaCl   1.5g 

dH2O   300ml 

 

LB- agar 

Tryptone  3g 

Yeast extract  1.5g 

NaCl   1.5g 

Agar   4.5g 

dH2O   300ml 

 

Brain Heart Infusion (BHI) Broth 

BHI    3.7g 

dH2O   100ml 

 

BHI agar  

BHI    3.7g 

Agar   1.5% 
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dH2O   100ml  

 

Spizizen’s medium (Minimal medium for B. subtilis) 

(NH4)2SO4   2g 

K2HPO4   14g 

KH2PO4   6g 

Na2H (C3H5O (COO) 3 1g 

dH2O    1000ml 

Glucose to final concentration 0.5% and auxotrophic requirement added after autoclaving 

Minimal agar prepared by autoclaving 1.5% agar separately, then adding the salts 

prepared separately and glucose. 

 

10X Stock III buffer 

K2HPO4.3H2O  91.7g 

KH2PO4  26.8g 

MgSO4  1.0g 

dH2O   1L 

Store at room temperature with chloroform added 

 

LBS (LB plus 10.3% sucrose) 

Tryptone  1g 

Yeast extract  0.5g 

NaCl   0.5g 
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Sucrose  10.3g 

dH2O   100ml  

 

DM3 regeneration medium 

4% Agar     200ml 

1M Sodium succinate (pH 7.3)  500ml  

5% Casamino acids    100ml 

10% Yeast extract    50ml 

3.5% K2HPO4 and 1.5% KH2PO4   100ml  

20% Glucose      25ml 

1M MgCl2      20ml   

Filter sterilized 2% Bovine Serum Albumin 5ml 

All the components add up to a liter  

 

APPENDIX B: SOLUTIONS 

A6.1 Solutions used for plasmid preparations from E. coli 

Solution I 

Glucose  50mM 

Tris-HCl  25mM 

EDTA   10mM 

pH 8.0 
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Solution II 

NaOH   0.2M 

SDS   1.0% 

 

Solution III 

Potassium acetate 5M, pH 4.8 

Glacial acetic acid 11.5ml 

dH2O   88.5ml 

 

Ribonuclease 

10mg/ml solution in sdH2O, boiled at 95ºC before use 

 

A6.2 Solutions for plasmid preparations from Gram positives 

TE buffer 

0.5M EDTA  0.2ml, pH 8.0 

1M Tris-HCl  1.0ml, pH 8.0 

dH2O   100ml 

 

TE-SDS (10%) 

SDS   10g 

TE buffer  100ml 
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A6.3 Solutions used for transformations 

CaCl2 Transformation buffer 

Tris-HCl  20mM 

CaCl2    100mM 

pH 7.6-8.0 

 

20% Glucose 

Glucose  4g 

dH2O   20ml 

 

Sucrose, HEPES, MgCl2 and Glycerol (SHMG) buffer 

Sucrose    85.56g   

HEPES    0.24g  

MgCl2    0.20g  

Glycerol    10% v/v  

dH2O    1 liter 

pH 7.0 

 

A6.4 Solutions for protoplast transformation of B. subtilis and S. aureus 

 

2× Sucrose, maleate, MgCl2 (SMM) 

Sucrose   17.12g 

Maleic acid   0.232g   
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Magnesium chloride  0.40g 

dH2O    50ml 

pH adjusted to 6.5 with NaOH 

 

4× Pennassay Broth (adapted from El-Helow et al., 1997) 

Glucose   0.08g 

Beef extract   0.12g 

Yeast extract   0.12g 

Peptone   0.40g 

NaCl    0.28g 

K2HPO4   0.29g 

KH2PO4   0.11g 

dH2O    20ml 

 

SMM plus Penassay broth buffer (SMMP) 

Equal volumes of 4× Penassay broth and 2× SMM buffer 

 

Polyethylene glycol (PEG) 40% w/v 

PEG    40g 

2× SMM buffer  50ml 

dH2O    100ml 
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A6.5 Solution for DNA analysis 

Agarose gels 

Agarose  0.8g (0.4%), 1.6g (0.8%) or 2.4g (1.2%) 

5X TBE  20ml 

sdH2O   180ml 

 

5X TBE buffer 

Tris base  54.0g 

Boric acid  27.5g 

0.5M EDTA  20ml, pH 8.0 

dH2O   1000ml 

 

Bromophenol blue tracking dye 

30% glycerol (w/v) in TE and 0.0025% bromophenol blue  

 

Running buffer (0.5x TBE) 

5X TBE   50ml 

dH2O   450ml 

 

0.5M EDTA pH 8.0 

EDTA    18.6g 

dH2O   1L 

Adjust pH to 8.0 with NaOH 
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1M Tris-HCl pH 8.0 

Tris-HCl  15.8g 

dH2O   100ml 

 

TE-saturated Phenol 

Phenol   14g 

TE buffer  10ml 

 

1M NaCl 

NaCl   5.8g 

dH2O   100ml 

 

A6.6 Solutions for mutagenesis 

10X A-N buffer 

K2HPO4   70.0g 

KH2PO4   26.8g 

Na3C6H5O7 (tri-sodium citrate) 5.0g 

MgSO4      1.0g 

dH2O        1L 

Tris-maleic acid buffer 

200mM Tris 

50mM Maleic acid 

Titrate until desired pH obtained 
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Nitrosoguanidine (NTG) 1mg/ml stock solution 

NTG     0.01g 

Tris-maleate buffer (pH4.3)  1ml 

Microwave for 30 Sec until it has dissolved and do not allow to boil 

Use within three days 

 

Table A6.1 Antimicrobial agents 

Agent   Stock concentration  Solvent  Supplier 

  (mg/ml) 

Ampicillin  100   30%sdH2O  Sigma 

      70% ethanol 

Chloramphenicol 20   ethanol   Boehringer 

Kanamycin  10   sdH2O    

Nalidixic Acid  10   30% sdH2O  Sigma-Aldrich 

      70% ethanol 

Rifampicin  10   methanol  Sigma  

Streptomycin  20   ethanol   Boehringer 
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Table A6.2 List of Chemicals  

Name of the Chemical     Supplier 

 

Agarose       Bio-Rad 

Acetic acid       Merck 

BHI        Oxoid 

Boric acid       Saarchem 

Bromophenol blue      Sigma 

Butanol       uniLAB 

Chloroform       Saarchem 

Calcium chloride      Saarchem 

Casamino acids      Difco 

EDTA        Sigma 

Ethidium bromide      Sigma 

Ethanol       Saarchem  

Glucose       Fluka Biochemika 

Glycerol       Merck    

Glycine       Merck 

Hydrochloric acid      Merck 

HEPES       uniLAB 

Isopropanol       uniLAB 

Magnesium chloride      Sigma-Aldrich 
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Maleic acid       BDH analytical reagents 

Potassium acetate      Sigma 

Dipotassium hydrogen Phosphate    Merck 

Potassium dihydrogen phosphate    AnalaR-analytical reagents  

Phenol        Saarchem  

Polyethylene glycol      Fluka 

Sodium hydroxide      Saarchem 

SDS        Boehringer Mannheim 

Tryptone       Oxoid 

Tris        Saarchem 

Technical agar       Oxoid 

Yeast extract       Oxoid 
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APPENDIX C: PLASMIDS AND MOLECULAR WEIGHT MARKER 

 

 
 

 

Figure A6.1: Plasmid map of pC194. 
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Figure A6.2: Plasmid map of pDA71 (adapted from 

http://seq.yeastgenome.org/vectordb/vector.html). 
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Figure A6.3: Plasmid map of pU18/19 

(http://www.fermentas.com/techinfo/nucleicacids/mappuc1819.htm). 

 

 

 

 

 

Multiple Cloning Sites (MSC) of pU18/19 

 

 

 

 

 

 

 

 

 

Figure A6.4: Multiple cloning site of pUC18 and the MCS of pUC19 is the reverse of 

pUC18. 
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Figure A6.5: Plasmid map of pEcoR251. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A6.6: 1KB ladder plus, Fermentas 

(http://www.fermentas.com/catalog/electrophoresis/generulers.htm).  


