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ABSTRACT 

 

Warfarin is the most widely prescribed oral anticoagulant used for the long-term treatment 

and prevention of thromboembolic events. Its administration is challenging as it may result 

in bleeding-related deaths, inadequate anticoagulation and fetal teratogenesis, including 

fetal warfarin syndrome. A number of environmental and genetic factors contribute to 

interindividual warfarin dosage variability. The CYP2C9 and VKORC1 genes explain 40-

50% of this variability. The aim of this study was to determine the frequency of known and 

any new variants in these genes in the SA black population, and correlate these variants 

and a small subset of environmental factors to dosage variability and pregnancy outcomes. 

I sequenced the exons and intron/exon boundaries of the CYP2C9 and VKORC1 genes in 

100 random black control and 113 patient samples that had at least one pregnancy on 

warfarin. I observed six previously described CYP2C9 variants, 27 novel CYP2C9 variants, 

and three previously described VKORC1 variants. 14 of these variants were observed at an 

allele frequency of ≥ 0.02. Of these 14, six appear to decrease (all of which are CYP2C9 

variants) and four increase (2 CYP2C9 variants and two VKORC1 variants) warfarin 

dosage requirement. These 14 CYP2C9 and VKORC1 variants along with a small subset of 

environmental factors account for 45.3% of warfarin dosage variability in the SA 

population. I observed an increase in the number of poor pregnancy outcomes in patients 

on high doses of warfarin.  These results allow us to predict the maintenance dose of 

warfarin in SA black patients better, thereby reducing the risk of adverse effects, and 

identify those at risk of having a poor pregnancy outcome. 
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1 INTRODUCTION  

 

Science fiction: A genera intended to dumbfound and inspire its audience, has shown itself 

to be closer to non-fiction than its authors have implied. The explosion of modern 

technology has given us the tools and skills for the discovery and understanding of life, 

from outer-space to the depths of the ocean, all in record time. Perhaps the most 

fundamental of all questions is the amount of time one has to live and how we can prolong 

that? It is this question that is often the driving force behind modern medicine. We use fast, 

efficient tests to determine the cause of a particular disease, syndrome or infection, with 

the goal of administering the most effective treatment available. We are also using modern 

technology to improve our understanding of the human body and how it interacts with 

itself and its external environment.  

 

Often, however, with the accumulation of knowledge one realises how little understanding 

we really have. Human medical genetics, as an example, in the 1950’s was primarily 

focused on diseases caused by single defective genes that could be traced back through 

families, and disorders due to defects in the structure or number of chromosomes (The 

Royal Society, 2005). Further studies in this field revealed that not all inherited disorders 

were a result of a single defective gene but some as a result of the interaction between 

multiple genes and the environment (The Royal Society, 2005). The completion of the 

human genome project has revealed far more complexities in our genome than previously 

thought (The Royal Society, 2005); providing information on how individual genes 

function and are regulated; biological processes; used as a framework for developing new 

therapies and as a wide-scale application for mutation screening in the hope of shifting 

medical care from treating diseases, to preventing diseases (Strachan and Read, 2004).  
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1.1 Pharmacogenetics/genomics 

The term pharmacogenetics was coined and published in 1959 by Friedrich Vogel, and 

refers to the study of single genes that modify drug action (Kalow, 2005; The Royal 

Society, 2005). This field was initiated by three independent discoveries, all of which 

showed inter-individual differences in drug response (The Royal Society, 2005). The first 

of these discoveries was in African-American soldiers who developed severe anaemia, 

after taking the anti-malaria drug primaquine, due to a deficiency in the enzyme glucose-6-

phosphate-dehydrogenase (Reviewed in: The Royal Society, 2005). The second discovery 

was the identification of slow and rapid metabolisers of isoniazid, a drug used for the 

treatment of tuberculosis (Reviewed in: The Royal Society, 2005). The third discovery was 

the identification of patients who showed prolonged effects of the anaesthetic agent 

succinycholine (Reviewed in: The Royal Society, 2005).  

 

Such individual variation creates huge clinical challenges, accounting for 106 000 patient 

deaths and 2.2 million injuries due to adverse reactions to prescribed drugs in the USA and 

about one in 15 hospital admissions in the UK annually (Wolf et al., 2000). Research in 

pharmacogenetics is focused in two main directions: identifying specific genes and gene 

products associated with various diseases, which may act as targets for new drugs, and 

identifying genes and allelic variants in genes that affect individual responses to currently 

available drugs (Wolf et al., 2000; Ensom et al., 2001). These studies all investigate 

pharmacological consequences of single gene variations.  

 

Numerous studies have shown that most differences in drug response are not due to 

mutations in a single gene but the altered function of numerous genes interacting with 

environmental factors, making drug response multifactorial (Kalow, 2005). It was this 
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discovery that resulted in the birth of pharmacogenomics, made possible by the 

development of high-throughput technology capable of investigating the structure and 

expression of entire genomes (Ensom et al., 2001; Kalow, 2005). Pharmacogenomics, by 

definition, is a biotechnological science that combines the techniques of medicine, 

pharmacology, and genomics (many genes and their function) and is concerned with 

developing drug therapies to compensate for genetic differences in patients which cause 

varied responses to a single therapeutic regimen (Merriam-Webster’s Medical Dictionary). 

 

Gene expression is variable, altered by factors such as other gene expression interactions, 

epigenetic changes or environmental factors, including sleep, emotions, exercise, diet, age, 

sex, co-morbidity and drugs (Kalow, 2005). Drug addictions may be explained through the 

increased expression of the gene that is responsible for metabolising a particular drug, due 

to regular intake of the drug (Kalow, 2005).  When dealing with multifactorial disorders it 

is not uncommon to find similar-looking diseases in patients that are caused by different 

genes and thus may require different drug therapies to combat these diseases (Kalow, 

2005).  

 

Personalised medicine refers to the use of a patient’s genetic make-up and other 

environmental factors to predict the most effective drug therapy for that patient, reducing 

their risk of adverse effects (Reviewed in: The Royal Society, 2005). However, this is not 

an easy task because of the complexity of the interactions involved in drug treatment. 

Nevertheless, advances are being made and it is already evident that polymorphisms in any 

one of many genes that encode drug receptors, drug transporters, cell signalling pathways 

and those involved in drug metabolism and disposition can account for a large proportion 

of drug response variability (Wolf et al., 2000; Yin et al., 2007). For example, adverse 
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effects to drugs known to be metabolised by a genetically variable enzyme may be avoided 

by pre-testing the patient for genetic variants within that gene and administering the drug 

to those patients whose enzymatic levels are normal or by altering the dosage according to 

their metabolic state (Kalow, 2005; Yin et al., 2007). This pre-testing is usually limited to 

drugs that are potentially toxic to a level higher than the average drug (Kalow, 2005; Yin et 

al., 2007). Personalised medicine would be drastically improved if one could obtain a 

complete genetic and environmental profile of the patient. This is not yet economically and 

practically viable but one can use genetic variation amongst different populations as a 

predictor. Metabolising enzymes, as an example, show significant variation between 

populations and thus result in altered drug response (Kalow, 2005; Yin et al., 2007). While 

there is already clinical application to the use of genetic information in drug 

administration, substantial improvements can be expected within the next decade, 

paralleled by the improvement in technology. This project involves the study of two genes 

and a small subset of environmental factors that influence the action of warfarin in black 

South African women.  

 

1.2 Warfarin 

In the early 1920s farmers in the northern United States and Canada noticed that their 

cattle were dying of uncontrollable bleeding from minor injuries or due to internal 

haemorrhage (Schofield, 1924). It was only in 1929 that Dr Roderick established that the 

deaths in the cattle were due to a lack of functioning prothrombin, as a result of ingesting 

mouldy silage made from sweet clover that acted as an anticoagulant (Roderick, 1931). In 

1940, chemists Karl Paul Link and his student Harold Campbell from the University of 

Wisconsin determined that this anticoagulant substance, isolated from the mouldy sweet 

clover, was a coumarin derivative: 4-hydroxycoumarin (Stahmann, 1941; Kresge et al., 
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2005).  Based on this discovery chemists began developing more potent coumarin-based 

anticoagulants for use as rodent poisons. This resulted in the discovery of warfarin in 1948 

and its registration as a rodenticide in the USA in 1952 (O’Reilly et al., 1963; Kresge et al., 

2005). 

 

Warfarin was later studied for its use as a therapeutic anticoagulant as a result of a botched 

suicide attempt by a US naval officer, who ingested warfarin but recovered fully (O’Reilly 

et al., 1963). Warfarin was approved for medical use in humans in 1954 and is the gold 

standard for the long-term prevention of thromboembolism world-wide (O’Reilly et al., 

1963; Shapiro, 2003; Greaves, 2005). In the USA it is the most frequently prescribed oral 

anticoagulant, the fourth most prescribed cardiovascular agent and the eleventh most 

prescribed drug overall (Horton and Bushwick, 1999; Rettie et al., 2006). In the UK it is 

estimated that over one million people take warfarin (Greaves, 2005). Despite advances in 

the development of novel, alternative oral anticoagulants warfarin is likely to be used 

widely for at least the next decade (Greaves, 2005; Rettie et al., 2006).   

 

1.2.1 Mode of Action 

Warfarin causes anticoagulation by inhibiting vitamin K epoxide reductase, an enzyme 

responsible for the recycling of vitamin K (Greaves, 2005; Rettie et al., 2006). Vitamin K 

is essential for the post-translational carboxylation of glutamate residues on proteins 

dependent on vitamin K. Vitamin K dependent proteins include coagulation factors II 

(prothrombin), VII, IX and X, and endogenous anticoagulant proteins C and S (Horton and 

Bushwick, 1999; Greaves, 2005; Yin et al., 2007). Therapeutic doses of warfarin reduce 

the production of functional vitamin K dependent clotting factors by 30-50% and decrease 
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the activity of secreted clotting factors by 10-40%, rendering the coagulation system 

functionally deficient (Horton and Bushwick, 1999). 

 

1.2.1.1 Pharmacokinetics 

Warfarin is a racemic mixture of stereoisomers, which are 99% bound to albumin and 

alpha-1-acid glycoproteins (Horton et al., 1999; Wadelius and Pirmohammed, 2007). It is 

metabolised in the liver and kidneys, with subsequent excretion of its inactive metabolites 

through urine and stools (Horton and Bushwick, 1999).  

 

1.2.1.2 Pharmacodynamics 

The anticoagulant activity of warfarin depends on the clearance of functional clotting 

factors from the systemic circulation after administration. This is dependent on the half-

lives of the clotting factors (Horton and Bushwick, 1999). The antithrombotic (inability to 

expand or form clots) effect of warfarin depends on the clearance of functional factor II 

(prothrombin), which has a half-life of 50 hours in patients with normal hepatic function, 

and thus may take up to five days to achieve (Horton and Bushwick, 1999).  

 

1.2.2 Warfarin Administration 

The aim of anticoagulant therapy is to administer the lowest possible dose of the 

anticoagulant to prevent clot formation or expansion (Horton and Bushwick, 1999). The 

dosage of warfarin administered to a patient is monitored using a method known as the 

International Normalisation Ratio (INR), which measures the anticoagulant effect of 

warfarin based on prothrombin time (PT) (Greaves, 2005). In most cases the target INR is 

2.5 with a range of 2.0-3.0, which is associated with an optimal relationship between 

antithrombotic efficacy and bleeding risk (Greaves, 2005). However, even with the best 
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possible management, patients are within the target INR range for only 50-70% of the 

time, on average (Greaves, 2005). As with most drugs, side-effects are often a problem. 

The most common side-effects associated with warfarin treatment are haemorrhagic 

complications and thrombosis. Major and fatal bleeding events occur at a rate of 7.2 and 

1.3/100 patient years, respectively, and are most likely to occur within the first 90 days of 

therapy (Wadelius and Pirmohammed, 2007). The risk of a bleeding episode is higher 

when the INR is above 3.0, but also occurs within the therapeutic range (Wadelius and 

Pirmohammed, 2007). A maintenance dose of warfarin is said to be the dosage required to 

maintain the patient’s INR within the therapeutic range. Maintenance doses of warfarin 

may range between 1-10mg/day, with an average maintenance dose between four and 

6mg/day (Horton et al., 1999, Greaves, 2005). The standard initiation dose of warfarin is 

5mg/day, which is adjusted according to the patient’s INR readings, to obtain an adequate 

maintenance dose (Hillman et al., 2005). However, the earliest change in the INR occurs 

only 24-36 hours after administration of the first dose and maximum anticoagulant effect is 

only achieved 72-96 hours after administration (Horton et al., 1999). The average time it 

takes to determine an appropriate maintenance dosage for a patient is approximately one 

month, during which time the patient has an increased risk of both thrombotic events and 

bleeding episodes (Next Generation Pharmaceutical Website; Rettie et al., 2006). 

 

The risk of thrombotic events and bleeding, the drug’s narrow therapeutic range and lag 

time, along with interindividual differences in drug response all make warfarin a difficult 

drug to administer (Rettie et al., 2006; Wadelius and Pirmohammed, 2007). Warfarin dose 

requirements, stability of anticoagulation and risk of bleeding are influenced by 

environmental factors and genetic variation in genes that alter the action of the drug 

(reviewed in: Rettie et al., 2006; Wadelius and Pirmohammed, 2007). Despite its 
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complications, warfarin remains the gold standard for the prevention of thromboembolic 

events as it has been shown to prevent 20 strokes for every bleeding episode it induces 

(Horton and Bushwick, 1999; Rettie et al., 2006). 

 

1.2.2.1 Environmental Factors 

The environmental factors that influence warfarin dosage include the intake of vitamin K, 

co-morbidity, age, gender, concurrent medication and body surface area. Warfarin targets 

vitamin K epoxide reductase, an enzyme essential for the recycling of vitamin K. 

Therefore, a high intake of fat-soluble vitamin K can reverse the action of warfarin. A low 

or erratic intake of dietary vitamin K may be partly responsible for the unstable control of 

anticoagulation (reviewed in: Rettie et al., 2006; Wadelius and Pirmohammed, 2007).  

 

Warfarin dosage has an inverse relationship with age; i.e. older patients require lower 

doses (Horton and Bushwick, 1999). When comparing maintenance dose between genders, 

women tend to require lower doses than men (Horton and Bushwick, 1999).  

 

Drug-drug interactions are often a problem during drug treatments. Warfarin is no 

exception as, in most instances, drug-drug interactions either inhibit or induce warfarin 

metabolism (Horton and Bushwick, 1999; reviewed in: Rettie et al., 2006). The drugs that 

pose the most complications are those used for short-term indications, as opposed to drugs 

administered for long periods, such as those used for chronic diseases, diabetes for 

example (Horton and Bushwick, 1999). Aspirin, Cordarone, Epanutin and Nifedipine 

(described in table 3.10, section 3.2.1.2) may decrease warfarin dosage (Rx Drug Index 

Database; Heart Health Website); while Tegretol may increase warfarin dosage (Horton 

and Bushwick, 1999). 
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1.2.2.2 Genetic Variation 

It has been estimated that approximately 30 genes may be involved in the mechanism 

through which warfarin exerts its anticoagulant effect (Wadelius and Pirmohammed, 

2007). Biochemical reactions involved in the action of warfarin are: the biotransformation 

of warfarin (transportation, metabolism, and cytochrome P450 inducibility) and 

biotransformation of vitamin K (transportation, the vitamin K cycle, vitamin K-dependent 

proteins and other coagulation proteins) (Reviewed in: Wadelius and Pirmohammed, 

2007).  

 

Despite the vast number of genes involved in the mode of action of warfarin the CYP2C9 

and VKORC1 (described in more detail in sections 1.3 and 1.4, respectively) genes are the 

most important with respect to the pharmacokinetics and pharmacodynamics of warfarin, 

respectively (Rettie et al., 2006; Wadelius and Pirmohammed, 2007). These two genes, 

along with a small subset of environmental factors accounts for 50-60% of warfarin dosage 

variability (Wadelius and Pirmohammed, 2007). CYP2C9, VKORC1, PROC, EPHX1, 

GGCX, ORM1 and ORM2 genes with age, bodyweight and drug interactions account for 

73% of warfarin dosage variability in Caucasians (Wadelius et al., 2007). Table 1.1 

summarises the 30 genes implicated in the action of warfarin to date.  
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Table 1.1: List of the genes implicated in the action of warfarin to date (Wadelius and 

Pirmohammed, 2007) 

Biochemical Reaction Protein Name Gene 
Alpha-1-acid glycoprotein 

1, Orosomucoid 1 
ORM1 

Alpha-1-acid glycoprotein 
2, Orosomucoid 2 

ORM2 Transport 

P-glycoprotein, Multidrug 
resistance protein 1 

ABCB1 
(MDR1) 

Cytochrome P450 2C9 CYP2C9 
Cytochrome P450 1A1 CYP1A1 
Cytochrome P450 1A2 CYP1A2 
Cytochrome P450 2A6 CYP2A6 
Cytochrome P450 2C8 CYP2C8 
Cytochrome P450 2C18 CYP2C18 
Cytochrome P450 2C19 CYP2C19 
Cytochrome P450 3A4 CYP3A4 

Metabolism 

Cytochrome P450 3A5 CYP3A5 
Pregnane X receptor NR1I2 

Biotransformation 
of warfarin 

Cytochrome P450 
Inducibility Constitutive androstane 

receptor 
NR1I3 

Transport Apolipoprotein E APOE 
Vitamin K epoxide 

reductase 
VKORC1 

Epoxide hydrolase 1, 
microsomal 

EPHX1 

NAD(P)H dehydrogenase, 
quinine 1 

NQO1 

Calumenin CALU 

Vitamin K cycle 

Gamma-glutamyl 
carboxylase 

GGCX 

Coagulation factor II, 
prothrombin 

F2 

Coagulation factor VII F7 
Coagulation factor IX F9 
Coagulation factor X F10 

Protein C PROC 
Protein S PROS1 
Protein Z PROZ 

Vitamin K-
dependent 
proteins 

Growth-arrest-specific 
protein 

GAS6 

Anti-thrombin III SERPINC1 

Biotransformation 
of vitamin K 

Other coagulation 
proteins Coagulation factor V F5 

 

1.2.2.2.1 Biotransformation of Warfarin 

In the circulating blood, warfarin is 99% bound to albumin and alpha-1-acid glycoproteins 

(Reviewed in: Wadelius and Pirmohammed, 2007). A study carried out by Nakagawa et al. 

(2003) shows that warfarin preferentially binds to certain genetic variants of alpha-1-acid 
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glycoproteins, which are encoded by ORM1 and ORM2 (orosomucoid gene 1 and 2 

respectively). A recent study shows that polymorphisms and different haplotypes of these 

two genes influence warfarin dose (Wadelius et al., 2007). 

 

Warfarin is administered as a racemate comprising R- and S-enantiomers, the latter being 

3-5 times more active than the former. The S-form is metabolised by cytochrome P450 2C9 

to an inactive 7-hydroxywarfarin. Polymorphisms in this gene play a significant role in 

warfarin dosage sensitivity (Rettie et al., 1992; reviewed in: Hirsch et al., 1998; Reviewed 

in: Wadelius et al., 2007). S-warfarin may also be metabolised by other members of the 

cytochrome P450 enzymes, such as CYP2C8, CYP2C18 and CYP2C19 to form 4-

hydroxywarfarin (Reviewed in: Wadelius et al., 2007). These are minor pathways and 

although they show some significance with respect to warfarin dosage, may be explained 

through linkage disequilibrium with CYP2C9 (described in section 1.3) (Reviewed in: 

Wadelius et al., 2007). R-warfarin is primarily metabolised by cytochrome P450 enzymes 

CYP1A2, CYP3A4, CYP1A1, CYP2C8, CYP2C18, CYP2C19 and CYP3A5 (reviewed in: 

Hirsch et al., 1998; Reviewed in: Wadelius et al., 2007). These genes show weak 

associations with warfarin dosage (Wadelius et al., 2007). The induction of these P450 

isoforms is dependent on the nuclear hormone receptors: pregnane X receptor (PXR) and 

the constitutive androstane receptor (CAR), encoded by the NR1I2 and NR1I3 genes, 

respectively (Reviewed in: Wadelius et al., 2007). Haplotype analysis of the NR1I2 gene 

shows some association with warfarin dosage (Wadelius et al., 2007).  

 

1.2.2.2.2 Biotransformation of Vitamin K 

Vitamin K is absorbed from the small intestine along with dietary fat. It is transported by 

chylomicrons in the blood and subsequently cleared by the liver through an APOE 
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(apolipoprotein E) receptor-specific uptake (Reviewed in: Wadelius and Pirmohammed, 

2007). The uptake of vitamin K1 varies depending on different APOE variants. 

Polymorphisms within APOE are significantly associated with warfarin dosage (Wadelius 

et al., 2007) 

 

Mutations within the vitamin K epoxide reductase gene have been shown to confer 

warfarin resistance (Rost et al., 2004, Harrington et al., 2005; Rettie et al., 2006). 

However, one polymorphism in the promoter region of this gene decreases warfarin dosage 

through a reduction in the VKOR (Vitamin K epoxide reductase) (Reider et al., 2005). It 

has been suggested that this reductase resides in the endoplasmic reticulum and may be 

complexed with microsomal epoxide hydrolase (encoded by EPHX1). It is this 

multiprotein complex that is responsible for vitamin K epoxide reduction (Cain et al., 

1997, Morisseau and Hammock, 2005). Polymorphisms in the EPHX1 gene show a 

significant association with warfarin dose (Wadelius et al., 2007). Nicotine adenine 

dinucleotide phosphate (NAD(P)H) dehydrogenase, encoded by NQO1, has the potential to 

reduce dietary vitamin K. The endoplasmic reticulum chaperone protein calumenin 

(encoded by CALU) is able to inhibit the vitamin K cycle. Polymorphisms in CALU, and 

not NQO1, are associated with warfarin dose (Wadelius et al., 2007). 

 

A very rare autosomal recessive bleeding disorder, caused by mutations in the gamma-

glutamyl carboxylase gene (GGCX), results in the combined deficiency of the vitamin K-

dependent coagulation factors II, VII, IX and X, and proteins C, S and Z (Brenner et al., 

1998, Rost et al., 2004). Mutations within this gene are associated with warfarin dose; 

however, the effect appears to be modest (Wadelius et al., 2007). Similarly, mutations in 

the genes that encode these vitamin K-dependent factors and proteins may also influence 
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warfarin dose, but studies have been inconclusive or contradictory (Wadelius and 

Pirmohammed, 2007). Antithrombin III, a non-vitamin K-dependent protein, inhibits 

factors II, IX, X, XI and XIII. A deficiency in antithrombin III caused by mutations in its 

encoding gene SERPINC1 may create a hypercoagulable state during warfarin induction 

(Chan et al., 2000, Dahlback, 2005).  Figure 1.1 illustrates the interactions of all 30 genes 

said to be involved in the mode of action of warfarin. 

 

 

Figure 1.1: Illustration of interactions between the 30 described genes said to be 

involved in the mode of action of warfarin (Wadelius and Pirmohammed, 2007) 

 

1.3 Cytochrome P450 2C9 (CYP2C9) 

CYP2C9 is one of approximately 50 major drug-metabolising CYP450 isoforms. It is the 

second of four CYP2C genes (CYP2C8-CYP2C9-CYP2C19-CYP2C18) clustered in a 
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500kb region on 10q24 (Gray et al., 1995; Rettie et al., 2006; Yin et al., 2007). It contains 

nine exons, translating 490 amino acid residues, which encodes a mephenytoin 4-

hydroxylase (GenBank, 2007). This enzyme is responsible for the metabolism of 

endogenous compounds and xenobiotics, including warfarin (OMIM, 2007). This gene, 

like many, is polymorphic. Variants within this gene are known to alter warfarin 

metabolism, resulting in patients requiring altered doses of warfarin to maintain adequate 

anticoagulation (Allabi et al., 2004; reviewed in: Rettie et al., 2006). To date there are 30 

described variants within this gene, 28 of which are missense mutations and two frameshift 

mutations (CYP2C9 Allele Nomenclature Database). Like many genetic variants certain 

variants are more common within certain populations. Table 1.2 describes these different 

variants, their effect on enzyme activity and the populations in which they have been 

described. CYP2C9*1 is the wild type, thereafter the variants are numbered according to 

the order in which they were identified.  
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Table 1.2: List of CYP2C9 described variants 

Enzyme Activity Variant  Nucleotide 
Change Exon Protein 

Change In vivo In vitro 
Population 

2 430 C>T 3 R144C Unknown Decreased Caucasian1, 9 

3 1075 A>C 7 I359L Decreased Decreased Caucasian1,9 
4 1076 T>C 7 I359T Unknown Decreased Japanese2, 9 

5 1080 C>G 7 D360E Decreased Decreased 
African*, 3,  

4, 9 

6 818delA 5 Frameshift None Unknown African*, 4 
7 55 C>A 1 L19I Unknown Unknown African*, 5 

8 449 G>A 3 R150H Decreased Increased 
African*, 4,  

5, 9 
9 752 A>G 5 H251R Unknown Unknown African*, 5 

10 815 A>G 5 E272G Unknown Unknown Unknown5 

11 1003 C>T 7 R355W Decreased Decreased 
Caucasian 4, 9, 

African*,4,  

5, 9 

12 1465 C>T 9 P489S Unknown Decreased 
Unknown5,  

9 

13 269 T>C 2 L90P Decreased Decreased Chinese6, 9 

14 374 G>A 3 R125H Unknown Decreased Indian7, 9 

15 485 C>A 4 S162X Unknown None Indian7, 9 

16 895 A>G 6 T299A Unknown Decreased Chinese7, 9 

17 1144 C>T 7 P382S Unknown Decreased Chinese7, 9 
18 1190 A>C 8 D397A Unknown Decreased Indian7 
19 1362 G>C 9 Q454H Unknown Decreased Chinese7, 9 
20 208 G>C 2 G70R Unknown Unknown Malay7 

21 89 C>T 1 P30L Unknown Unknown Unknown8 
22 121 A>G 1 N41D Unknown Unknown Unknown8 
23 226 G>A 2 V76M Unknown Unknown Unknown8 
24 1060 G>A 7 E354K Unknown Unknown Unknown8 

25 
353-362 del 

AGAAATGGAA 
3 Frameshift Unknown None Unknown8 

26 389 C>G 3 T130R Unknown Decreased Unknown8 
27 449 G>T 3 R150L Unknown Unknown Unknown8 
28 641 A>T 4 Q214L Unknown Decreased Unknown8 
29 835 C>A 6 P279T Unknown Unknown Unknown8 
30 1429 G>A 9 A477T Unknown Decreased Unknown8 

*African as defined as: African American, African Pygmies or Beninese. 
References: 1 Aithal et al., 1999, 2 Imai et al., 2000, 3 Dickmann et al., 2001, 4Allabi et al., 2003 and 2004, 5 

Blaisdell et al., 2004,6 Si et al., 2004, 7 Zhao et al., 2004, 8 CYP2C9 Allele Nomenclature Database, 
 9 Reviewed in: Yin et al., 2007 
 

The most common variants found in the Caucasian populations are CYP2C9*2 and 

CYP2C9*3. Both of these variants decrease warfarin metabolic activity drastically by 88% 

and 95%, respectively (Aithal et al., 1999; reviewed in: Yin et al., 2007). There are 

approximately six variants (CYP2C9*5, CYP2C9*6, CYP2C9*7, CYP2C9*8, CYP2C9*9 

and CYP2C9*11) that have been described among populations of African origin. The 

CYP2C9*5 variant, first identified in African-American patients by Dickmann et al., 
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(2001) shows decreased enzyme activity levels ranging from 8-18%. Variant CYP2C9*8 

decreases warfarin metabolism in vivo, but increases warfarin metabolism in vitro 

(CYP2C9 Allele Nomenclature Database). Variant CYP2C9*11 decreases warfarin 

metabolism, but the extent is unknown (CYP2C9 Allele Nomenclature Database). Variants 

that are common within populations of Asian origin are CYP2C9*2, CYP2C9*3, 

CYP2C9*4 and CYP2C9*13-20. Variants CYP2C9*21-30 have all be described in the 

CYP2C9 Allele Nomenclature Database, but their population distributions are unknown. 

To date no studies determining the frequencies of any of these described variants have 

been carried out in South African populations.  

 

1.4 Vitamin K Epoxide Reductase Complex Subunit 1 (VKORC1) 

The VKORC1 gene, identified in 2004, is located at 16p11.2 (Li et al., 2004). It is 5126bp 

in length and consists of three exons. It encodes a 163 amino acid transmembrane protein 

of the endoplasmic reticulum, known as vitamin K epoxide reductase (Rettie et al., 2006; 

OMIM, 2007). This enzyme is responsible for recycling vitamin K. Recycled vitamin K is 

necessary for the activation of vitamin K-dependent coagulation factors and certain 

anticoagulant proteins (OMIM, 2007). Later in 2004, four mutations within this gene were 

reported to result in warfarin resistance and one to result in vitamin K-dependent clotting 

factor, deficiency, type 2 (Rost et al., 2004). Since then approximately nine novel variants 

have been identified within this gene (D’Andrea et al., 2005, Harrington et al., 2005, 

Reider et al., 2005). Most of these variants are missense mutations, however one 

polymorphism is found in Intron 1, one in the 3’UTR (D’Andrea et al., 2005) and one in 

the promoter region of the VKORC1 gene (Reider et al., 2005). Table 1.3 describes all 13 

known VKORC1 variants and their effects on vitamin K epoxide reductase.  
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Table 1.3: List of VKORC1 described variants 

Nucleotide  
Change Exon Protein  

Change Phenotype Population 

-1639 G>A Promoter 
Decreases  

gene  
expression 

Decreases level of 
VKOR and 

warfarin dosage4 

Caucasian, Asian,  
and low in African 4 

1173 C>T Intron 1 Unknown 
Possibly warfarin  

resistance2 
Caucasian (Italian) 2 

85 G>T 1 V29L Warfarin resistance1 
Caucasian (Lebanese  

& German) 1 
112 G>T 1 D38Y None2 Caucasian (Italian) 2 
129 C>T 1 C43C None2 Caucasian (Italian) 2 

134 T>C 1 V45A Warfarin resistance1 
Caucasian (Lebanese  

& German) 1 

172 A>G 1 R58G Warfarin resistance1 
Caucasian (Lebanese  

& German) 1 
196 G>A 2 V66M None3 Caucasian 3 

292 C>T 3 R98W 
Vitamin K-dependent  

clotting factor  
deficiency type II1 

Caucasian (Lebanese  
& German) 1 

3462 C>T 3 L120L None2 Caucasian (Italian) 2 

3488 T>G 3 L128R Warfarin resistance1 
Caucasian (Lebanese  

& German)  1 
3556 G>A 3 R151G None2 Caucasian (Italian) 2 
3730 G>A 3’UTR Unknown Unknown2 Caucasian (Italian) 2 

1 Rost et al., 2004, 2 D’Andrea et al., 2005, 3 Harrington et al., 2005, 4 Reider et al., 2005. 
 

Patients with variants within this gene usually show some level of warfarin resistance 

which results in these patients requiring increased doses of warfarin to maintain adequate 

anticoagulation (D’Andrea et al., 2005). The -1639 G>A promoter variant, however, 

results in a reduced amount of vitamin K epoxide reductase and therefore a reduction in 

warfarin dosage (Reider et al., 2005). The frequencies of the described VKORC1 variants 

have not been determined in the South African populations, until now. 

 

1.5 Individualised Warfarin Therapy – Current Status 

In 2004, Hillman, Wilke and colleagues developed a multivariate warfarin dosing model 

that incorporates age, body size, co-morbidity (diabetes), clinical indication (valve 

replacement) and CYP2C9 genotypes, which explained approximately 33.7% of overall 

warfarin dosage variability (Hillman et al., 2004). In 2005, they evaluated the feasibility of 
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applying the multivariate CYP2C9 gene-based warfarin dosing model in clinical practice. 

Twenty patients received the standard initiation dose of 5mg/day. Eighteen patients were 

tested for CYP2C9*1, *2 and *3 variants and received model-based initial dosing, 

determined by the multivariate model and any variant they may have (Hillman et al., 

2005). They found that six adverse events occurred within the standard dose group and 

only two within the model-based group. Although their numbers were small they 

determined that the model-based dosing was feasible. In November of 2005, the Clinical 

Pharmacology Subcommittee, an FDA (Food and Drug Association) advisory committee, 

agreed that there is sufficient evidence to support the use of altered initiation doses of 

warfarin for patients with CYP2C9 and VKORC1 variants (Kimball Genetics Website). A 

label change for warfarin is currently underway to reflect this recommendation (Kimball 

Genetics Website).  

 

In 2007 Kimball Genetics, Inc. launched a warfarin sensitivity DNA test. The test 

determines the presence of CYP2C9*2 and CYP2C9*3 and VKORC1 (-1639 G>A) variants 

(Kimball Genetics Website). The aim of the test is to provide information about the genetic 

risk factors for over-anticoagulation and help achieve the correct maintenance dose faster 

(Kimball Genetics Website). Although helpful, this test focuses on three variants within the 

CYP2C9 and VKORC1 genes which are most common in Caucasian populations. Thus, 

limiting its informativity in other populations and excluding the influence of other genes 

and environmental factors on warfarin dosage.   

 

A prospective study of up to 2000 patients is currently ongoing in the UK and aims at 

looking at all the genes involved in the mode of action of warfarin, assessing 

environmental factors including the clinical (age, gender, ethnicity, disease, concurrent 
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medication, adherence to treatment), pharmacological (R- and S-Warfarin levels), 

biochemical (vitamin K and epoxide levels) and haematological (clotting factor levels) 

phenotypes (Wadelius and Pirmohammed, 2007). In addition, this study aims at assessing 

the cost-effectiveness of pre-prescription genotyping, providing values for positive and 

negative prediction and numbers needed to screen (Wadelius and Pirmohammed, 2007). 

These results will provide the much-needed information to undertake prospective 

randomised controlled trials to assess the clinical utility of pre-prescription genotyping for 

warfarin (Wadelius and Pirmohammed, 2007). 

 

1.6 Fetal Warfarin Syndrome (FWS) 

Prosthetic heart valves cause hypercoagulable states, increasing the risk of 

thromboembolic complications (TEC) in patients with these heart prosthetic valves. 

Hypercoagulation is further increased in pregnancy. Warfarin effectively prevents these 

TEC but crosses the placenta during pregnancy, and is teratogenic, resulting in a specific 

constellation of malformations known as fetal warfarin syndrome (FWS) (Hall et al., 

1980). The most constant malformations are nasal hypoplasia and stippled epiphyses due 

to the exposure of the fetus to warfarin within the first trimester (Hall et al., 1980). Other 

abnormalities involve the central nervous system (CNS) and eye, most likely as a result of 

warfarin taken during the second and third trimesters (Hall et al., 1980). In South Africa 

(SA), rheumatic fever is still common, which results in heart valve damage and eventual 

heart valve replacements in young women (Reviewed in: Gregersen, 2005). These young 

women require warfarin treatment, which then puts them at risk of having a pregnancy on 

warfarin. 
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A greater unbound fraction of warfarin has been found in the serum of pregnant women 

than non-pregnant women. It is this unbound fraction that crosses the placenta and causes 

teratogenic effects (Bajoria et al., 1996). Foetuses have high concentrations of bilirubin 

which displaces the unbound fraction of warfarin from albumin into serum. In addition 

they do not have the ability to produce water soluble warfarin metabolites for renal 

elimination, as their hepatic glucuronide pathway is immature (Bajoria et al., 1996). The 

exact pathogenesis of FWS, however, is unclear.  

 

1.6.1 Incidence 

Hall et al., (1980) estimated that, at best, 2/3 of babies born to mothers taking warfarin 

would be normal, 1/6 aborted or stillborn and a further 1/6 abnormal. A study carried out in 

SA in 1989, at Baragwanath Hospital in Johannesburg, determined that out of 50 

pregnancies in 49 patients (all of whom received warfarin in the 1st and 2nd trimesters), 

40% resulted in an abnormal pregnancy outcome and 4% of newborns were confirmed to 

have FWS (Sareli et al., 2000). No maternal deaths or TEC were associated with 

pregnancy in these patients (Sareli et al., 2000). In 2001, 49 patients were followed in the 

Western Cape of SA, 68% (24/49) received warfarin in the 1st trimester. 28% of these 

patients experienced pregnancy loss, while 6% of the live-borns were noted to have 

features of FWS (Hall et al., 2001). Three of these mothers died in the post-partum period, 

one due to accidental head injury and intracranial bleeding while on heparin and the other 

two due to TEC (Hall et al., 2001). 
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1.6.2 Alternative Anticoagulant and Current Regimens 

An alternative to warfarin is unfractionated heparin (UFH) or low-molecular-weight 

heparin (LMWH). The administration of heparin is inconvenient, as patients have to be 

hospitalised (heparin is given intravenously), its administration is painful, expensive and is 

associated with a risk of bleeding, osteoporosis and heparin-induced thrombocytopaenia 

(HIT) (Ginsberg et al., 2001). During pregnancy heparin does not cross the placenta and 

has shown no relationship with FWS. When observing patients who had been switched 

from warfarin to heparin before or at six weeks of pregnancy no babies (0/108) had FWS. 

However, 4/36 babies, whose mothers were switched from warfarin to heparin after six 

weeks, had FWS (Ginsberg et al., 2001). These findings illustrate the importance of 

switching patients from warfarin to heparin, before six weeks of pregnancy, to prevent 

FWS. However, the administration of heparin during the first trimester in patients with 

mechanical heart valve prostheses shows high rates of maternal complications such as 

embolism and prosthetic valve thrombosis (Cotrufo et al., 2002). 

 

Three anticoagulation regimens are currently available internationally to all pregnant 

women with prosthetic heart valves; these are:  

1. Heparin used throughout pregnancy (and possibly before conception) 

2. Warfarin used throughout pregnancy, changing to heparin at approximately 38 weeks 

gestation with a planned induction of labour 

3. Heparin used during the 1st trimester (particularly between 6-9 weeks), switching back 

to warfarin from the 2nd trimester to 37 completed weeks of pregnancy, and then back 

to heparin until after planned delivery 
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Regimen 3, although the most recommended, is problematic as these patients usually 

require hospital admission for the duration of heparin administration as they require 

frequent monitoring, usually present after six weeks of gestation and warfarin exposure 

during the 2nd and 3rd trimesters may still result in abnormalities (Chan et al., 2000, Sadler 

et al., 2000, Ginsberg et al., 2001).  

 

1.7 Aim and Impact of this study 

Warfarin has been used for over 50 years and is most likely to remain the gold standard for 

the treatment of TEC for another decade or more. It is in the best interests of those who 

require such treatment to provide the best possible management of warfarin. Pre-

administration pharmacogenetic testing of CYP2C9 and VKORC1 variants that alter 

warfarin dose in patients requiring warfarin has reduced the amount of adverse events in 

these patients and contributed to the determination of maintenance doses more efficiently 

(Kimball Genetics Website). These tests are based on variants that are present in a certain 

population at a high frequency and whose influence on warfarin dosage in known. No 

studies have yet determined the frequencies of these variants within the South African 

(SA) populations. Genetic variation is common amongst different populations and is 

usually higher in populations of sub-Saharan African origin than any other geographic 

region (Releford, 2001). Thus pharmacogenetic tests may need to be designed specifically 

for each population. 

 

In 2005, Dr Nerine Gregersen of the Division of Human Genetics, School of Pathology, 

and Faculty of Health Science at the University of the Witwatersrand, submitted a research 

report for the degree of MSc (Med) in Genetic counselling entitled: The implications to 

women of childbearing age taking warfarin anticoagulation. Her project aimed at 
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determining the pregnancy outcomes in a cohort of 124 black urban South African women 

of childbearing age (followed at the Obstetric Cardiac Clinic at the Chris Hani-

Baragwanath Hospital in Johannesburg), their awareness of the effects of warfarin in 

pregnancy, what management practices, as reported by them, had occurred with regard to 

their anticoagulation in pregnancy and what genetic counselling they had received 

(Gregersen, 2005). This project showed that 55.2% (123/223) of warfarin-exposed 

pregnancies resulted in the birth of an abnormal baby, spontaneous abortion or intrauterine 

death, estimating a FWS rate of 4.5-5.4% (Gregersen, 2005). Of these warfarin exposed 

pregnancies, 95% were reportedly exposed during the critical 6-10 week period of 

pregnancy, and less than 50% after 36 weeks (Gregersen, 2005).  

 

Based on the findings of this project and the fact that CYP2C9 and VKORC1 variants are 

reported to account for a large proportion of warfarin dosage sensitivity, I aimed to 

determine the frequencies of all described variants within these two genes in the SA black 

population. Populations of African origin tend to have higher genetic variation than most 

other populations and thus I expected to find novel variants within these two genes. I then 

aimed to correlate these variants to dosage sensitivity and pregnancy outcomes in patients 

who had taken warfarin during pregnancy.  

 

My specific aims were as follows: 

1. Sequence all nine exons and intron/exon boundaries for CYP2C9 and all three exons 

and intron/exon boundaries for VKORC1 in South African black control and patient 

samples 

2. Identify and determine the frequencies of known and novel CYP2C9 and VKORC1 

variants 
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3. Compare the frequencies of these known and novel CYP2C9 and VKORC1 variants 

between the patient and control samples and to those in previous studies 

4. Correlate these CYP2C9 and VKORC1 variants to warfarin dosage variability in the 

patients  

5. Correlate these CYP2C9 and VKORC1 variants to pregnancy outcome in patients who 

had taken warfarin during pregnancy 

 

Identifying known and novel CYP2C9 and VKORC1 variants in the South African black 

population will shed light on which variants, if any, are common in this population. 

Correlating these variants to warfarin dosage sensitivity and pregnancy outcomes will shed 

light on which variants influence warfarin dosage and pregnancy outcome in the South 

African black population. These results could eventually be used to design a 

pharmacogenetic test, specific to South African black patients, to identify patients with 

variants that alter warfarin dose and those with an increased risk of having a poor 

pregnancy outcome when taking warfarin. From this test, adjustments to warfarin dosage, 

specific to the patient, could be made to reduce adverse effects and determine the 

appropriate maintenance dose more efficiently. Similarly, appropriate counselling could be 

given to patients with increased risks of having a poor pregnancy outcome on warfarin. 
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2 SUBJECTS, MATERIALS AND METHODS  

 

This chapter aims to describe all the subjects, methods and materials that were used in this 

project. Section 2.1 describes all the subjects that were used. Sections 2.2.1 – 2.2.5 

describes the methods that were used to obtain sequences for all nine exons and 

intron/exon boundaries for the CYP2C9 gene and all three exons and intron/exon 

boundaries for the VKORC1 gene for all the patient and control samples. Section 2.2.6 

describes how the sequences were analysed for new and previously described CYP2C9 and 

VKORC1 variants. Section 2.2.7 describes the methods and statistical models that were 

used to analyse the new and previously described CYP2C9 and VKORC1 variants and to 

correlate these variants to warfarin dosage and pregnancy outcomes. 

 

2.1 Subjects 

Two sample groups were used in this project, described in sections 2.1.1 and 2.1.2.  

 

2.1.1 Patients 

One hundred and thirteen blood samples were collected from black patients followed at the 

Obstetric Cardiac Clinic at the Chris Hani-Baragwanath Hospital in Johannesburg. These 

patients were part of a study carried out by Dr Nerine Gregersen, entitled: The implications 

to women of childbearing age taking warfarin anticoagulation. This project was submitted 

to the Faculty of Health Science at the University of the Witwatersrand as an MSc (Med) 

in Genetic Counselling, in 2005. Most of these patients were on warfarin as a result of 

artificial heart valves, six due to mitral valve repair, one due to mitral stenosis, one due to 
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hypertension and one post surgery for artificial valve canal defect and all had at least one 

pregnancy on warfarin. These patients were given new identity numbers: patients (P) 1 – 

113, to maintain anonymity. Dr Gregersen obtained information on these patients’ ages, 

their current warfarin dose (with the exception of P49, P51 and P111), a list of other drugs 

taken (described in section 3.2.1), pregnancy outcomes (with the exception of P51 and 

P111) and whether or not warfarin and/or heparin was taken during their pregnancies. 

Many of these patients had more than one pregnancy, shown in table 2.1.  

 

Table 2.1: Number of pregnancies amongst the patients 

Number of Pregnancies Number of Patients (n = 111) 
1 31 (28%) 
2 30 (27%) 
3 25 (23%) 
4 10 (9%) 

More than 4 15 (14%) 
 

The total number of pregnancies, their outcomes and whether or not heparin and/or 

warfarin were taken during pregnancy is summarised in table 2.2. All ectopic pregnancies, 

termination of pregnancy (TOP) and pregnancies where only heparin was taken 

(highlighted in table 2.2) were excluded from our study. 

 

Table 2.2: Summary of pregnancy information obtained for the patients (n=111) 

Description 
Normal 

Outcome 
Poor 

Outcomes 
Ectopic or 

TOP Totals 

Pregnancies on warfarin 
only 

30 (25%) 83 (69%) 8 (6%) 121 

Pregnancies on warfarin 
and heparin 

45 (51%) 44 (49%) 0 89 

Pregnancies on heparin 
only 

2 (100%) 0 0 2 

Pregnancies with neither 
warfarin nor heparin 

67 (89%) 7 (9%) 1 (1%) 75 

Total number of 
pregnancies 144 (50%) 134 (47%) 9 (3%) 287 
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Table 2.3 gives a summary of the number of patient samples and the analyses in which 

they were used in this study. 

 

Table 2.3: Summary of the number of patient samples and the analyses in which they 

were used in this study 

Analysis Application Number of  
Samples Sections 

Sequencing of all eight CYP2C9 and 
three VKORC1 intron/exon 

boundaries 1 
113 2.2.5 

Screening for new and previously 
described CYP2C9 and VKORC1 

variants 1 
113 

2.2.6, 3.1.1, 
3.1.2 

HWE and Linkage Disequilibrium 113 
2.2.7.1, 

3.1.3, 
3.1.4 

Variant 

Comparison of patient and control 
samples 

113 
2.2.7.1, 

3.1.5 
Correlating environmental factors to 

warfarin dosage 
110 2 

2.2.7.2, 
3.2.1 Dosage 

Correlating CYP2C9 and VKORC1 
variants to warfarin dosage 

110 2 
2.2.7.2, 

3.2.2 
Correlating environmental factors to 

pregnancy outcome 
108 3 

2.2.7.3, 
3.3.1 Pregnancy  

Outcomes Correlating CYP2C9 and VKORC1 
variants to pregnancy outcome 

108 3 
2.2.7.3, 

3.3.2 
1 3 patient samples and 82 control samples could not be sequenced for VKORC1 exon 2, described in 
section 2.2.5. 2 In the dosage analysis the sample number was 110 because I did not have dosage 
information for P49, P51 and P111. 3 In the pregnancy analysis the sample number was 108 because I 
did not have pregnancy information for P51 and P111 and excluded ectopic pregnancies and TOP. 

 

2.1.2 Controls 

One hundred random blood samples were obtained from the DNA bank in the Division of 

Human Genetics laboratory at the National Health Laboratory Service (NHLS) in 

Johannesburg. These samples represent the general South African black population 

(excluding Indian and mixed ancestry populations), with 50 of the samples being female 

and the other 50 being male. No distinction between the particular ethnic groups was made. 

Like the patient samples these samples were given new identity numbers: controls (C) 1-
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100. Table 2.4 describes the number and the analyses in which the control samples were 

used in this project. 

 

Table 2.4: Summary of the number of control samples and the analyses in which they 

were used in this study 

Analysis Application Number of 
Samples 

Sections 

Sequencing of all eight CYP2C9 and 
three VKORC1 intron/exon 

boundaries 1 
100 2.2.5 

Screening for new and previously 
described CYP2C9 and VKORC1 

variants 1 
100 

2.2.6, 3.1.1,  
3.1.2 

HWE and Linkage Disequilibrium 100 
2.2.7.1,  

3.1.3, 3.1.4 

Variant 

Comparison of patient and control 
samples 

100 
2.2.7.1,  
3.1.5 

1 3 patient samples and 82 control samples could not be sequenced for VKORC1 exon 2, described in 
section 2.2.5 
 

2.2 Materials and Methods 

All the solutions used in these methods are described in Appendix A. 

 

2.2.1 DNA Extraction 

All DNA samples were extracted based on a modified Salting-Out method (Miller et al., 

1988) (protocol given in Appendix B). This technique uses various reagents, such as 

Sucrose-Triton X Lysing Buffer and Proteinase K, to lyse the membranes of DNA rich 

cells and remove contaminants such as proteins and cell debris. The protein is precipitated 

out of the solution by the addition of salt, while the DNA is precipitated from the solution 

by the addition of 100% ethanol and subsequently washed with 70% ethanol. The extracted 

DNA was re-suspended in TE buffer and concentrations determined using the Nano Drop 
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Spectrophotometer (ND - 1000). Working aliquots were diluted to 25ng/µl and kept in a 

4˚C fridge while stock concentrations of each sample were kept in a -20˚C freezer.  

 

2.2.2 Polymerase Chain Reaction  

Polymerase chain reaction (PCR) is a technique that uses thermocycling to amplify a target 

region of DNA from small amounts of DNA via in vitro DNA replication. A basic reaction 

requires primer sequences that flank the region of interest, a thermostable DNA 

polymerase (Taq or Ampli Taq Gold (both supplied by Roche)), a PCR buffer specific to 

the polymerase used, dNTPs and DNA. The specific primers used for each PCR reaction 

varied for each amplicon and are described in section 2.2.2.1. In each reaction a blank 

sample (containing no DNA) was set up to ensure that the reagents were not contaminated 

or that no contamination had occurred during the setting up of the PCR. 

 

2.2.2.1 Primer Sequences 

The DNA sequences for the CYP2C9 and VKORC1 genes were obtained from the UCSC 

Genome Bioinformatics Database Website (NM_000771 and NM_024006 for CYP2C9 

and VKORC1 respectively). The primers that were used for the CYP2C9 gene were 

obtained from Blaisdell et al., 2004. However, due to the small size of exons 2 & 3 in this 

gene, I designed primers that flanked both exons in one amplicon, using Map Draw from 

the DNAStar software package (Supplied by Lasergene). The primers used for the 

VKORC1 gene were obtained from D’Andrea et al., 2005.  

 

All of the primers for each of the genes were “blasted” onto the human genome to ensure 

that they only bound to the region of interest. This was done using the BLAT and BLAST 

applications, from the UCSC Genome Bioinformatics Database Website and the National 
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Centre for Biotechnology Information (NCBI) Database. Any primers that bound to more 

than one region were modified (by either adding or removing base pairs) in Map Draw and 

re-blasted using BLAT and BLAST, until the primers only bound to the CYP2C9 and 

VKORC1 genes.  

 

In Silico PCR from the UCSC Genome Bioinformatics Database Website was used to 

determine whether the primer sets amplified only the desired region of the human genome. 

All primers were obtained from Whitehead Scientific and Integrated DNA Technologies. 

The primer sets used for each amplicon are shown in table 5.1 in Appendix C. 

 

2.2.2.2 PCR Conditions 

The same PCR conditions were used for all amplicons, with the exception of their 

annealing temperatures. These temperatures were calculated from the primers’ melting 

temperatures, provided by Whitehead Scientific and Integrated DNA Technologies, and the 

In Silico PCR programme on the UCSC Genome Bioinformatics Database Website. PCR 

reactions were carried out using which ever of the four thermocyclers (GeneAmp PCR 

system 9700, Eppendorf Mastercycler Gradient, AB 2720 Thermocycler or Eppendorf 

Thermocycler Gradient) were available in the Human Genetics laboratory. The reactions 

contained 1µl DNA (25ng), 1U Ampli Taq Gold DNA polymerase (Roche), 2.5mM Ampli 

Taq Gold polymerase buffer, 2.5mM MgCl2 (Ampli Taq, buffer and MgCl2 supplied by 

Roche), 0.125mM each dNTP (supplied by either Promega or Invitrogen), 10pM each 

primer and was made up to 25µl with ddH2O. The dNTP mix, PCR mix and specific 

conditions for the different amplicons are all described in tables 5.2, 5.3 and 5.4, 

respectively, in Appendix C. Despite numerous trials I was unable to amplify exon 2 of the 

VKORC1 gene for three of the patient samples and 82 of the control samples, possibly as a 
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result of DNA degradation. As no variation was seen in the 110 patient samples this was 

not pursued. 

 

2.2.3 Detection on Agarose Gels 

Amplification and the band sizes of all the PCR reactions were confirmed by 3% agarose 

gel electrophoresis (Appendix A). I mixed 5µl of each PCR product with approximately 

2µl of Ficoll dye (Appendix A) before loading into the wells of agarose gels. Ficoll dye 

contains sucrose and Ficoll, making the solution denser so that it sinks to the bottom of the 

gel instead of floating out into the buffer. The Bromophenol blue dye enables one to 

visualise the sample while loading into the gel, and the migration of the dye front through 

the gel.  

 

2.2.4 Restriction Digests 

Some of the described variants in the CYP2C9 gene are restriction fragment length 

polymorphisms (RFLP). RFLPs are variations or polymorphisms in specific regions of 

genomes that are detected by restriction enzymes. Restriction sites are DNA sequences that 

are recognised by restriction enzymes, responsible for cutting DNA either intrinsic or 

extrinsically. The presence of a particular allele of an RFLP, in a particular patient or 

control, is determined by digesting a particular PCR amplicon with the specific restriction 

enzyme (at the conditions of the enzyme specified by the supplier). The digested products 

are then viewed under UV light after running them on an agarose gel. Although RFLP 

assays are often cheaper and less time consuming than other SNP (single nucleotide 

polymorphism) detection assays, partial or incomplete digestion of the amplicons may 
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result in false positives or negatives. Thus it is important to run all digests with positive 

and negative controls.  

 

Two RFLP assays were designed for the CYP2C9*2 and CYP2C9*5 variants. CYP2C9*2 

abolishes an AvaII restriction site within the CYP2C9 exon 2&3 amplicon. Thus after 

digestion with AvaII (protocol given in table 5.5 in Appendix D) the three genotypes yield 

three different band patterns on a 3% agarose gel. The homozygous genotype (N/N) will 

yield two bands of 521bp and 169bp. The heterozygous genotype (N/V) will yield three 

bands, 690bp, 521bp and 169bp. The homozygous variant genotype (V/V) will yield only 

the 690bp band. Figure 2.1 represents a schematic diagram of a 3% agarose gel with the 

different genotypes for the CYP2C9*2 variant after digestion with AvaII. 

 
 

 
    N = Reference Allele, V = Variant 
 

Figure 2.1: Representation of a 3% agarose gel with the different genotypes for the 

CYP2C9*2 variant after digestion with AvaII  

 
Variant CYP2C9*5 creates an additional AluI restriction site within the CYP2C9 Exon 7 

amplicon. The undigested amplicon is 285bp in length. When digested with AluI (protocol 

shown in table 5.6 in Appendix D) and run on a 3% agarose gel, the homozygous wild-type 

genotype (N/N) would have two bands of the sizes 249bp and 36bp. The heterozygous 

genotype (N/V) would have four bands of the sizes 249bp, 130bp, 119bp and 36bp. The 
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homozygous variant genotype (V/V) would show three bands of the sizes 130bp, 119bp 

and 36bp. Figure 2.2 represents a schematic diagram of a 3% agarose gel with the different 

genotypes for the CYP2C9*5 variant after digestion with AluI. 

 

 
N = Reference Allele, V = Variant 
 

Figure 2.2: Representation of a 3% agarose gel with the different genotypes for the 

CYP2C9*5 variant after digestion with AluII  

 

The introduction of the capillary 3130xl genetic analyser (see section 2.2.5.4) into our 

department allowed us to identify known and new variants (undetected through the RFLP 

analysis) in the PCR amplicons in a much more efficient manner than RFLP assays. Thus 

all RFLP assays were stopped. 

 

2.2.5 Sequencing 

Sequencing is a method of determining the exact base composition of a particular strand of 

DNA. The most common method for DNA sequencing is an enzymatic method known as 

the Sanger method, named after its developer (Wilson and Walker, 2000). The modified 

Sanger method used, utilises fluorescently labelled dideoxynucleotide chain terminators 

(ddNTPs), which are similar to normal dNTPs but do not have a 3’-hydroxyl group. This 

missing 3’-hydroxyl group inhibits the formation of a phosphodiester bond at the 3’ end, 



34 

 

preventing the extension of the DNA sequence during a sequencing specific PCR (Wilson 

and Walker, 2000). The fluorescently labelled ddNTPs (each with their own fluorochrome) 

enable one to have a single tube with all the ddNTPs and dNTPs, instead of four separate 

reactions like the original Sanger method. The incorporation of the ddNTP instead of a 

dNTP is a random event and results in a number of fragments of varying sizes, all having a 

common 5’-end (the primer). The cycle sequenced products are electrophoresed on a 

polyacrylamide gel or polymer matrix. The fluorescently labelled ddNTPs are detected by 

the laser on the Genetic Analyser (described in section 2.2.5.4) and translated into a G, T, 

A or C, depending on the wavelength detected. Sequences were obtained for all CYP2C9 

and VKORC1 amplicons, for all the patient and control samples, with the exception of the 

three patient and 84 control samples for exon 2 of the VKORC1 gene.  

 

2.2.5.1 PCR Clean-up  

Due to the sensitivity of the sequencing reaction, primers, excess reagents and non-specific 

products have to be removed from all PCR amplicons before sequencing can take place. A 

MultiScreen ® PCRµ96 Cleanup Filter Plate from Millipore was used for all CYP2C9 and 

VKORC1 amplicons. The plate uses a size-exclusion membrane and vacuum filtration to 

remove unwanted particles from the PCRs. It requires no centrifugation or precipitation 

steps (Millipore, 2007). The protocol for this cleanup method is described in Appendix E. 

The cleaned samples were transferred to a new 96-well PCR plate and stored at 4˚C until 

needed.  

 

2.2.5.2 Cycle Sequencing 

Cycle sequencing was carried out, using BigDye Terminator Ready Reaction Mix (BDT) 

(Supplied by Roche), for all CYP2C9 and VKORC1 amplicons for both patients and 
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controls. All the cycle sequenced products were cleaned using a Montage SEQ96 

Sequencing Reaction Clean up Kit (described in section 2.2.5.3), thus the cycle sequencing 

protocol (described table 5.7 in Appendix F) recommended by the Millipore/Montage 

clean up protocol was used to for all the cycle sequencing reactions. PCR bands that 

emitted high intensities on the agarose gels were diluted with an 1/8 reaction of BDT to a 

final volume of 10µl, while bands with lower intensity were diluted to a final volume of 

5µl. The samples were then amplified using a cycle sequencing PCR protocol, which 

consists of 25 cycles of 96ºC for 30 seconds, 50ºC for 15 seconds and 60ºC for four 

minutes, and held at 10ºC.  

 

2.2.5.3 Cycle Sequence Clean-up  

All cycle sequenced products were cleaned using the Montage SEQ96 Sequencing Reaction 

Cleanup Kit from Millipore. This kit uses a patented size-exclusion membrane with 

vacuum filtration to remove unwanted molecules from 96 samples (larger plates are 

available), quicker than other protocols (Millipore, 2007). The protocol for this clean up 

procedure is described in Appendix G. Cleaned samples were transferred into a new 96-

well plate and covered with an injection cover to be analysed on the Applied Biosystems 

3130xl Genetic Analyser. 

 

2.2.5.4 Genetic Analyser 

Capillary sequencers, such as the Applied Biosystems 3130xl Genetic Analyser, use the 

same principles as a semi-automated sequencer in that they use a gel matrix to separate 

DNA fragments, which are then detected by a laser and the sequence compiled by a data 

processor (Imai et al., 1999). The difference between the 3130xl genetic analyser and a 

semi-automated genetic analyser is that the former uses a multi-capillary system rather 
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than a slab gel to separate the DNA fragments. This eliminates the polyacrylamide gel 

making step which is very time consuming and can be problematic (Imai et al., 1999). The 

multi-capillary system also allows one to run many more samples than one would be able 

to run on a slab gel system. The capillary genetic analyser that the Division of Human 

Genetics (NHLS and the University of the Witwatersrand) has, can take two 96 well plates 

and has 16 capillaries and therefore analyses 16 samples at a time.  

 

2.2.5.4.1 Starting a Sequencing Run 

Prior to initiating a sequencing run all cleaned cycle sequenced products were denatured at 

95˚C for two minutes. This maintains the DNA strands in a single stranded form. Each of 

the troughs in the genetic analyser was checked for the correct volumes of either 1xTE 

buffer or ddH2O. The 96 well plate(s) containing the cleaned cycle sequenced products 

were then placed in the Genetic Analyser in one of the two positions labelled A or B. The 

Foundation Data Collection Version 3.0 software package, (Applied Biosystems, Hitachi) 

provided with the 3130xl Genetic Analyser, was used to create and initiate each 

sequencing run. Appendix H gives a detailed description of how each sequencing run was 

created and started.  

 

2.2.5.4.2 Retrieving a Sequencing Run 

The Sequencing Analysis 5.2 software (Applied Biosystems, Hitachi) was used to analyse 

each sequence. This software, unlike the semi-automated model, automatically tracks, 

extracts and analyses each sequence. Appendix I gives a detailed description of how 

samples (run on the 3130xl genetic analyser) were retrieved and analysed. 
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2.2.6 Analysis of DNA Sequences 

The sequences for all patient and control samples for each of the CYP2C9 and VKORC1 

amplicons were compared to a reference sequence for that region, using the SeqMan 

programme from the DNAStar software package (Lasergene). All references sequences 

were obtained from UCSC Genome Bioinformatics Database Website (NM_000771 and 

NM_024006 for CYP2C9 and VKORC1 respectively). The SeqMan programme aligns all 

sequences of the same size and base composition and highlights any changes in the 

sequences (such as base substitutions), as compared to the reference sequence. Any 

changes in the DNA sequences that were not previously described variants were labelled 

according to the position of the change and later characterised (described in section 

2.2.6.1).  

 

2.2.6.1 Novel Variants 

The first step in characterising these novel variants was to determine whether they were in 

an intron or exon. This was determined using the sequences obtained from the UCSC 

Genome Bioinformatics Database Website, as they specify intron/exon boundaries. If the 

variants were found in an exon I determined whether or not they resulted in an amino acid 

change, using the MapDraw programme in the DNAStar software package (Lasergene). 

Those that were found in introns were placed into three different splice site predictor sites 

(Berkley Drosophila Genome Project (BDGP) Splice Site Predictor, Alex Dong Li’s Splice 

Site Finder and NetGene2 Server). These sites use specific algorithms to predict intron 

splice sites within a specific region of DNA. Any variants found within these predicted 

splice sites are then likely to affect the splicing of that specific intron, by creating or 

removing a splice recognition site.  

 



38 

 

2.2.7 Statistics 

This project had three main aims: 1) Determine the frequency of known and new CYP2C9 

and VKORC1 variants, 2) Correlate these variants to weekly dosage in patients on warfarin 

and 3) Correlate these variants to the pregnancy outcome of patients taking warfarin during 

pregnancy. The analysis for each aim will be discussed separately in sections 2.2.7.1, 

2.2.7.2 and 2.2.7.3, respectively. Following the generation, compilation and basic analysis 

of the data, statistical tests and models were generated during a two day consultation with 

Dr Van Der Merwe (from the Biostatics Department of the Medical Research Council of 

South Africa, Cape Town). All p-values (probability values) of 0.05 or below were taken 

as significant. Base R and R software packages version 0.2-3 (genetics, dgc_genetics, 

LDheatmap, haplo.stats and MASS) were used to carry out all statistical analyses 

(Venables and Ripley, 2002; Sinnwell and Schaid, 2005; Warnes and Leisch, 2005; 

Clayton., 2006).  

 

2.2.7.1 Variant Analysis 

Genotype and allele frequencies were calculated for the patients, controls and the total 

samples (both patients and controls together). Based on the type of analysis (correlating 

variants to dosage and pregnancy outcome) and the large number of variants I identified, I 

excluded all the variants that showed an allele frequency of less than 0.02 in the sample 

groups, from further analysis due to insufficient numbers. In addition variants that are 

present at a low frequency within a population may not be useful for pre-administration 

pharmacogenetic testing of that population; however, these variants may have significant 

effects in individuals with these variants.   
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An exact test (HWE.exact in R, genetics library) was used to check for Hardy-Weinberg 

equilibrium (HWE) for each of the variants in each of the sample groups (patients, controls 

and both patients and controls combined). HWE is based on the principle that relative 

proportions of different genotypes remain constant from one generation to the next. 

Heatmaps, which are graphs that show the probability of linkage disequilibrium between 

the different variants, were created for all the sample groups. Linkage disequilibrium refers 

to the occurrence in a population of certain combinations of linked alleles in greater 

proportion than expected from the allele frequencies at the loci (McGraw-Hill, 2002). 

Linkage disequilibrium was calculated using the LD function in R, genetics library 

(mentioned in section 2.2.7) and measured using D’. The LD function estimates the extent 

of linkage disequilibrium for a single pair of genotypes (R, genetics help file). 

 

Two tests were used to determine whether or not there were any significant differences in 

the genotype and allele frequencies of the CYP2C9 and VKORC1 variants between the 

patient and control groups.  The first test, Fisher’s exact test, was used to test the 

differences between patients and controls based on their genotype frequencies. This test 

was the most suitable as some of the variants were observed at very low genotype 

frequencies in the control and patient samples. The second test, Cochran/Armitage trend 

test was used to test the differences between the patients and controls based on their allele 

frequencies. This test was used as it capable of detecting more trends than a normal chi-

squared test. 

 

2.2.7.2 Warfarin Dosage Variability Analysis 

Warfarin maintenance dosage can be influenced by a number of environmental and genetic 

factors. The only environmental factors, on which information was obtained during Dr 
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Gregersen’s study which may influence warfarin dosage, were age and concomitant 

medication (listed in section 3.2.1). Our aim in this analysis was to determine whether any 

of the known and new CYP2C9 and VKORC1 variants influence warfarin maintenance 

dosage in these patients. In order to accurately predict the influence of these variants on 

warfarin dosage, I needed also to determine the level of influence the patients’ age and 

concomitant medications have on warfarin maintenance dosage in these patients. 

 

2.2.7.2.1 Environmental Factors 

Box plots were created to graphically depict the relationship between patients that were or 

were not taking a concomitant drug and warfarin dosage. The influence these concomitant 

drugs have on warfarin maintenance dosage was tested using a Wilcoxon test. This test is 

similar to a t-test and involves the comparison of differences in measures of two related 

samples. It was used to determine if there was any significant difference in warfarin 

maintenance dosage in the patients that were taking the particular drug of interest, to those 

that were not taking the drug. The influence the patients’ age has on warfarin maintenance 

dosage was tested using the linear models (described in section 2.2.7.2.2). 

 

2.2.7.2.2 CYP2C9 and VKORC2 Variants 

Box plots were created to depict the relationship between the particular variants and 

warfarin dosage. The influence the particular variants have on warfarin dosage was tested 

using three different methods: a Kruskal-Wallis test, adapted linear models and haplo.stats 

analysis. The Kruskal-Wallis test is an extension of the Wilcoxon test but is capable of 

comparing more than two samples. Thus was used to compare the median maintenance 

dosage between the three genotypes of a particular variant.  
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The adapted linear models use logistic regression adjusting for the effects of age and 

concomitant medication on warfarin maintenance dosage. Logistic regression provides 

estimates of the size of genotype effects by treating the disease status as the outcome 

variable and the genotype as an explanatory variable (described by Clayton in the R 

package version 0.5). Using these models one is able to adjust for prognostic factors, 

which if ignored may lead to errors in estimating treatment differences (Hastie and 

Tibshirani, 2007).  

 

A haplotype refers to a series of alleles found at linked loci on a single chromosome 

(Strachan and Read, 2004). Haplo.stats, run through the R software programme was used 

to carry out all the haplo.stats analysis used in this project. It is a suite of S-PLUS/R 

routines for the analysis of indirectly measured haplotypes/allele combinations (Sinnwell 

and Schaid, 2005). This statistical method assumes that all the subjects are unrelated, the 

haplotypes are ambiguous (due to unknown linkage phase of the genetic markers), and that 

the genetic markers are codominant (Sinnwell and Schaid, 2005). In this analysis the 

haplo.stats results were used to determine whether certain allele combinations alter 

warfarin maintenance dosage. The first analysis incorporated all 12 CYP2C9 variants, 

followed by the analyses of only six variants at a time, i.e. variant 1 – 6, 2 – 7, 3 – 8 etc. 

Secondly I looked at both VKORC1 variants and their effect on warfarin maintenance 

dosage. Lastly I looked at both the CYP2C9 and VKORC1 variants with respect to warfarin 

maintenance dosage.  
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2.2.7.3 Pregnancy Outcome Analysis 

Most of the patients had more than one pregnancy (the frequencies of which can be seen in 

table 2.1 in section 2.1.1) with different outcomes. Bar graphs were created, using Excel 

(Microsoft, Windows) to show the frequency of poor (which includes miscarriages, 

stillbirths and abnormal live-borns) and normal pregnancy outcomes for the first three 

pregnancies (pregnancies above three were not analysed because of a small sample size). 

The aim of this analysis was to determine whether any of the known or new CYP2C9 and 

VKORC1 variants influence pregnancy outcome when on warfarin. It is known, however, 

that pregnancy outcome can be influenced by many environmental and genetic factors. The 

only environmental factors I was able to account for in this study (taken from Dr 

Gregersen’s data) were the patients’ age and whether they took heparin and/or warfarin 

during their pregnancy.  

 

2.2.7.3.1 Environmental Factors 

Box plots were created to graphically depict the effects of the patients’ ages on pregnancy 

outcome. Bar graphs were created, using Excel (Microsoft, Windows), to show the 

relationship between warfarin maintenance dosage and pregnancy outcome. Generalised 

linear models (described in section 2.2.7.3.2) were used to determine the influence of 

warfarin and/or heparin on pregnancy outcome.  

 

2.2.7.3.2 CYP2C9 and VKORC1 Variants 

When determining the influence of the particular variants on pregnancy outcome I could 

only analyse one pregnancy outcome as no statistical software is yet available to analyse 

more than one outcome for a single patient. Thus the statistical analyses used to determine 
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the influence of the 14 CYP2C9 and VKORC1 variants on pregnancy outcome were based 

on the pregnancy outcomes after the 1st pregnancy. Box plots were created to show the 

relationship between the variants and poor and normal pregnancy outcomes. The influence 

of these variants on pregnancy outcome was tested using three types of analyses: 

generalised linear models, interaction models and haplo.stats analyses.  

 

The generalised linear models determined the effects of the different CYP2C9 and 

VKORC1 variants on pregnancy outcome (independent of warfarin taken during the 

pregnancy), adjusting for the effect of the patients’ age, number of pregnancies and 

whether or not heparin and/or warfarin was used during the pregnancy. Interaction models 

determine the effect of a particular variant on pregnancy outcome when warfarin is taken 

during the pregnancy, adjusting for the effect of the patients’ age, number of pregnancies 

and whether or not heparin and/or warfarin was used during the pregnancy.  

 

Haplo.stats analyses were carried out for both the CYP2C9 and VKORC1 variants 

separately, using four CYP2C9 variants at a time or the two VKORC1 variants. I compared 

the allele combination frequency of the patients that had poor pregnancy outcomes to those 

who had normal pregnancy outcomes when warfarin was and was not taken during 

pregnancy.  
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3 RESULTS 

 

This chapter aims to describe all the results obtained from the control and patient samples 

using the methods described in section 2. Section 3.1 describes all the known and new 

variants I observed in the sequences obtained for all the CYP2C9 and VKORC1 amplicons. 

Section 3.2 describes the correlation of these variants to warfarin maintenance dosage. 

Section 3.3 describes the correlation of these variants to pregnancy outcomes in patients 

taking warfarin during pregnancy. In all of the statistical analyses p-values of below 0.05 

were considered significant and significant comparisons are highlighted in all the tables. 

The P-values for all the tests and linear models for each analysis (variant, warfarin dosage 

variability and pregnancy outcomes (described in sections in section 3.1 – 3.3) are shown 

in appendices J – L, respectively. The raw data collected during this project and for the use 

of this project may be seen in Appendix M. Pictures of some agarose gels and 

electropherograms produced during the project may be seen in Appendix N. 

 

3.1 Variant Analysis 

The aim of this analysis was to identify novel and previously described CYP2C9 and 

VKORC1 variants, and to determine their frequencies in the patient and control samples; 

and to compare these frequencies between the two sample groups. Section 3.1.1 describes 

the CYP2C9 variants observed in the sample groups. Section 3.1.2 describes the VKORC1 

variants observed in the sample groups. All the variants that were observed at a frequency 

of ≥ 0.02 were used for further analysis and are described in sections 3.1.3-3.1.5, 3.2 and 

3.3. 
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3.1.1 CYP2C9 Variants 

3.1.1.1 Previously Described Variants 

New CYP2C9 variants are being described on a continuous basis. To date there are 30 

described variants (listed in table 1.2, section 1.3). Of the 30 known variants I observed six 

in the control samples and four in the patient samples. Their frequencies are shown in table 

3.1. 

 

Table 3.1: Genotype and allele frequencies of the previously described CYP2C9 

variants observed in the patient and control samples 

Patient Samples (n =113) Control Samples (n = 100) 
Genotype Allele Genotype Allele Variant 

N1/V2 V2/V2 N1 V2 N1/V2 V2/V2 N1 V2 

CYP2C9*3 
(n) 

frequency 

(1) 
0.01 

 (0) 
 0 

(225) 
0.99 

(1) 
0.01 

(1) 
0.01 

(0)  
0 

(199) 
0.99  

(1) 
0.01 

CYP2C9*5 
(n) 

frequency 

(0)  
0 

(0)  
0 

(226)  
1 

(0)  
0 

(2) 
0.02 

(0) 
0 

(198) 
0.99  

(2) 
0.01  

CYP2C9*6 
(n) 

frequency 

(0) 
0 

(0)  
0 

(226) 
1 

(0)  
0 

(1) 
0.01 

(0)  
0 

(199) 
0.99  

(1) 
0.01 

CYP2C9*8 
(n) 

frequency 

(26) 
0.23 

(2) 
0.02 

(196) 
0.87  

(30) 
0.13  

(16) 
0.16  

(0)  
0 

(184) 
0.92  

(16) 
0.08  

CYP2C9*9 
(n) 

frequency 

(36) 
0.32  

(2) 
0.02  

(186) 
0.82  

(40) 
0.18  

(18) 
0.18  

(3) 
0.03  

(176) 
0.88  

(24) 
0.12  

CYP2C9*11 
(n) 

frequency 

(8) 
0.07 

(0) 
0 

(218) 
0.96  

(8) 
0.04 

(7) 
0.07 

(1) 
0.01 

(191) 
0.96  

(9) 
0.04 

1N = Normal, 2V = Variant  
Highlighted variants = observed at an allele frequency of ≥ 0.02, thus used for further analysis 

 
 

In table 3.1, although variant CYP2C9*5 was observed in the control samples at a 

frequency of 0.02 it was excluded from further analysis because it was not observed in the 

patient sample group. 
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3.1.1.2 Novel Variants 

I observed 27 novel, previously unidentified, CYP2C9 variants (24 in the patient samples 

and 19 in the control samples). Eight of these were observed within exons 1, 2, 3, 7 and 9, 

and are described in section 3.1.1.2.1. The remaining 19 were observed in the intronic 

regions of amplicons 1, 2&3, 4, 6, 8 and 9, and are described in section 3.1.1.2.2.  

 

3.1.1.2.1 Coding Sequence Variants 

The eight novel variants that were observed within the CYP2C9 exons were analysed to 

determine whether or not they altered an amino acid. Four of these variants are silent 

mutations (do not change the amino acid). The other four are missense mutations (change 

the amino acid). Table 3.2 describes each of these variants.  

 

Table 3.2: Description of all the novel CYP2C9 silent and missense mutations 

observed within the patient and control samples 

Exon SNP 1 Amino Acid Change 
1 12803 A>G I42V 
2 15906 A>G I74V 
2 15913 T>A V76Q 
3 16247 G>T T130T 
7 55198 T>C I327T 
9 62875 C>T A441A 
9 62941 C>T D463D 
9 62977 A>T G465G 

  The four missense mutations are highlighted in the table 
  1 SNP = single nucleotide polymorphism/change in the DNA strand 
   
 
 
Figure 3.1 illustrates the Isoleucine to Valine amino acid change brought about by the 

I42V and I74V missense mutations.  
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Figure 3.1: Isoleucine changed to a Valine (I42V, I74V), (Mathews et al., 2000) 

 

Isoleucine and Valine both have non-polar side chains, shown in yellow in figure 3.1. 

Isoleucine, however, has an additional CH2 as compared to Valine.  

 

Figure 3.2 illustrates the Valine to Glutamine mutation at amino acid 76.  

 

 
Figure 3.2: Valine changed to a Glutamine (V76Q), (Mathews et al., 2000) 

 

The Valine to Glutamine mutation results in the substitution of a non-polar amino acid to 

polar amino acid. Similarly, the I327T mutation results in the substitution of a non-polar 

amino acid to a polar amino acid, shown in figure 3.3.  

 

 
Figure 3.3: Isoleucine change to Threonine (I327T), (Mathews et al., 2000) 
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Table 3.3 shows the genotype and allele frequencies of the four novel silent mutations and 

four novel missense mutations in the patient and control samples. 

 

Table 3.3: Genotype and Allele frequencies of the four novel silent and four novel 

missense mutations observed in the patient and control samples 

Patient Samples (n =113) Control Samples (n = 100) 
Genotype Allele Genotype Allele Variant 

N1/V2 V2/V2 N1 V2 N1/V2 V2/V2 N1 V2 

I42V 
(n) 

frequency 

(1) 
0.01 

(0)  
0 

(225) 
0.99 

(1) 
0.01 

(0)  
0 

(0) 
0 

(200) 
1 

(0) 
0 

I74V 
(n) 

frequency 

(1) 
0.01 

(0)  
0 

(225) 
0.99 

(1) 
0.01 

(0)  
0 

(0) 
0 

(200) 
1 

(0) 
0 

V74Q 
(n) 

frequency 

(0)  
0 

(0)  
0 

(226) 
1 

(0)  
0 

(3) 
0.03 

(0) 
0 

(197) 
0.985 

(3) 
0.015 

T130T 
(n) 

frequency 

(1) 
0.01 

(0) 
0 

(225) 
 0.99 

(1) 
0.01 

(2)  
0.02 

(0) 
0 

(198) 
0.99 

(2) 
0.01 

I327T 
(n) 

frequency 

(1) 
0.01 

(0) 
0 

(225) 
0.99 

(1) 
0.01 

(0)  
0 

(0) 
0 

(200) 
1 

(0) 
0 

A441A 
(n) 

frequency 

(15) 
0.13 

(0) 
0 

(211) 
0.93 

(15) 
0.07 

(15)  
0.15 

(0) 
0 

(185) 
0.93 

(15) 
0.07 

D463D 
(n) 

frequency 

(1) 
0.01 

(0) 
0 

(225) 
0.99 

(1) 
0.01 

(1) 
0.01 

(0) 
0 

(199) 
0.99 

(1) 
0.01 

G465G 
(n) 

frequency 

(3) 
0.03 

(0) 
0 

(223) 
0.99 

(3) 
0.01 

(2) 
0.02 

(0) 
0 

(198)  
0.99 

(2)  
0.01 

1N = Normal, 2V = Variant 
Highlighted variant = observed at an allele frequency of ≥ 0.02, thus used for further analysis 

 

3.1.1.2.2 Non-Coding Sequence Variants 

The remaining 19 novel non-coding sequence variants were run through three splice site 

predictor sites (described in section 2.2.6.1). The scores or confidence percentages for each 

of the splice site predictors, is a measure of the likelihood of a splice site in a particular 

region of DNA. Thus, splice sites that have a high score or confidence percentage are more 
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likely to be actual splice sites than those with lower scores. The cut off values for each of 

the predictor sites are as follows: Fruitfly – 40, Sickkids – 65 and NetGene2 – 50. Nine of 

the 19 remaining variants are found within possible splice sites and therefore may affect 

the splicing of that region. Table 3.4 shows the results of the searches using the three splice 

site predictor sites for the nine variants.  

 

Table 3.4: Summary of the Splice Site predictor website searches for the nine possible 

splice site mutations 

Fruit Fly* Genet Sickkids† Net Gene2‡ Variant 
Score Type Score Type Confidence Type 

12930 T>C 95 Donor 74.1 Donor 50-95% Donor 
16090 T>C None None 66.1 Acceptor 50-95% Donor (- strand) 
16094 C>A None None 66.1 Acceptor 50-95% Donor (- strand) 
21711 G>C None None 68.9 Acceptor 50-95% Donor (- strand) 
46028 A>G None None 69.5 Donor None None 
46092 C>T None None 73.2 Acceptor None None 
60175 A>G None None 79.9 Donor 50-95% Donor 
63143 C>G None None 79.5 Acceptor None None 
63180 C>T None None 74.3 Acceptor None None 

References: *BDGP Splice Site Predictor, †Alex Dong Li’s Splice Site Finder, ‡NetGene2 Server 
Cut off values for each site: Fruitfly = 40, Sickkids = 65, NetGene2 = 50 

 

Table 3.5 shows the genotype and allele frequencies of these nine possible splice site 

mutations in the patient and control samples. 
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Table 3.5: Genotype and Allele frequencies of the nine novel possible splice site 

mutations observed in the patient and control samples 

Patient Samples (n =113) Control Samples (n = 100) 
Genotype Allele Genotype Allele Variant 

N1/V2 V2/V2 N1 V2 N1/V2 V2/V2 N1 V2 

12930 T>C 
(n) 

frequency 

(25) 
0.22 

(1) 
0.01 

(199) 
0.88 

(27) 
0.12 

(19) 
0.19 

(3) 
0.03 

(175) 
0.88 

(25) 
0.12 

16090 T>C 
(n) 

frequency 

(27) 
0.24 

(2) 
0.02 

(195) 
0.86 

(31) 
0.14 

(24) 
0.24 

(3) 
0.03 

(170) 
0.85 

(30) 
0.15 

16094 C>A 
(n) 

frequency 

(1) 
0.01 

(0) 
0 

(225) 
0.99 

(1) 
0.01 

(2) 
0.02 

(0) 
0 

(198) 
0.99 

(2) 
0.01 

21711 G>C 
(n) 

frequency 

(22) 
0.19 

(3) 
0.03 

(198) 
0.88 

(28) 
0.12 

(19) 
0.19 

(2) 
0.02 

(177) 
0.89 

(23) 
0.11 

46028 A>G 
(n) 

frequency 

(39) 
0.35 

(13) 
0.11 

(161) 
0.71 

(65) 
0.29 

(40) 
0.40 

(3) 
0.03 

(154) 
0.77 

(46) 
0.23 

46092 C>T 
(n) 

frequency 

(4) 
0.04 

(0) 
0 

(222) 
0.98 

(4) 
0.02 

(4) 
0.04 

(0) 
0 

(196) 
0.98 

(4) 
0.02 

60175 A>G 
(n) 

frequency 

(1) 
0.01 

(0) 
0 

(225) 
0.99 

(1) 
0.01 

(0) 
0 

(0) 
0 

(200) 
1 

(0) 
0 

63143 C>G 
(n) 

frequency 

(0) 
0 

(0) 
0 

(226) 
1 

(0) 
0 

(1) 
0.01 

(0) 
0 

(199) 
0.99 

(1) 
0.01 

63180 C>T 
(n) 

frequency 

(1) 
0.01 

(0) 
0 

(225) 
0.99 

(1) 
0.01 

(0) 
0 

(0) 
0 

(200) 
1 

(0) 
0 

1N = Normal, 2V = Variant 
Highlighted variants = observed at an allele frequency of ≥ 0.02, thus used for further analysis 

 

The effects of the ten remaining variants are yet to be determined. Table 3.6 shows the 

genotype and allele frequencies of these ten variants.  
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Table 3.6: Genotype and Allele frequencies of the ten novel variants, whose effect on 

Cytochrome P450 is unknown, observed in the patient and control samples 

Patient Samples (n =113) Control Samples (n = 100) 
Genotype Allele Genotype Allele Variant 

N1/V2 V2/V2 N1 V2 N1/V2 V2/V2 N1 V2 

16060 T>C 
(n) 

frequency 

(0) 
0 

(0) 
0 

(226) 
1 

(0) 
0 

(1) 
0.01 

(0) 
0 

(199) 
0.99 

(1) 
0.01 

16179 T>A 
(n) 

frequency 

(22) 
0.19 

(3) 
0.03 

(198) 
0.88 

(28) 
0.12 

(27) 
0.27 

(1) 
0.01 

(171) 
0.86 

(29) 
0.14 

21748 G>A 
(n) 

frequency 

(2) 
0.02 

(0) 
0 

(224) 
0.99 

(2) 
0.01 

(1) 
0.01 

(0) 
0 

(199) 
0.99 

(1) 
0.01 

60225 T>A 
(n) 

frequency 

(1) 
0.01 

(0) 
0 

(225) 
0.99 

(1) 
0.01 

(0) 
0 

(0) 
0 

(200) 
1 

(0) 
0 

60272 T>C 
(n) 

frequency 

(14) 
0.12 

(0) 
0 

(212) 
0.94 

(14) 
0.06 

(14) 
0.14 

(0) 
0 

(186) 
0.93 

(14) 
0.07 

60318 C>T 
(n) 

frequency 

(3) 
0.03 

(0) 
0 

(223) 
0.99 

(3) 
0.01 

(2) 
0.02 

(0) 
0 

(198) 
0.99 

(2) 
0.01 

60328 A>G 
(n) 

frequency 

(2) 
0.02 

(0) 
0 

(224) 
0.99 

(2) 
0.01 

(1) 
0.01 

(0) 
0 

(199) 
0.99 

(1) 
0.01 

63092 C>T 
(n) 

frequency 

(1) 
0.01 

(0) 
0 

(225) 
0.99 

(1) 
0.01 

(0) 
0 

(0) 
0 

(200) 
1 

(0) 
0 

63113 C>T 
(n) 

frequency 

(22) 
0.19 

(3) 
0.03 

(198) 
0.88 

(28) 
0.12 

(17) 
0.17 

(0) 
0 

(183) 
0.92 

(17) 
0.08 

63169 G>A 
(n) 

frequency 

(2) 
0.02 

(0) 
0 

(224) 
0.99 

(2) 
0.01 

(0) 
0 

(0) 
0 

(200) 
1 

(0) 
0 

1N = Normal, 2V = Variant 
Highlighted variants = observed at an allele frequency of ≥ 0.02, thus used for further analysis 

 

3.1.2 VKORC1 Variants 

3.1.2.1 Previously Described Variants 

VKORC1 is a relatively newly identified gene. To date there are 13 described variants 

within this gene (described in table 1.3, section 1.4). The -1639 G>A promoter and Intron 

one 1173 C>T variants were not screened because they were described after this study had 
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been designed and they are found outside of our primer sequences. Of the 11 remaining 

variants I only observed three within the patient and control sample groups. Their 

frequencies are shown in table 3.7. 

 

Table 3.7: Genotype and Allele frequencies of the previously described VKORC1 

variants observed in the patient and control samples 

Patient Samples Control Samples 
Genotype Allele Genotype Allele Variant 

(n) 
N1/V2 V2/V2 N1 V2 (n) 

N1/V2 V2/V2 N1 V2 

V66M 
(n) 

frequency 
110 (1) 

0.01 
(0) 
0 

(219) 
0.99 

(1) 
0.01 

18 (1) 
0.01 

(0) 
0 

(35) 
0.97 

(1) 
0.03 

L120L 
(n) 

frequency 
113 (42) 

0.37 
(8) 

0.07 
(168) 
0.74 

(58) 
0.26 

99 (33) 
0.33 

(3) 
0.03 

(159) 
0.80 

(39) 
0.20 

3730 
 G>A 
(n) 

frequency 

113 
(53) 
0.47 

(23) 
0.20 

(127) 
0.56 

(99) 
0.44 

100 
(43) 
0.43 

(21) 
0.21 

(113) 
0.57 

(85) 
0.43 

1N = Normal, 2V = Variant. Highlighted variants = observed at an allele frequency of ≥ 0.02, thus used for 
further analysis. The sample sizes (shown in bold (n)) are different because some of the samples failed to 
amplify 

 

No novel variants were found within this gene.  

 

All of the CYP2C9 and VKORC1 variants (highlighted in tables 3.1, 3.3, 3.5, 3.6 and 3.7, 

in sections 3.1.1 and 3.1.2) observed at an allele frequency of ≥ 0.02 were used for further 

analysis. They were given new identity numbers (1-14) (listed in table 3.8) to make the 

representation of results clearer. 
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Table 3.8: List of the previously described and novel CYP2C9 and VKORC1 variants 

that were used for comparison and correlation analyses 

New Identity 
Number Described/Novel Gene Variant Type of Mutation 

1 Described CYP2C9 CYP2C9*8 R150H 
2 Described CYP2C9 CYP2C9*9 H251R 
3 Described CYP2C9 CYP2C9*11 R355W 
4 Novel CYP2C9 12930 T>C Possible Splice Site 
5 Novel CYP2C9 16090 T>C Possible Splice Site 
6 Novel CYP2C9 16179 T>A Unknown 
7 Novel CYP2C9 21711 G>C Possible Splice Site 
8 Novel CYP2C9 46028 A>G Possible Splice Site 
9 Novel CYP2C9 46092 C>T Possible Splice Site 
10 Novel CYP2C9 60272 T>C Unknown 
11 Novel CYP2C9 62875 C>T A441A 
12 Novel CYP2C9 63113 C>T Unknown 
13 Described VKORC1 8773 C>T L120L 
14 Described VKORC1 9041 G>A 3730 G>A (3’UTR) 

 

3.1.3 Comparison of Genotype and Allele frequencies of the 14 CYP2C9 and 

VKORC1 variants in the patient and control samples 

Fisher’s exact and Cochran/Armitage tests (described in section 2.2.7.1) were used to test 

whether there were any significant differences between genotype and allele frequencies of 

the 14 variants in the patient and control sample groups, respectively. No significant 

differences were found between the two groups, confirming that they are from the same 

South African Black population. Thus any findings in the dosage and pregnancy outcome 

analyses (in which only the patient samples were used, see table 2.3 in section 2.1.1) 

should apply to the general South African Black population. The p-values from all these 

tests may be seen in table 5.12 in Appendix J. 

 

3.1.4 Hardy-Weinberg Equilibrium (HWE) 

An exact test (mentioned in section 2.2.7.1) was used to test for compliance with Hardy-

Weinberg expectation at each of the 14 loci described in table 3.8, in the patients, controls 
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and both patients and controls combined. From these results I determine that the genotype 

proportions at each of the 14 loci do not differ significantly from those predicted by the 

Hardy-Weinberg law (from the observed allele frequencies). This indicates that these 

variants are in HWE. The p-values for each of the sample groups can be seen in table 5.8 in 

Appendix J.  

 

3.1.5 Linkage Disequilibrium (LD) 

Linkage disequilibrium (described in section 2.2.7.1) was tested for between pairs of 

alleles at all 14 loci in all the sample groups. Figures 3.4, 3.5 and 3.6 show the heatmaps 

(described in section 2.2.7.1) created for all the sample groups. The p-values for these 

groups may be seen in tables 5.9 - 5.11 in Appendix J. In each table and figure a value of 1 

shows LD, 0 shows no LD. 

 

 
1 = LD; 0 = no LD 

 
Figure 3.4: Linkage Disequilibrium Heatmap for the control samples 
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1 = LD; 0 = no LD 
 

Figure 3.5: Linkage Disequilibrium Heatmap for the patient samples 

 

 

1 = LD; 0 = no LD 
 

Figure 3.6: Linkage Disequilibrium Heatmap for both the patient and control 

samples 
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The colour key in each of the heatmaps represents the p-values of the LD. Variants 13 & 

14 are found on a different gene on a different chromosome from variants 1-12. Both of 

these genes are relatively small (three and nine exons, respectively). Thus I expected to see 

variants 13 & 14 in LD with each other; and similarly variants 1-12 in LD with each other. 

The LD between the different variants for each gene was analysed using the LD function in 

R at the same time, for convenience. However, we are not measuring the LD between the 

genes (as they are on different chromosomes) but rather the LD of the different variants 

within each of the genes.  

 

3.2 Warfarin Dosage Variability Analysis 

The aim of this analysis is to determine whether any of the 14 CYP2C9 and VKORC1 

variants (described in table 3.8 in section 3.1.2.1) influence warfarin dosage sensitivity in 

the patient samples (n = 110). Figure 3.7, illustrates the distribution of warfarin dosage, in 

mg/week, amongst the patients. Dosage was measured in mg/week instead of mg/day as 

most of the patients alternate their daily dosage. 
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Figure 3.7: Distribution of warfarin dosage (in mg/week) in the patients (n = 110) 

 

Based on the literature and our data I divided the patients into three dosage groups: low, 

average and high. Table 3.9 describes these groups and the number of patients in each 

group. 

 

Table 3.9: Description of the three dosage groups and the number of patients in each 

group 

Group Dosage (mg/week) Number of Patients (n = 110) 
Low  12.5 – 27.5 (15) 14% 

Average 30 – 42.5 (58) 53% 
High 45 – 87.5 (37) 34% 

 

This variability in warfarin dosage may be explained by a number of environmental and 

genetic factors. The two environmental factors, that I could account for in this project, 

were age and concomitant medication, discussed in section 3.2.1.   
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3.2.1 Environmental Factors 

3.2.1.1 Age 

Figure 3.8 shows the distribution of ages amongst the patients currently (the median being 

40).  
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Figure 3.8: Age distribution amongst the patients (n = 111) 

 

Age, however, had no significant influence on warfarin dosage in these patients (based on 

the linear models summarised in table 3.16 section 3.2.2.4). This is possibly due to the 

narrow range in age amongst our patients. 

 

3.2.1.2 Concomitant Medication 

Some of the patients were taking other medications, in addition to warfarin. These and the 

numbers of patients taking these drugs are listed in table 3.10.  
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Table 3.10: List and frequencies of the concomitant medications taken by the patients 

Drug Used for: Interaction with Warfarin 
Number of 

Patients (n = 111) 
Ace Inhibitors Cardiac Unknown 2 (16) 14% 

Aldactone Diuretic Unknown 2 (8) 7% 

Amiloride Cardiac Unknown 2 (1) 1% 

Amitryptyline Anti-depressant Unknown 2 (1) 1% 

Aspirin Anticoagulation 
Depresses the concentration 
of prothrombin and plasma – 

increases bleeding time *2 
(40) 36% 

Beta Blockers Cardiac Unknown 3 (22) 20% 

Cordarone Cardiac 
Decreases warfarin 

metabolism 1 (7) 6% 

Digoxin Cardiac Unknown 2 (19) 17% 

Epanutin Anti-epileptic 
May increase anticoagulant 

effect of warfarin 4  
(1) 1% 

Isoptin Cardiac Unknown 2 (2) 2% 
Lasix Cardiac/Diuretic Unknown 2 (55) 50% 

Moduretics Diuretic Unknown 2 (12) 11% 

Nifedipine Cardiac 
May increase prothrombin 

time 2* 
(2) 2% 

Slow K 
Cardiac 

(Replacement) 
Unknown 2 (50) 45% 

Tegretol Anti-epileptic 
Increases warfarin 

metabolism 1 
(1) 1% 

References: 1 Horton and Bushwick, 1999; 2 RX drug list: The internet drug index; 3 Heart Health; 4 

NetDoctor 
The box plots for the 1st eight medications may be seen in figure 3.10 
* Increases bleeding time and therefore assume lower doses of warfarin would be required 

 

Amiloride, Amityptyline, Cordarone, Epanutin, Isoptin, Tegretol and Nifedipine were used 

by ≤ 6% of the patients and thus were excluded from further analysis.  

 

3.2.1.2.1 Box Plots 

Box plots were created to depict graphically the difference in warfarin dosage between 

patients who were taking a specific drug and those that were not. The box plots for the 

eight concomitant medications highlighted in table 3.10 may be seen in figure 3.9. On the 

X axis of each plot the box labelled “no” indicates that the patients in the box were not 
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taking the particular drug. The box labelled “yes” indicates that the patients in the box 

were taking the particular drug. The Y axis measures warfarin dosage in mg/week. In each 

box the confidence intervals are the arches in the centre of the box. The dark lines in the 

centre of the confidence intervals represent the median of the sample. The boxes around 

the confidence intervals are representative of the interquartile range of the samples. In each 

plot the horizontal lines extended from the plots with dotted lines represent the maximum 

and minimum values in the sample range. Any lines shown after the horizontal maximum 

or minimum lines represent outliers in the sample. In each plot, if the two confidence 

intervals overlap, this indicates that the particular drug of interest has no significant 

influence on warfarin dosage. Conversely, if the two confidence intervals do not overlap 

then the drug of interest does influence warfarin dosage.  
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On X-axis Yes = drug taken, No = drug not taken. Interquartile range = box; Confidence interval = arch in 
centre of box; Line in middle of the box = median of the sample. If the two confidence intervals overlap = no 
significant difference. If the two confidence intervals do not overlap = significant difference 

 

Figure 3.9: Box plots depicting the relationship between the concomitant drugs and 

warfarin dosage 
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3.2.1.2.2 Wilcoxon Test 

This test (described in section 2.2.7.2.1), was used to determine whether there were 

significant differences in warfarin maintenance dosage, between patients that were taking a 

particular concomitant drug to those that were not. Based on this test, beta blockers were 

the only drugs that significantly impacted warfarin maintenance dosage in the patients. The 

p-values of the different drugs according to the Wilcoxon test are listed in table 5.13 in 

Appendix K. 

 

Based on the results from the Wilcoxon test and the box plots (summarised in table 3.11) I 

included aspirin, beta blockers, lasix and slow K in the linear models (shown in section 

3.2.2.4). The linear models determine the influence of the particular variants on warfarin 

dosage, adjusting for the influence of these drugs and age. 

 

Table 3.11: Summary of the results of the Wilcoxon test and box plots depicting the 

relationship between the concomitant drugs and warfarin dosage 

Concomitant Drug Wilcoxon Test Box Plots 
Ace Inhibitors Insignificant Insignificant 

Aldactone Insignificant Insignificant 

Aspirin Insignificant 
Slight increase in warfarin 

dosage 

Beta Blockers Significant 
Significant decrease in warfarin 

dosage 
Digoxin Insignificant Insignificant 

Lasix Insignificant 
Slight decrease in warfarin 

dosage 
Moduretics Insignificant Insignificant 

Slow K Insignificant 
Slight decrease in warfarin 

dosage 
The drugs that are highlighted in the table were those used for the linear models (section 3.2.2.4) 
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3.2.2 CYP2C9 and VKORC1 variants 

This section aims to determine the influence of the 14 variants on warfarin dosage. Table 

3.12 lists the types of analyses that were used to determine the influence of these variants 

on warfarin dosage. 

 

Table 3.12: List of analyses used to determine the influence of the 14 CYP2C9 and 

VKORC1 variants on warfarin dosage 

Analysis Based on Section 
Kruskal-Wallis  

test 
Genotype frequencies 3.2.2.1 

Box plots Genotype frequencies 3.2.2.2 
Bar Graphs Allele frequencies 3.2.2.3 

Linear models 
Genotype frequencies, adjusting for the influence 

of age, lasix, slow K, beta blockers and 
aspirin 

3.2.2.4 

Haplo.stats Allele combinations 3.2.2.5 
 

Of the three previously described CYP2C9 variants that were observed in the patient and 

control samples, variant 1 (CYP2C9*8) decreases warfarin dosage in vivo but increases 

warfarin dosage in vitro (CYP2C9 Allele Nomenclature Database). Variant 2’s 

(CYP2C9*9) influence on warfarin dosage is unknown, and variant 3 (CYP2C9*11) 

decreases warfarin dosage (CYP2C9 Allele Nomenclature Database).  

 

3.2.2.1 Kruskal-Wallis Test 

This test (described in section 2.2.7.2.2), was used to compare the median maintenance 

dosage between the three genotypes of the 14 CYP2C9 and VKORC1 variants. Only 

variants1  (CYP2C9*8) and 8 (CYP2C9 46028 A>G) significantly influence warfarin 

dosage. The chi-squared values, degrees of freedom and p-values for all 14 variants are 

shown in 5.14 in Appendix K. 
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3.2.2.2 Box Plots 

Table 3.13 gives a list of the different genotypes for each of the 14 CYP2C9 and VKORC1 

variants. Box plots were created for each of the 14 variants (shown in figures 3.10 and 

3.11). Each plot shows the relationship between warfarin dosage and the three different 

genotypes of a particular variant. Some of these plots only have two genotypes due to the 

lack of patients with the homozygous variant genotype.  

 

Table 3.13: List of the three possible genotypes for the 14 CYP2C9 and VKORC1 

variants 

Variant Homozygous 
Normal 

Heterozygous Homozygous 
Variant 

1 G/G G/A A/A 
2 A/A A/G G/G 
3 C/C C/T T/T 
4 T/T T/C C/C 
5 T/T T/C C/C 
6 T/T T/A A/A 
7 G/G G/C C/C 
8 A/A A/G G/G 
9 C/C C/T T/T 
10 T/T T/C C/C 
11 C/C C/T T/T 
12 C/C C/T T/T 
13 C/C C/T T/T 
14 G/G G/A A/A 

 
 



64 

 

A/A G/A G/G

20
40

60
80

SNP1

W
ar

fa
rin

 d
os

ag
e

A/A A/G G/G

20
40

60
80

SNP2

W
ar

fa
rin

 d
os

ag
e

C/C C/T

20
40

60
80

SNP3

W
ar

fa
rin

 d
os

ag
e

C/C T/C T/T

20
40

60
80

SNP4

W
ar

fa
rin

 d
os

ag
e

C/C T/C T/T

20
40

60
80

SNP5

W
ar

fa
rin

 d
os

ag
e

A/A T/A T/T

20
40

60
80

10
0

SNP6

W
ar

fa
rin

 d
os

ag
e

C/C G/C G/G

20
40

60
80

10
0

SNP7
W

ar
fa

rin
 d

os
ag

e

A/A A/G G/G

20
40

60
80

SNP8

W
ar

fa
rin

 d
os

ag
e

 
Interquartile range = box. Confidence interval = arch in centre of box. Line in middle of the box = median of 
the sample. If the two confidence intervals overlap = no significant difference. If the two confidence intervals 
do not overlap = significant difference 
 
Figure 3.10: Box plots representing the influence of variants1  – 8 on warfarin dosage 
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Interquartile range = box; Confidence interval = arch in centre of box. Line in middle of the box = median of 
the sample. If the two confidence intervals overlap = no significant difference. If the two confidence intervals 
do not overlap = significant difference 
 

Figure 3.11: Box plots representing the influence of variants 9 – 14 on warfarin 

dosage 
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Table 3.14 describes the impact of the two variant genotypes (heterozygotes and 

homozygotes for the variant) for each variant on warfarin dosage based on their box plots 

(figures 3.10 and 3.11).  

 
Table 3.14: A description of the impact of the two variant genotypes for the 14 

CYP2C9 and VKORC1 variants on warfarin dosage, based on the box plots 

Variant  Heterozygous Homozygous Variant 
1 Decreased Insignificant 
2 Insignificant Increased 
3 Insignificant Unknown* 
4 Insignificant Unknown* 
5 Increased Insignificant 
6 Decreased Unknown* 
7 Insignificant Unknown* 
8 Decreased Decreased 
9 Insignificant Unknown* 
10 Decreased Unknown* 
11 Decreased Unknown* 
12 Decreased Increased 
13 Increased Increased 
14 Insignificant Insignificant 

*Unknown because I did not have any patients with the particular genotype or due to a standard 
error based on a small sample size. 
Significant results are highlighted in the table 

   
 
 
3.2.2.3 Bar Graphs 

Bar graphs were used to compare the allele frequencies of the 14 CYP2C9 and VKORC1 

variants between the different dosage groups (described in table 3.9, section 3.2). These 

may be seen in figures 3.12 – 3.15. Only the variant allele is represented in the graphs. The 

values in the brackets next to each variant name, represent the total number of variant 

alleles that were observed in the patient sample group (n = 110). The bars represent the 

percentage of the total number variant alleles that were observed in each dosage group. 
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The numbers in the brackets on the X-axis are total number of variants alleles observed in the patients. 
The bars = percentage of the total number of variant alleles observed in each dosage group. 
 
Figure 3.12: Representation of the distribution of the variant alleles for variants 1 – 4 

in each of the dosage groups 
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The numbers in the brackets on the X-axis are total number of variants alleles observed in the patients. 
The bars = percentage of the total number of variant alleles observed in each dosage group. 
 
Figure 3.13: Representation of the distribution of the variant alleles for variants 5 – 8 

in each of the dosage groups 
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The numbers in the brackets on the X-axis are total number of variants alleles observed in the patients.  
The bars = percentage of the total number of variant alleles observed in each dosage group. 
 
Figure 3.14: Representation of the distribution of the variant alleles for variants 9 – 

12 in each of the dosage groups 
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The numbers in the brackets on the X-axis are total number of variants alleles observed in the patients. 
The bars = percentage of the total number of variant alleles observed in each dosage group. 

 
Figure 3.15: Representation of the distribution of the variant alleles for variants 13 

and 14 in each of the dosage groups 



68 

 

Table 3.15 summarises the results shown in all of the variant allele distribution graphs for 

each of the 14 CYP2C9 and VKORC1 variants and their proposed effects on warfarin 

dosage, based on their allele frequencies. 

 

Table 3.15: Summary of the results shown in the allele frequency graphs for each of 

the 14 CYP2C9 and VKORC1 variants 

Variant Most Common In Impact 
1 Low Dose Decreases metabolism 
2 Average Dose Unknown 
3 Low Dose Decreases metabolism 
4 High Dose Possibly increases metabolism 
5 High Dose Possibly increases metabolism 
6 Low Dose Possibly decreases metabolism 
7 Low Dose Possibly decreases metabolism 
8 Low Dose Possibly decreases metabolism 
9 High Dose Possibly increases metabolism 
10 Low and Average Dose Unknown 
11 Low Dose Possibly decreases metabolism 
12 Average Dose Unknown 
13 High Dose Possibly results in warfarin resistance 
14 High Dose Possibly results in warfarin resistance 

Variants highlighted in lavender = may decrease warfarin dosage; Variants highlighted in yellow = 
may increase warfarin dosage; Variants that have not been highlighted may have no effect on 
warfarin dosage 

 

In table 3.15, the variants highlighted in lavender are those that are most common in the 

patients on a low dose of warfarin. These are either known to decrease warfarin 

metabolism (variants 1 and 3 (CYP2C9 Allele Nomenclature Database) or inferred to do so 

(because variants in the CYP2C9 gene alter metabolism (Allabi et al., 2004)). The variants 

highlighted in yellow (in table 3.15), are most common in the patients on a high dose of 

warfarin. Thus are inferred to increase metabolism (variants 4, 5 and 9 found in the 

CYP2C9 gene) or may result in warfarin resistance (variants 13 and 14 found in the 

VKORC1 gene). 
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3.2.2.4 Linear Models 

Linear models (described in section 2.2.7.2.2), were used to determine the level of impact 

the 14 variants have on warfarin dosage by adjusting for the four concomitant medications 

(identified in section 3.2.1) and age. Two linear models were created to determine the level 

of influence of the environmental factors: 1) Consisting of only the four concomitant drugs 

and 2) Consisting of the four concomitant drugs and age. To assess the influence of the 14 

CYP2C9 and VKORC1 variants on warfarin dosage, four types of models were created: 1) 

Involving separate models for each variant, including the environmental factors; 2) 

Consisting of all of the CYP2C9 variants together and the environmental factors; 3) 

Consisting of the two VKORC1 variants and the environmental factors and 4) Consisting of 

all 14 CYP2C9 and VKORC1 variants and the environmental factors.  

 

All of these models may be seen in tables 5.15 – 5.33, Appendix K. Table 3.16 gives a 

summary of these results. In the table the estimated standard of the intercept represents the 

dosage of warfarin in mg/week that a patient would have if they were not taking lasix, slow 

K, beta blockers and aspirin, if their age was 0 years and they had all the wild type alleles 

for all 14 CYP2C9 and VKORC1 variants. The estimated standard values for each of the 

other coefficients show the influence that particular coefficient has on warfarin dosage 

compared to the intercept dosage. All the negative values decrease the intercept warfarin 

dosage, while the positive values increase the intercept warfarin dosage. The percentage 

variability is an estimate of the percentage the coefficients contribute towards warfarin 

dosage variability in the patients. 
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Table 3.16: Summary of the linear model results for all 14 CYP2C9 and VKORC1 

variants and environmental factors 

Coefficients Estimated Standard 
(mg/week) P-Value % Variability 

Intercept 51.63 
1.03 x 

10-8  

Age -0.27 0.2535  
Lasix -3.20 0.5497 

Slow K 1.28 0.7483 
Beta blockers -8.03 0.0227 

Aspirin 3.70 0.1855 

9.7 

Concomitant Drugs and Age 10.6 
Variant 1 – N/V -8.08 0.0092 
Variant 1 – V/V -1.06 0.9100 

5.9 

Variant 2 – N/V 0.45 0.8750 
Variant 2 – V/V 18.40 0.0630 

3.1 

Variant 3 – N/V -5.62 0.2570 1.2 
Variant 4 – N/V 3.07 0.3220 
Variant 4 – V/V -4.27 0.7560 

1 

Variant 5 – N/V 3.74 0.2140 
Variant 5 – V/V -8.64 0.3870 

2.2 

Variant 6 – N/V -8.47 0.0084 
Variant 6 – V/V 13.43 0.1513 

8 

Variant 7 – N/V -4.40 0.1690 
Variant 7 – V/V 14.531 0.1300 

3.9 

Variant 8 – N/V -3.93 0.1610 
Variant 8 – V/V -8.79 0.0370 

4.5 

Variant 9 – N/V -0.17 0.9810 0.1 
Variant 10 – N/V 1.53 0.6920 0.2 
Variant 11 – N/V 1.72 0.6490 0.3 
Variant 12 – N/V -5.68 0.0820 
Variant 12 – V/V 4.22 0.5940 

3.1 

All CYP2C9 variants 23.3 
Variant 13 – N/V 7.09 0.0100 
Variant 13 – V/V 8.98 0.0750 

6.9 

Variant 14 – N/V 5.81 0.044 
Variant 14 – V/V 8.06 0.026 

5.3 

Both VKORC1 variants 7.4 
All 14 CYP2C9 and VKORC1 variants 34.7 

All 14 Variants and Environmental Factors 45.3 
In the estimated standard column: negative values = decrease in warfarin dosage in mg/week, positive 
values = increase in warfarin dosage in mg/week. % Variability = the percentage of warfarin dosage 
variability a particular coefficient(s) account for in the patient sample. 

 

From table 3.16 one can see that beta blockers and variants 1, 6 and 8 significantly 

decrease warfarin dosage by approximately eight mg/week. Variants 13 and 14 

significantly increase warfarin dosage by seven mg/week and approximately six mg/week, 
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respectively. All of the environmental factors and the 14 CYP2C9 and VKORC1 variants, 

together, account for 45.3% of warfarin dosage variability in this patient sample, with the 

variants alone accounting for 34.7% and the environmental factors 10.6% 

 

3.2.2.5 Haplo.stats Analysis 

Allele combinations were created using Haplo.stats (described in section 2.2.7.2.2). The 

haplo.stats programme indirectly measured all the possible allele combinations in the 

patient sample group. All of these results may be seen in tables 5.34 - 5.43 in Appendix K. 

Table 3.17 shows only the allele combinations that significantly influence warfarin dosage. 

In the column labelled variants present: only the specific variants that are found in that 

particular allele combination are shown, all of the other alleles are therefore wild type. As 

with the linear models, the negative and positive values in the estimated standard column 

result in a decrease or increase in warfarin dosage as compared to the intercept, 

respectively. 
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Table 3.17: List of the allele combinations that significantly influence warfarin dosage 

in the patients, based on the haplo.stats results 

Gene Variants 
used 

Allele  
combination  

number 

Variants  
present 

Allele 
combination  
Frequency 

P-value 
Estimated  
Standard  
(mg/week) 

1-12 6 3 0.02 0.000 - 1.98 
1-6 1 1 0.11 0.037 - 6.04 
3-8 3 8 0.16 0.026 - 5.89 
4-9 3 8 0.16 0.028 - 5.93 
5-10 4 8 0.16 0.012 - 6.15 
6-11 3 8 0.16 0.015 - 6.08 
7-12 3 8 0.07 0.051 - 6.21 

CYP2C9 

7-12 4 8, 12 0.10 0.032 - 6.34 
VKORC1 13-14 2 13, 14 0.26 0.032 4.62 

1-14 1 
1, 8, 12, 

14 
0.03 0.000 - 7.43 

1-14 2 1, 8, 12 0.03 0.000 3.08 
1-14 9 2 0.10 0.021 6.11 
1-14 3 6, 7, 8 0.04 0.000 6.76 
1-14 8 8 0.03 0.000 3.80 
1-14 7 13, 14 0.13 0.000 11.59 

CYP2C9  
and 

VKORC1 

1-14  Rare 0.28 0.001 6.66 
The allele combination number refers to the numbers shown in the haplo.stats results in tables 5:34-5.43 in 
appendix L. Variants present = only the variant alleles the rest are wild type. 
In the estimated standard column: negative value = decrease in warfarin dosage in mg/week; Positive value = 
increase in warfarin dosage in mg/week 
 

When I created allele combinations using only the CYP2C9 variants, variants 1, 3, 8 and 12 

were found to significantly decrease warfarin dosages. Variant 8 is the only variant present 

in a number of allele combinations and on average decreases warfarin dosage by 5.68 

mg/week in approximately 12% of the patients. Variants 13 and 14 (found within the 

VKORC1 gene) together increase warfarin dosage by approximately 8.11 mg/week. When 

I created allele combinations using both CYP2C9 and VKORC1 variants I note that most of 

the allele combinations result in an increase in warfarin dosage (with the exception of the 

first allele combination). 
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3.2.2.6 Summary of the influence of the 14 variants on warfarin dosage 

Table 3.18 summarises all of the results obtained through the various analyses that were 

used to assess the influence of the different CYP2C9 and VKORC1 variants on warfarin 

dosage.  

 

Table 3.18: Summary of the results of the different analyses used to determine the 

influence of the different CYP2C9 and VKORC1 variants on warfarin dosage 

Variant Kruskal- 
Wallis Test 

Box Plots Graphs Linear  
Models 

Haplo.stats 
 Analysis 

1 Significant N/V ↓ ↓ N/V ↓  ↓  

2 Insignificant V/V ↑ 
Average 

 dose 
Insignificant ↑  

3 Insignificant Unknown ↓ Insignificant ↓  

4 Insignificant Unknown ↑ Insignificant Insignificant 

5 Insignificant N/V ↑ ↑ Insignificant Insignificant 

6 Insignificant N/V ↓ ↓ N/V ↓  Significant 

7 Insignificant Unknown ↓ Insignificant Significant 

8 Significant 
N/V & V/V  

↓ 
↓ N/V ↓  ↓  

9 Insignificant Unknown ↑ Insignificant Insignificant 

10 Insignificant N/V ↓ 
Low & 
Average  

Dose 
Insignificant Insignificant 

11 Insignificant N/V ↓ ↓ Insignificant Insignificant 

12 Insignificant 
N/V ↓, V/V  

↑ 
Average 

 dose 
Insignificant Significant 

13 Insignificant 
N/V & V/V  

↑ 
↑ N/V ↑ ↑  

14 Insignificant Insignificant  ↑ 
N/V & V/V  

↑ ↑  

N/V = Heterozygotes, V/V = Homozygous for the variant. ↑ = Increased warfarin dosage; ↓ = 
Decreased warfarin dosage. Results highlighted in blue = decrease warfarin dosage; results highlighted 
in yellow = increase warfarin dosage; results highlighted in orange = significant results but the 
particular influence on warfarin dosage is either unknown or contradictory 

 

In table 3.18 the blocks that are highlighted in orange represent significant results but the 

particular influence on warfarin dosage is either unknown or contradictory. The blocks 

highlighted in blue represent all the results that significantly decreased warfarin dosage. 

The blocks highlighted in yellow represent all the results that significantly increased 
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warfarin dosage. The significance of these results and the likely overall influence these 

variants have on warfarin dosage is discussed in section 4.2. 

 

3.3 Pregnancy Outcome Analysis 

The aim of this analysis was to determine whether or not the different CYP2C9 and 

VKORC1 variants influenced pregnancy outcome in patients taking warfarin. These 

analyses are based on the 14 CYP2C9 and VKORC1 variants (described in table 3.8, 

section 3.1.2.1) and the patients (n = 108). Bar graphs were created to show the number of 

poor and normal pregnancy outcomes in the patients after their first three pregnancies on 

warfarin (thereafter the sample sizes got too small, see table 2.1 in section 2.1.1). These 

graphs may be seen in figure 3.16. In the figure: N/N represents two normal outcomes, N/P 

represents one normal and one poor outcome and P/P represents two poor outcomes. 
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In the second pregnancy:  N/N = two normal outcomes, N/P = one normal and one poor outcome, P/P = 
two poor outcomes. The number of pregnancy outcomes after the 3rd pregnancy was very small so I 
grouped the patients that had 1 ≥ poor outcomes (three good outcomes and (2 good outcomes and one 
poor outcome)) and the patients that had 2 ≤ poor outcomes ((two poor outcomes and one good outcome) 
and three poor outcomes)). 

 
Figure 3.16: Illustration of the number of poor and normal pregnancy outcomes after 

the patients’ 1st three pregnancies on warfarin 

 

Figure 3.16 illustrates that there are more poor pregnancy outcomes than normal pregnancy 

outcomes after each pregnancy on warfarin. Environmental and genetic factors can 

influence pregnancy outcome. The only environmental factors that I was able to account 

for in this analysis were the age of the mother, whether or not they were on warfarin during 

pregnancy and whether or not they had changed to heparin for part of their pregnancy.  
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3.3.1 Environmental Factors 

3.3.1.1 Age 

Advanced maternal age is associated with an increased risk of having a child with an 

abnormality. These patients are similar as I observed an increase in poor pregnancy 

outcome with an increase in maternal age, despite the narrow range in age. Figure 3.17 

shows the relationship between maternal age and pregnancy outcomes after the patients 1st 

pregnancy. 
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 Interquartile range = box. Line in middle of the box = median of the sample. 

On the X-axis poor = poor pregnancy outcome, normal = normal pregnancy outcome 
 

Figure 3.17: Illustration of the effect of maternal age on pregnancy outcome 

 

I used the generalised linear models and interaction models (described in sections 3.3.2.2 

and 3.3.2.3) to assess the influence of age, number of pregnancies, heparin and warfarin on 

pregnancy outcome; and the influence of the 14 CYP2C9 and VKORC1 variants on 

pregnancy outcome accounting for the effects of age, number of pregnancies, heparin and 

warfarin. According to these models age significantly increased the risk of a poor 

pregnancy outcome. 
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3.3.1.2 Heparin 

According to the generalised linear models and interaction models (described in sections 

3.3.2.2 and 3.3.2.3), heparin significantly decreased the patients’ risk of having a poor 

pregnancy outcome in the patient sample.  

 

3.3.1.3 Warfarin 

Warfarin taken during pregnancy significantly increased the patients’ risk of having a poor 

pregnancy outcome. This can be seen in the generalised linear and interaction models 

(described in sections 3.3.2.2 and 3.3.2.3). Bar graphs were created to show the 

relationship between warfarin dosage and pregnancy outcome after the patients’ 1st three 

pregnancies, using the three dosage groups (described in table 3.9, section 3.2). These are 

shown in figures 3.18 – 3.20. Our results are based on current warfarin dosage and not 

dosage during pregnancy. Warfarin dosage is usually increased during pregnancy; 

however, I expect that this increase is proportional to the patients’ current warfarin dosage. 

Thus these results should reflect the situation during pregnancy.  
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Figure 3.18: Influence of warfarin dosage on pregnancy outcome after one pregnancy 
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 N/N =two normal outcomes, N/P = one normal and one poor outcome, P/P =two poor outcomes 

 
Figure 3.19: Influence of warfarin dosage on pregnancy outcome after two 

pregnancies 



79 

 

0

10

20

30

40

50

60

Low (n=15) Average (n=58) High (n=37)

Dosage (mg/week)

P
er

ce
nt

ag
e

1 or no poor

2 or more poor

 
Based on the sample size I grouped the pregnancy outcomes for patients that had one or no 
pregnancy outcomes (i.e. N/N/N and N/N/P) and patients that had two or more poor pregnancy 
outcomes (i.e. N/P/P and P/P/P) 

 
Figure 3.20: Influence of warfarin dosage on pregnancy outcome after three 

pregnancies 

 

All three of the figures showing the influence of warfarin dosage on pregnancy outcome 

(figures 3.18-3.20) show that there is an increase in poor pregnancy outcome with an 

increase in warfarin dosage.  

 

3.3.2 CYP2C9 and VKORC1 variants 

No statistical software is yet available to input different results (pregnancies) for a single 

factor (patient). Thus all of the analyses used to determine the influence of the 14 CYP2C9 

and VKORC1 variants on pregnancy outcome are based on the pregnancy outcomes after 

the patients’ 1st pregnancies. Table 3.19 summarises the different analyses used. 
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Table 3.19: Summary of all of the analyses used to determine the influence of the 14 

CYP2C9 and VKORC1 variants on pregnancy outcome 

Description Based on Section 
Bar Graphs Genotypes 3.3.2.1 

Generalised Linear Models Genotypes 3.3.2.2 
Interaction Models Alleles 3.3.2.3 

Haplo.stats Analysis Allele 
combinations 

3.3.2.4 

 

 

3.3.2.1 Bar Graphs 

Bar graphs were created to show the frequency of poor and normal pregnancy outcomes 

for each of the 14 variants for each genotype (shown in figures 5.1 and 5.2 in Appendix L). 

Most of the results for these graphs were insignificant. Individuals with variants 9, 10, 11 

and 13, however, had more normal pregnancy outcomes than poor. The lack of statistical 

significance of these results may be attributed to the fact that small numbers of patients 

that were heterozygous or homozygous for the variant allele were analysed. In addition 

these graphs determine the influence of these variants on pregnancy outcome independent 

of warfarin taken during pregnancy and it would seem unlikely that they influence 

pregnancy outcome outside of their effect on warfarin dosage.  

 

3.3.2.2 Generalised Linear Models 

Generalised linear models (described in section 2.2.7.3.2) were used to determine the 

effects of the 14 CYP2C9 and VKORC1 variants on pregnancy outcome, accounting for the 

effects of age, number of pregnancies, warfarin and heparin treatment. These models may 

be seen in tables 5.44 - 5.59 in Appendix L. Table 3.20 summarises these results. In the 

table the variants highlighted in yellow appear to increase the risk of a poor pregnancy 
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outcome. The variants highlighted in orange decrease the risk of a poor pregnancy 

outcome. 

 

Table 3.20: Summary of the effects of the 14 CYP2C9 and VKORC1 variants on 

pregnancy outcome according to the generalised linear models 

Variant  Influence on pregnancy outcome 

1 Insignificant 

2 Homozygotes increase risk of a poor pregnancy outcome 

3 Insignificant 

4 Insignificant 

5 Insignificant 

6 Insignificant 

7 Insignificant 

8 Insignificant 

9 Insignificant 

10 Insignificant 

11 Insignificant 

12 Insignificant 

13 
Heterozygotes and homozygotes decrease risk of having a poor 

pregnancy outcome 

14 Insignificant 
The variants that are highlighted in the table significantly influence pregnancy outcome. Variant 2 highlighted in 
yellow = increases the risk of poor pregnancy outcome, Variant 13, highlighted in orange = decreases the risk of a 
poor pregnancy outcome 

 

3.3.2.3 Interaction Models 

These models (described in section 2.2.7.3.2), show the effect of the different variants on 

pregnancy outcome when they interact with warfarin. I was unable to get results for 

variants 6, 9, 10, 11 and 13, as R was unable to produce models for these variants, the 

reasons for which are unknown. The models for the other variants may be seen in tables 

5.60 - 5.68 in Appendix L. Table 3.21 summarises these results. In the table the variants 

highlighted in yellow appear to increase the risk of a poor pregnancy outcome. The 

variants highlighted in orange decrease the risk of a poor pregnancy outcome. 
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Table 3.21: Summary of the effects of the 14 CYP2C9 and VKORC1 variants on 

pregnancy outcome according to the interaction models 

Variant  Influence on pregnancy outcome 
independent of warfarin 

Influence on pregnancy outcome 
when interacting with 

warfarin 
1 Insignificant Insignificant 

2 
Increased risk of a poor pregnancy 

outcome 
Insignificant 

3 
Increased risk of a poor pregnancy 

outcome 
Decreased risk of a poor 

pregnancy outcome 

4 Insignificant Insignificant 

5 Insignificant Insignificant 

6 Unknown Unknown 

7 Insignificant Insignificant 

8 Insignificant Insignificant 

9 Unknown Unknown 

10 Unknown Unknown 

11 Unknown Unknown 

12 Insignificant Insignificant 

13 Unknown Unknown 

14 
Decreased risk of a poor pregnancy 

outcome 
Insignificant 

Variants highlighted in yellow = significantly increase the risk of a poor pregnancy outcome. Variants 
highlighted in orange = significantly decrease the risk of a poor pregnancy outcome. 

 

3.3.2.4  Haplo.stats Analysis 

Haplo.stats analyses (described in section 2.2.7.3.2), were carried out to determine if there 

were any allele combinations that influenced pregnancy outcome in the patients on and off 

warfarin during pregnancy. Table 3.22 summarises the number of first pregnancies and 

their outcomes used in these analyses.  

 

Table 3.22: Summary of the number of 1st pregnancies used for the haplo.stats 

analyses 

Pregnancies Normal Outcomes Poor Outcomes Total 
On warfarin 30 38 68 
Off warfarin 37 4 41 

 



83 

 

All the haplo.stats results may be seen in tables 5.69 – 5.88 in Appendix L. 

OnlyoneVKORC1 allele combination (in which variant 14 is present) significantly 

increased the risk of having a poor pregnancy outcome in the patients that were not on 

warfarin during pregnancy. This result may be an artefact due to the small number of 

pregnancies off warfarin and the uneven distribution of normal and poor outcomes.  

 

3.3.2.5 Summary of the influence of the 14 variants on pregnancy outcome 

Table 3.23 summarises all of the results obtained through the various analyses that were 

used to determine the influence of the different CYP2C9 and VKORC1 variants on 

pregnancy outcome. In the table the variants highlighted in yellow appear to increase the 

risk of a poor pregnancy outcome. The variants highlighted in orange decrease the risk of a 

poor pregnancy outcome.  
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Table 3.23: Summary of the influence of the 14 CYP2C9 and VKORC1 variants on 

pregnancy outcome 

Variant  Bar Graphs 
Generalised  

Linear  
Models 

Interaction  
Models 

Haplo.stats  
Analysis 

1 Insignificant Insignificant Insignificant Insignificant 

2 Insignificant 
V/V ↑ risk of  

poor  
outcome 

Insignificant Insignificant 

3 Insignificant Insignificant 
↓ risk of  

poor  
outcome 

Insignificant 

4 Insignificant Insignificant Insignificant Insignificant 
5 Insignificant Insignificant Insignificant Insignificant 
6 Insignificant Insignificant Insignificant Insignificant 
7 Insignificant Insignificant Insignificant Insignificant 
8 Insignificant Insignificant Insignificant Insignificant 

9 

More normal  
pregnancy  

outcomes than  
poor 

Insignificant Insignificant Insignificant 

10 

More normal  
pregnancy  

outcomes than  
poor 

Insignificant Insignificant Insignificant 

11 

More normal  
pregnancy  

outcomes than  
poor 

Insignificant Insignificant Insignificant 

12 Insignificant Insignificant Insignificant Insignificant 

13 

More normal  
pregnancy  

outcomes than  
poor 

N/V & V/V   
↓ risk of  

poor  
outcome 

Insignificant Insignificant 

14 Insignificant Insignificant Insignificant Insignificant 
Results highlighted in orange = significantly decrease the risk of a poor pregnancy outcome. Results 
highlighted in yellow = significantly increase the risk of a poor pregnancy outcome. 

 

Most of the results of the different analyses used (shown in table 3.23) were statistically 

insignificant. This could be as a result of the small number of patients with a particular 

variant genotype. All the pregnancy analysis results are discussed in section 4.3.  
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4 DISCUSSION 

 

This chapter summarises and discusses the results presented in section 3. Section 4.1 

discusses the known and novel CYP2C9 and VKORC1 variants I observed in the patient 

and control samples. Section 4.2 discusses the implications of these variants and a small 

subset of environmental factors for warfarin dosage; and the importance of these variants 

with respect to pharmacogenetic testing (for warfarin administration). Section 4.3 discusses 

the implications of these variants and a small subset of environmental factors with respect 

to pregnancy outcome when warfarin is taken during pregnancy; and the importance of 

these in genetic counselling (concerned with the risks involved in taking warfarin during 

pregnancy). Section 4.4 discusses the limitations of this and similar projects. 

 

4.1 Variant Analysis 

Section 4.1.1 deals with the CYP2C9 variants. Section 4.1.2 deals with the VKORC1 

variants. Section 4.1.3 discusses the differences in genetic variation between populations of 

African origin. Section 4.1.4 discusses future studies that may be implemented based on 

the observed CYP2C9 and VKORC1 variants in the SA black population. 

  

4.1.1 CYP2C9 Variants 

4.1.1.1 Previously Described Variants 

Of the 30 described CYP2C9 variants (listed in table 1.2 in section 1.3) six are reported to 

be common in populations of African origin (African-American, African Pygmies or 

Beninese) (Dickmann et al., 2001; Allabi et al., 2003; Blaisdell et al., 2004). Of these six 
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variants, five were observed in the SA population. Of the remaining 24 variants (found in 

populations of non-African origin, listed in table 1.2 in section 1.3), one was observed in 

the SA population. Table 4.1 gives a list of the observed CYP2C9 variants in the SA 

population and a comparison of the allele frequencies at which they have been previously 

reported to those observed in the SA black population in the current study.  

 

Table 4.1: List and allele frequencies of the previously described CYP2C9 variants 

that were observed in the SA population  

Variant Previously Reported 
Population 

Reported  
Allele  

Frequency 

Observed Allele 
Frequency)*  

CYP2C9*3 
(n) 

frequency 

Caucasian 
Asian/African-American 

0.2-0.3 
0.05 4 

(2/426) 
0.005 

CYP2C9*5 
(n) 

frequency 
African – American 

(5/240) 
0.02 1 

(2/426) 
0.005 

CYP2C9*6 
(n) 

frequency 
African – American 

(10/158) 
0.06 2 

(1/426) 
0.002 

CYP2C9*7 
(n) 

frequency 

African – American and 
African Pygmies 

(1/48) 
0.02 3 

(0/426) 
0 

CYP2C9*8 
(n) 

frequency 

African – American and 
African Pygmies 

(2/44) 
0.05 3 

(46/426) 
0.11 

CYP2C9*9 
(n) 

frequency 

African – American and 
African Pygmies 

(8/48) 
0.16 3 

(66/426) 
0.15 

CYP2C9*11 
(n) 

frequency 

African – American and 
African Pygmies 

(1/48) 
0.02 3 

(17/426) 
0.04 

 * Frequency of the combined patients and controls in this study. 
References: 1 Dickmann et al., 2001, 2; Allabi et al., 2003; 3 Blaisdell et al., 2004, 4 Kimball Genetics 
Website  
 

Variants CYP2C9*5, CYP2C9*6 and CYP2C9*7 were observed, in the SA black 

population, at lower frequencies than those reported in other populations of African origin. 

Variants CYP2C9*8 and CYP2C9*11 were observed, in the SA population, at frequencies 

twice as high as those reported in African-American and African Pygmies, suggesting that 
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this variant is of African origin. The exact region of origin, however, is unknown. Variant 

CYP2C9*9 is the only variant that was observed at a similar frequency to those previously 

reported. The allele frequencies that have been previously reported were observed in small 

sample sizes and may therefore not be representative.  

 

4.1.1.2  Novel Variants 

Twenty-seven new CYP2C9 variants were identified within the patient and control sample 

groups. Table 4.2 lists these variants and how they affect mephenytoin 4-hydroxylase (the 

drug metabolising enzyme encoded by CYP2C9).  
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Table 4.2: List of the 27 novel CYP2C9 variants and their affect on mephenytoin 4-

hydroxylase 

Single Nucleotide Polymorphism (SNP) Expected Amino Acid  
Change 

Other sequence  
changes 

12803 A>G I42V Missense 
12930 T>C (4) - Possible Splice Site 

15906 A>G I74V Missense 
15913 T>A V76Q Missense 
16060 T>C - Unknown 

16090 T>C (5) - Possible Splice Site 
16094 T>C - Possible Splice Site 

16179 T>A (6) - Unknown 
16247 G>T T130T Silent 

21711 G>C (7) - Possible Splice Site 
21748 G>A - Unknown 

46028 A>G (8) - Possible Splice Site 
46092 C>T (9) - Possible Splice Site 

55198 T>C I327T Missense 
60175 A>G - Possible Splice Site 
60225 T>A - Unknown 

60272 T>C (10) - Unknown 
60318 C>T - Unknown 
60328 A>G - Unknown 

62875 C>T (11) A441A Silent 
62941 C>T D463D Silent 
62977 A>T G465G Silent 
63092 C>T - Unknown 

63113 C>T (12) - Unknown 
63143 C>G - Possible Splice Site 
63169 G>A - Unknown 
63180 C>T - Possible Splice Site 

The variants that are highlighted are those observed at a frequency of ≥ 0.02, thus useful for further 
analysis. SNP = single nucleotide change in the DNA strand. The numbers in the brackets behind each of 
the highlighted variants are the identity numbers that were used for each analysis (as seen in table 3.8 in 
section 3.1.2.1). 

 

In table 4.2 the novel variants that have been highlighted were those observed at a 

frequency of 0.02 or above, and were used for further analysis together with five of the 

previously described variants (3 CYP2C9 and two VKORC1) (described in sections 3.1, 3.2 

and 3.3). 

 

Isoleucine (I) and Valine (V) are both part of the aliphatic amino acid group, with non-

polar side chains, (Mathews et al., 2000). Glutamine (Q) is an acidic amino acid with an 
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uncharged polar side chain (Mathews et al., 2000). Threonine (T) also has an uncharged 

polar side chain with a hydroxyl group present (Mathews et al., 2000). Thus, it would be 

expected that V76Q (15913 T>A) and I327T (55198 T>C) mutations to alter the CYP2C9 

protein structure more significantly than the I42V (12803 A>G) and I74V (15906 A>G) 

substitutions. This hypothesis could not be confirmed because the numbers of patient and 

control samples with these variant alleles were too small (i.e. observed at an allele 

frequency of ≤ 0.02) thus these variants were not used for further analyses.  

 

Five of the nine possible splice site mutations were used for the variant, warfarin dosage 

and pregnancy outcome analyses. Although I was able to assess their influence on warfarin 

dosage (discussed in section 4.2.2), more studies would need to be carried out on all the 

possible splice site mutations to assess whether they do alter the splicing of the gene. 

Similarly functional analyses could be carried out on all 27 novel variants to determine 

their effect on the structure and function of this drug metabolising enzyme. 

 

4.1.2 VKORC1 Variants 

Of the 11 previously described VKORC1 variants I screened, I observed three in the patient 

and control samples. These three variants were previously identified in Caucasian 

populations from the United Kingdom (V66M) and Italy (L120L and 3730 G>A), but have 

not been described in populations of African origin. Table 4.3 compares the allele 

frequencies at which these variants were reported to those observed in the SA black 

population.  
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Table 4.3: List of three observed VKORC1 variants and their allele frequencies as 

reported and observed in the patient and control samples 

Variant Reported Allele 
Frequency 

Observed Allele Frequency in the 
patient and control samples 

V66M 
(n) 

frequency 

(1/1640)  
0.0007 2 

(2/256)  
0.007 

L120L 
(n) 

frequency 

(2/294)  
0.007 1 

(97/424)  
0.23 

3730 G>A 
(n) 

frequency 

(102/294) 
 0.35 1 

(184/426)  
0.43 

References: 1 D’Andrea et al., 2005 (Caucasian – Italian), 2 Harrington et al., 2005 (Caucasian – UK) 
 

The L120L VKORC1 variant was observed at a statistically significantly higher allele 

frequency in the SA black population than the Caucasian population (shown in table 4.3). 

The other two VKORC1 variants (V66M and 3730 G>A) were also at a higher allele 

frequency in the SA black population than those reported in the Caucasian populations 

(shown in table 4.3), however this is not statistically significant.  

 

4.1.3 Genetic variation amongst populations of African origin 

Early studies in genetic diversity showed that most genetic diversity was found between 

individuals rather than between populations or continents (Reviewed in: Serre and Paabo, 

2004). Recent studies suggest that human genetic diversity is organised in continental 

clades (Reviewed in: Serre and Paabo, 2004). It is well known that human genetic diversity 

for many traits is higher in sub-Saharan Africa than in other geographic regions (Releford, 

2001; reviewed in: Tishkoff et al., 2004). This diversity is of major medical relevance as 

individuals from different origins respond differently to medical treatments (Reviewed in: 

Serre and Paabo, 2004; reviewed in: Tishkoff et al., 2004; Bamshad, 2005).  
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Some of the CYP2C9 and VKORC1 variants I observed in the SA black population have 

been previously described in Caucasian, Asian, African-American and African Pygmy 

populations. African-American populations have been reported to possess 20% European 

heritage (The African American MS Genetics Project). African Pygmies are populations 

that originate in central Africa (Encyclopaedia Britannica: Pygmy). I expected to find 

similar variation in the SA black population and the African-American and African Pygmy 

populations rather than between the SA black population and Caucasian and Asian 

populations. Within the CYP2C9 gene, only two of the six previously described variants 

showed statistically significant differences between the African-American/African-Pygmy 

populations and the SA black population. In addition I observed 27 novel variants within 

this gene amongst the SA black population. 

 

None of the VKORC1 variants I observed in the SA black population have been previously 

described in a population of African origin. No novel variants were observed within this 

gene amongst the SA black population. The human VKORC1 gene has high homology with 

38 other species (Ensembl). Thus this homology and the lack of genetic diversity seen 

within this gene amongst the SA population suggest that this gene has been highly 

conserved. This conservation may explain the significant influence variants within this 

gene have on warfarin dosage. 

 

4.1.4 Future Studies involving the observed CYP2C9 and VKORC1 variants  

The genetic variation shown within the SA black population compared to other populations 

highlights the importance of studying this population and designing tests specific to this 

population. Only nine of the 27 novel CYP2C9 variants (highlighted in table 4.2 in section 

4.1.1.2) were observed at a frequency of 0.02 or above and could be used for further 
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analyses. Although tests are based on the most frequently observed variants within 

populations, it would be important to understand the function of the other variants as they 

may affect dosage. Thus, further studies would need to be carried out on the other 18 

variants to assess their influence on warfarin dosage and pregnancy outcome. A test aimed 

at rapidly detecting these novel variants would need to be designed. I could then screen a 

larger number of patients for these variants. I would then be able to correlate these variants 

to warfarin dosage and pregnancy outcome. Other studies aimed at determining the 

frequency of these novel and previously described CYP2C9 and VKORC1 variants in other 

SA populations such as Caucasian, Indian and mixed ancestry could be carried out. 

Pharmacogenetic testing altered for screening South African populations and genetic 

counselling for pregnant mothers on warfarin will be discussed in sections 4.2.3 and 4.3.3, 

respectively.  

 

4.2 Warfarin Dosage Variability Analysis 

This section is divided into three sections. Section 4.2.1 discusses the influence of the 

environmental factors (age and concomitant medication) on warfarin dosage. Section 4.2.2 

discusses the influence of the 14 CYP2C9 and VKORC1 variants on warfarin dosage. 

Section 4.2.3 discusses the implications of using these environmental factors and the 14 

CYP2C9 and VKORC1 variants for pre-administration pharmacogenetic testing of SA 

black patients for warfarin administration. 

 



93 

 

4.2.1 Influence of the environmental factors on warfarin dosage 

4.2.1.1 Age 

Age has an inverse relationship with warfarin dosage (older patients require lower doses of 

warfarin to maintain adequate anticoagulation) (Horton and Bushwick, 1999). The 

patients’ ages in this study ranged from 27-50 with the median being 40. Although age 

showed a decrease in warfarin dosage compared to the intercept’s estimated standard in the 

linear models (summarised in table 3.13 in section 3.2.2.4) it was insignificant. This 

insignificance may be attributed to the narrow range in age amongst the patients. Thus the 

influence age has on warfarin dosage may only be seen at extreme differences in age. 

 

4.2.1.2 Concomitant Medication 

Of the 15 concomitant medications identified in the patients (listed in table 3.9 in section 

3.2.1.2) seven were excluded from further analysis because the numbers of patients taking 

those medications were too small. The influence of the eight remaining medications on 

warfarin dosage was assessed using box plots and a Wilcoxon test. Based on these results 

four medications (lasix, slow K, beta blockers and aspirin) were selected for further 

analysis using the linear models. The influence of these four medications on warfarin 

dosage in the patients are summarised in table 4.4. 
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Table 4.4: Summary of the influence of the lasix, slow K, beta blockers and aspirin on 

warfarin dosage based on the box plots, Wilcoxon test and linear models 

Drug Box Plots Wilcoxon 
Test Linear Models 

Lasix 
Decreases warfarin  

dosage slightly 
Insignificant Insignificant 

Slow K 
Decreases warfarin  

dosage slightly 
Insignificant Insignificant 

Beta 
Blockers 

Decreases warfarin  
dosage 

Significant Decreases warfarin dosage 

Aspirin 
Increases warfarin 

dosage slightly 
Insignificant Insignificant 

The results that are highlighted in the table showed a significant influence on warfarin dosage 
 

 
According to the box plots (summarised in table 4.4) the patients taking lasix and slow K 

showed a slight decreased in warfarin dosage compared to the patients that were not taking 

these drugs. The influence of these drugs on warfarin, according to the Wilcoxon test and 

linear models were insignificant. Aspirin is used as an anticoagulant (amongst other 

things). Thus I would expect that patients taking aspirin and warfarin would require lower 

doses of warfarin to maintain adequate anticoagulation. In our study, however, the patients 

that were taking aspirin and warfarin had increased doses of warfarin compared to the 

patients that were not taking aspirin. These results, like that of lasix and slow K were only 

observed minimally in the box plots and were not repeated in the Wilcoxon test or linear 

models, and may not be significant.  

 

Beta blockers are the only concomitant medications that significantly decreased warfarin 

dosage in the patients in all of our analyses. This decrease, according to the linear models, 

can be from 6.59 mg/week to 11.74 mg/week, with an average of 8.00 mg/week. This 

finding has been previously unreported in drugs that interact with warfarin (RX Drug 

Index). Patients taking warfarin for a cardiac defect are likely to be taking beta blockers. 

Thus the knowledge that beta blockers influence warfarin dosage is important. These 
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results imply that one could reduce the risk of haemorrhagic complications in a patient 

taking warfarin and beta blockers by reducing their warfarin dosage by approximately 

8mg/week.  

 

4.2.2 Influence of 14 CYP2C9 and VKORC1 variants on warfarin dosage 

The influence that the 14 observed CYP2C9 and VKORC1 variants have on warfarin 

dosage was analysed in sections 3.2.2.1 – 3.2.2.5 (summarised in table 3.14 in section 

3.2.2.6). Only the variants that showed significance in two or more of the analyses 

presented in section 3.2.2 were considered to have a significant influence on warfarin 

dosage. Table 4.5 gives a summary of the hypothesised overall influence of the variants on 

warfarin dosage.  

 
Table 4.5: Summary of the hypothesised influence of the 14 CYP2C9 and VKORC1 

variants on warfarin dosage 

Variant ID  Variant Type of Mutation Influence 
1 CYP2C9*8 Missense Decreases dosage 
2 CYP2C9*9 Missense Increases dosage 
3 CYP2C9*11 Missense Decreases dosage 
4 12930 T>C Splice Site None observed 
5 16090 T>C Splice Site Increases dosage 
6 16179 T>A Unknown Decreases dosage 
7 21711 G>C Splice Site Decreases dosage 
8 46028 A>G Splice Site Decreases dosage 
9 46092 C>T Splice Site None observed 
10 60272 T>C Unknown None observed 
11 62875 C>T Silent Decreases dosage 
12 63113 C>T Unknown Contradictory 
13 VKORC1 L120L Silent Increases dosage 
14 VKORC1 3730 G>A 3’UTR SNP Increases dosage 

The variants highlighted in blue appear to decrease warfarin dosage. The variants highlighted in 
yellow appear to increase warfarin dosage. The variants that are not highlighted may have no 
influence on warfarin dosage. 

 

In table 4.5, all of the variants that are highlighted in blue are known (in the case of 

CY92C9*11) or hypothesised to decrease warfarin dosage. The variants that are 
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highlighted in yellow are those that are hypothesised to increase warfarin dosage. The 

described CYP2C9*8 variant’s influence on warfarin dosage has been contradictory 

(decreased in vivo but increased in vitro (CYP2C9 Allele Nomenclature Database)), 

appears to decrease warfarin dosage in the patients, consistent with in vivo studies. The 

described CYP2C9*9 variant’s influence on warfarin dosage is unknown (CYP2C9 Allele 

Nomenclature Database), appears to increase warfarin dosage in the patients. The 

described CYP2C9*11 variant, which is known to decrease warfarin dosage (CYP2C9 

Allele Nomenclature Database), also decreases warfarin dosage in the patients, confirming 

the previously observed effect. 

 

Of the nine novel CYP2C9 variants I observed, four appear to decrease warfarin dosage, 1 

appears to increase warfarin dosage, while the remaining four appear to have no or a 

contradictory effect on warfarin dosage. Mutations within the CYP2C9 gene alter warfarin 

metabolism and result in patients requiring altered doses of warfarin to maintain adequate 

anticoagulation (Allabi et al., 2004). Thus the novel CYP2C9 variants that appear to alter 

warfarin dosage may do so as a result of an increase (variant 5) or decrease (variants 6, 7, 8 

and 11) in the metabolism of warfarin.  

 

The VKORC1 L120L variant (variant 13) has been described as having no influence on 

warfarin dosage (D’Andrea et al., 2005). In the patients, however, I observed an increase in 

warfarin dosage amongst patients with this variant. This result is very surprising 

considering that this variant is a synonymous mutation. Further studies concerning this 

variant would need to be carried out to determine how its presence results in an increase in 

warfarin dosage. The VKORC1 3730 G>A variant’s (variant 14) influence on warfarin 

dosage has been described as unknown (D’Andrea et al., 2005), however, it appears to 
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increase warfarin dosage in the patients I studied. Mutations within the VKORC1 gene 

mostly result in warfarin resistance (Rost et al., 2004) and this is supported by the evidence 

from these two variants which may also result in warfarin resistance.  

 

The linear models (described in section 3.2.2.4) and haplo.stats analysis (described in 

section 3.2.2.5) show that variants 1, 3, 6 and 8, on average, decrease warfarin dosages by 

seven, two, eight and seven mg/week, respectively. Variants 13 and 14 increase warfarin 

dosages on average by five mg/week. These results suggest that one would alter the dosage 

of warfarin for a patient who has one of these variant alleles accordingly. However, most 

of the patients have more than one variant allele. The most significant allele combinations 

that alter warfarin dosage are summarised in table 3.17 (section 3.2.2.5). The haplo.stats 

results suggest that some of the variants have larger effects on warfarin dosage than others 

and that the VKORC1 variants may over-ride the effects of the CYP2C9 variants. This 

hypothesis is supported by a recent study published in March 2008 by Schwarz et al., 

which showed that the initial variability in the INR response to warfarin was more strongly 

associated with genetic variability in VKORC1 than with CYP2C9. 

 

4.2.3 Pharmacogenomic testing in SA 

Pharmacogenomic testing involves the observation of many genes or gene patterns and 

environmental factors that influence the action of a particular drug (Kalow, 2005). These 

tests are based on genetic markers that are observed at high frequencies within a particular 

population and whose influence on the drug of interest is known (The Royal Society, 

2005). The genetic markers that are currently commonly used for pharmacogenomic 

testing of warfarin are CYP2C9*2, CYP2C9*3 and VKORC1 -1639 G>A (Hillman et al., 

2005; Kimball Genetics Website). The frequency of the VKORC1 -1639 G>A variant in 
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the SA black population is still unknown; however, neither of the CYP2C9 variants are 

common in the SA black population (described in section 3.1). All three of these variants 

decrease warfarin dosage (the VKORC1 variant is a promoter variant which switches off 

the gene thereby reducing warfarin dosage). Thus dosage is decreased according to the 

variants present in an individual. 

 

In my study I observed 27 novel CYP2C9 variants. Of the nine variants, observed at an 

allele frequency of 0.02 or above, five appear to influence warfarin dosage. Some of the 

remaining 18 variants may also influence warfarin dosage at a lower frequency in the SA 

black population, but remain to be assessed (discussed in section 4.1.3). Four of the five 

described CYP2C9 and VKORC1 variants (1, 2, 13 and 14) observed in the sample groups, 

were previously described as having no or a contradictory influence on warfarin dosage 

(CYP2C9 Allele Nomenclature Database; D’Andrea et al., 2005), but appear to influence 

warfarin dosage in the patients in this. These results imply that none of the tests currently 

available to predict the most effective dosage of warfarin for a particular patient, thus 

reducing the risk of adverse effects, would be useful in the SA black population because of 

the differences in variant frequencies and contradictory effects. Warfarin is still the most 

frequently prescribed drug for the treatment and prevention of thromboembolic events. 

Thus a pharmacogenetic test, specific for this population, would need to be developed and 

implemented to ensure the safe administration of the drug to the vast number of patients 

requiring its treatment.  

 

From this study I could develop a model aimed at screening patients for the common 

variants observed within the SA black population. This model could be used in a pilot 

study to determine the patients’ initial warfarin dosage more effectively. The rare variants, 



99 

 

observed in the SA black population that could not be assessed in this study because the 

numbers were too small, may have importance in warfarin dosage. Thus, functional 

analysis could be carried out on all of the novel variants to determine their effect on 

warfarin metabolism. The frequencies of the VKORC1 -1639 G>A promoter and 1173 C>T 

Intron 1 variants in the SA black population, not done in this study, would need to be 

determined. Based on these results the variants that appear to influence warfarin dosage 

could be included into the model used to determine warfarin dosage more effectively. 

 

A study carried out by Wadelius et al. (2007) showed that variants within CYP2C9, 

VKORC1, PROC, EPHX1, GGCX, ORM1 and ORM2 with age, bodyweight and drug 

interactions account for approximately 73% of warfarin dosage variability. A larger study 

is currently ongoing in the United Kingdom (described in section 1.5) to assess the 

influence of a clinical, pharmacological, biochemical and haematological environmental 

factors and the 30 genes said to be involved in the mode of action of warfarin, on warfarin 

dosage variability (Wadelius et al., 2007). This study may identify the most significant 

environmental and genetic factors that contribute to warfarin dosage variability. The 14 

CYP2C9 and VKORC1 variants and the small subset of environmental factors used to 

determine warfarin dosage variability in these patients only account for 45.3% of warfarin 

dosage variability. Thus I am currently unable to account for 54.7% of warfarin dosage 

variability in the SA black population. 

 

Based on the results of this study, I would need to customise this test to the SA black 

population with the local variants; otherwise it would not provide useful information. I 

could also screen other SA populations such as Caucasian, Indian and mixed ancestry for 

the same factors and customise the tests according to the common variants within each 
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population. Once I have identified the most significant environmental factors and genetic 

variants at high frequencies within each SA population I could design a rapid screening test 

for these specific factors. This screening test would need to be verified and could 

eventually be offered as a pre-administration pharmacogenomic test for warfarin within the 

SA populations. This test would determine the initial warfarin dosage of a patient more 

efficiently, thereby decreasing the number of adverse effects the patient has to warfarin and 

shortening the time required to stabilise dosage.  

 

4.3 Pregnancy Outcome Analysis 

This section discusses the influence of a small subset of environmental factors and the 14 

CYP2C9 and VKORC1 variants on pregnancy outcome in patients on warfarin during 

pregnancy. Section 4.3.1 discusses the influence of the environmental factors (age and 

concomitant medication) on pregnancy outcome. Section 4.3.2 discusses the influence of 

the 14 CYP2C9 and VKORC1 variants on pregnancy outcome. Section 4.2.3 discusses the 

implications of using these environmental factors and 14 CYP2C9 and VKORC1 variants 

as risk factors for poor pregnancy outcome in genetic counselling for pregnant mothers on 

warfarin. 

 

4.3.1 The influence of the environmental factors on pregnancy outcome 

4.3.1.1 Age and Heparin 

Advanced maternal age typically refers to pregnant woman who will be 35 years of age 

on the estimated date of confinement (Fretts, 2007). The effects of increasing age occur as 

a continuum rather than a threshold effect (Fretts, 2007). When comparing the pregnancy 

outcome after the patients’ first pregnancy with maternal age (shown in figure 3.16 in 
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section 3.3.1.1), I found that the women with more poor pregnancy outcomes had a median 

age of 29 and the women with more good pregnancy outcomes had a median age of 23.  

Heparin taken during pregnancy is not teratogenic (Ginsberg et al., 2001). Consistent with 

this I observed that heparin decreased the risk of having a poor pregnancy outcome in the 

patients in both the linear and interaction models (tables 5.44-5.68 in Appendix L 

summarised in sections 3.3.2.2 and 3.3.2.3). 

 

4.3.1.2 Warfarin  

Warfarin is known to be teratogenic, resulting in a specific constellation of malformations 

known as fetal warfarin syndrome (FWS) (Hall et al., 1980), abnormal live borns and fetal 

loss (Cotrufo et al., 2002). In all of the linear and interaction models (Tables 5.44 – 5.68 in 

Appendix L, described in sections 3.3.2.2 and 3.3.2.3) I found that warfarin taken during 

pregnancy increased the risk of having a poor pregnancy outcome in the patients. I 

assessed the influence of warfarin dosage on pregnancy outcome by comparing the 

frequency of normal and poor pregnancy outcomes amongst patients on low, average and 

high warfarin doses (shown in figures 3.17 – 3.19 in section 3.3.1.3). These graphs show 

that there is an increase in poor pregnancy outcome with an increase in warfarin dosage. 

Pregnancy outcome with respect to warfarin dosage has not been previously studied in this 

manner. 

 

A greater unbound fraction of warfarin has been found in the serum of pregnant women 

than non-pregnant women. It is this unbound fraction of warfarin that crosses the placenta 

and becomes teratogenic (Bajoria et al., 1996). The risk for pregnancy complications in 

patients treated with sodium warfarin is higher when the mean daily dose exceeds five mg 

(Cotrufo et al., 2002). I could hypothesise that patients on high doses of warfarin have a 
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greater fraction of unbound warfarin than those on low doses of warfarin. Thus more 

warfarin would cross the placenta and result in FWS. Warfarin dosage as a risk factor in 

poor pregnancy outcome in patients on warfarin will be discussed in section 4.3.3. 

 

4.3.2 The influence of the 14 CYP2C9 and VKORC1 on pregnancy outcome 

Table 3.23 (section 3.3.2.5) summarises the results of all of the analyses used to determine 

the influence of the 14 CYP2C9 and VKORC1 variants on pregnancy outcome in patients 

taking warfarin during pregnancy. Based on the warfarin dosage analysis I would expect 

that the variants that appear to increase warfarin dosage would increase the risk of having a 

poor pregnancy outcome. Table 4.6 summarises the influence of the 14 variants on 

warfarin dosage, what I expect and what I observed their influence on pregnancy outcome 

to be, based on their influence on warfarin dosage. In the table the blocks highlighted in 

orange are the variants that showed a decrease in warfarin dosage and decrease in the risk 

of having a poor pregnancy outcome. The blocks highlighted in yellow are the variants that 

showed an increase in warfarin dosage and an increase in the risk of having a poor 

pregnancy outcome. 

 



103 

 

Table 4.6: Summary of the influence of the 14 variants on warfarin dosage and their 

expected and observed influence on pregnancy outcome 

Variant  
Influence on 

warfarin 
dosage 

Expected risk of poor 
pregnancy outcome 

Observed risk of poor 
pregnancy outcome 

1 Decreases Decreased Insignificant 
2 Increases Increased Increased in one analysis 

3 Decreases Decreased 
Decreased in one 

analysis 
4 None None Insignificant 
5 Increases Increased Insignificant 
6 Decreases Decreased Insignificant 
7 Decreases Decreased Insignificant 
8 Decreases Decreased Insignificant 

9 None None 
Decreased in one 

analysis 

10 None None 
Decreased in one 

analysis 

11 Decreases Decreased 
Decreased in one 

analysis 
12 None Contradictory Insignificant 

13 Increases Increased 
Decreased in two 

analyses 
14 Increases Increased Insignificant 

Results highlighted in orange = those that decrease warfarin dosage and decrease the risk of a poor 
pregnancy outcome. Results highlighted in yellow = those that increase warfarin dosage and increase the 
risk of a poor pregnancy outcome. Results that are not highlighted show no influence on warfarin dosage 
or pregnancy outcomes. 
 

 
Most of the observed risks of having a poor pregnancy outcome (shown in table 4.6) were 

insignificant. Variant 2, however, was expected to increase the risk of having a poor 

pregnancy outcome and was observed to do so in one of the analyses I used. Similarly, 

variants 3 and 11 were expected to decrease the risk of having a poor pregnancy outcome 

and were observed to do so in one of the analyses I used, respectively. Variants 9 and 10 

were expected to have no influence on pregnancy outcome, but showed a decrease in the 

risk of having a poor pregnancy outcome in one of the analyses. Variant 13, however, was 

expected to increase the risk of having a poor pregnancy outcome but decreased the risk in 

two of the analyses I used.  There are no other studies comparing these variants and 

pregnancy outcome to my knowledge. 
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The numbers of patients with normal and poor pregnancy outcomes with the different 

variant genotypes were very small, which may account for the contradictory and 

insignificant results. Thus, further studies using a larger sample size of patients with 

pregnancies on warfarin may be carried out to verify our hypothesis that variants that result 

in an increase in warfarin dosage increase the risk of having a poor pregnancy outcome, 

due to the increase in warfarin dosage. In addition other factors that are known to cause 

poor pregnancy outcomes, such as additional drugs taken, the mother’s diet and additional 

genetic factors, need to be taken into account when determining the influence of warfarin 

on pregnancy outcome. 

 

4.3.3 Genetic counselling for pregnant women on warfarin 

A new definition of genetic counselling has been approved by the National Society of 

Genetic Counselors (NSGC) (Resta et al., 2006). This definition states that genetic 

counselling is a process of helping people understand and adapt to the medical, 

psychological and familial implications of genetic contributions to disease (Resta et al., 

2006). Genetic counselling clinics are run at all the University of the Witwatersrand 

academic hospitals (Johannesburg General Hospital, Chris-Hani Baragwanath Hospital and 

Coronation Hospital) on a weekly basis. One of the many aims of these clinics is to 

counsel women who are taking warfarin and are pregnant or planning a pregnancy. These 

sessions aim to inform the patient about the risk of having a baby with fetal warfarin 

syndrome (FWS), the complications of warfarin during pregnancy, the critical period 

during which exposure to warfarin is said to result in FWS, the risks involved in taking 

warfarin past the critical period and the options that are available to the mother. All of the 

patients that attend these clinics are referred to the clinics by the doctors in those hospitals.  
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Despite its availability, Dr Gregersen’s study (described in section 1.7) found that five (out 

of 124) patients from the Obstetric Cardiac Clinic at the CHB hospital, who were taking 

warfarin and were pregnant, received genetic counselling. These results suggest that these 

patients are not being referred to the clinics by their doctors. Thus information regarding 

the availability and importance of these clinics needs to be drastically improved. Women 

on child-bearing age (wanting to have children), on warfarin treatment would need to be 

seen and counselled pre-pregnancy to assess whether their pregnancy can be managed off 

warfarin. If the pregnancy can not be managed off warfarin they would need to be 

counselled concerning the risks to themselves and their baby, refer to table 4.6.  

 

From this study I have identified four variants (2 CYP2C9 (variants 2 and 5) and two 

VKORC1 (variants 13 and 14)) variants that could increase the risk of having a poor 

pregnancy outcome, through an increase in warfarin dosage; and six CYP2C9 variants 

(variants 1, 3, 6, 7, 8 and 11) that could decrease the risk of having a poor pregnancy 

outcome, through a decrease in warfarin dosage (shown in table 4.6). These results would 

need to be verified using larger sample sizes. Assuming that these hypotheses are correct I 

would need to develop a rapid method to screen patients for these variants. This test could 

be used to identify patients at a higher risk of having a poor pregnancy outcome, altering 

their dosage accordingly and thereby reducing the risk of complications to both the mother 

and baby. 

 

4.4 Limitations 

In this study I had small sample numbers, limiting the types and number of analyses I 

could do on the different variants. I only assessed two (CYP2C9 and VKORC1) of the 

possible 30 genes said to be involved in the action of warfarin as they are the most 
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important of all the genes that interact with warfarin. However, the 28 remaining genes 

may play an important role in warfarin dosage variability in the SA populations. Thus 

further studies aimed at determining the frequencies of variant alleles for these 28 genes 

and their effect on warfarin dosage in the SA populations should be carried out. 

 

In terms of designing a broad scale pharmacogenomic project, aimed at providing a safer, 

more efficient way of administering warfarin in SA, one could say our limitations would 

be the fact that pharmacogenetics, let alone pharmacogenomics is not yet adequately 

established in SA and we do not have the funding or technology to carry out such a study. 

In addition clinicians might say that the cost of requiring a pre-prescription test for 

warfarin (or any other drug) may outweigh the benefit. This may be so for now but we are 

seeing an ongoing trend of making technology and genetic testing more cost effective. It 

has been my experience over the past three years, this year in particular, that scientists and 

clinicians tend to use these “limitations” as excuses to either run away from the country or 

continue with the small scale science that we tend to produce. We think that because we 

come from a developing country that we are unable to produce internationally competitive 

science, which is really sad considering the level of expertise we have in this country. How 

then do we change this mindset or start to achieve the type of science and launch projects 

that reflect this expertise? It was highlighted to me by three international speakers, at a 

recent conference I attended this year, that we as South Africans tend to keep our work to 

ourselves and not collaborate with other countries especially first world countries who 

have the resources that we complain we do not have. Of course this is a broad 

generalisation which is not to say that we do not collaborate at all but we certainly do not 

do it enough. Why then do we not plan bigger more competitive projects with the help of 

collaborators that have the resources we need, until we are able to obtain these resources 
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ourselves, and even then share intellectual properties? I believe that genomic studies will 

overshadow genetic studies and that they will become more cost effective. Our job at this 

point is making sure we are ready for this transition. 
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5 CONCLUSION 

 

In this study I determined the frequencies of previously described and novel CYP2C9 and 

VKORC1 variants and how these variants influence warfarin dosage variability and poor 

pregnancy outcome (when warfarin is taken during pregnancy), in the South African (SA) 

black population. I observed six of the 30 previously described CYP2C9 variants, 27 novel 

CYP2C9 variants and three of the 11 previously described VKORC1 variants, but no novel 

VKORC1 variants in the patient and control samples. Of the 27 novel CYP2C9 variants, 

four are missense mutations, four are silent mutations, nine are possible splice site 

mutations and ten are of unknown effect. Of the 36 CYP2C9 and VKORC1 variants 

observed in the patient and control samples, only 14 were observed at an allele frequency 

of ≥ 0.02 and were used for further analyses. Of these 14 variants, three were previously 

described CYP2C9 variants, nine novel CYP2C9 variants and two previously described 

VKORC1 variants. When comparing the allele and genotype frequencies of the patient 

samples to the control samples I found no significant difference between the two. Thus the 

results obtained through the warfarin dosage variability and pregnancy outcome analyses 

(using only the patient samples) apply to the general SA black population.  

 

In the warfarin dosage variability analysis I found that beta blockers were the only 

environmental factors that significantly influenced warfarin dosage across all of the 

analyses. Beta blockers appear to decrease warfarin dosage by eight mg/week (on average). 

These results imply that one could reduce the risk of haemorrhagic complications in 

patients taking both warfarin and beta blockers by decreasing their warfarin dosage by 

approximately eight mg/week.  
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I observed six of the 30 previously described CYP2C9 variants, one of which 

(CYP2C9*11) is known to decrease warfarin dosage through a decrease in warfarin 

metabolism (CYP2C9 Allele Nomenclature Database). CYP2C9*9’s influence on warfarin 

dosage has been previously unknown (CYP2C9 Allele Nomenclature Database). 

CYP2C9*8’s influence on warfarin dosage was described as contradictory (CYP2C9 Allele 

Nomenclature Database). In the patients CYP2C9*8 and CYP2C9*11 appear to decrease 

warfarin dosage and CYP2C9*9 appears to increase warfarin dosage by approximately 12, 

four and nine mg/week, respectively.  

 

I observed 27 novel variants within the CYP2C9 gene, nine of which were observed at a 

frequency of ≥ 0.02 and were used for further analysis. Of these 9, one (variant 5 – 

possible splice site mutation) appears to increase warfarin dosage, four (variants 6 – 

unknown mutation, seven – possible splice site mutation, eight – possible splice site 

mutation and 11 – silent mutation) appear to decrease warfarin dosage, while the remaining 

four appear to have no or a contradictory influence on warfarin dosage.  

 

I observed three of the 11 previously described VKORC1 variants. The L120L VKORC1 

variant was described as having no influence on warfarin dosage (D’Andrea et al., 2005); 

however, it appears to increase warfarin dosage in the patients in this study by five 

mg/week. The 3730 G>A VKORC1 variant’s influence on warfarin dosage was unknown 

(D’Andrea et al., 2005), but appears to increase warfarin dosage in the patients in this 

study by four mg/week. The V66M VKORC1 variant was observed at an allele frequency 

of 0.01 within the patients and was therefore not used in any warfarin dosage or pregnancy 

outcome analyses. 
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All of the environmental factors (age and concomitant medications) and the 14 CYP2C9 

and VKORC1 variants used in the warfarin dosage variability analyses in this study 

account for 45.3% of warfarin dosage variability in the SA black population. The 14 

CYP2C9 and VKORC1 variants alone account for 34.7% of warfarin dosage variability in 

the SA black population, and are thus significant contributions to warfarin dosage 

variability. 

 

Warfarin has teratogenic effects (Hall et al., 1980; Cotrufo et al., 2002). In the pregnancy 

outcome analysis I found that heparin, consistent with previous studies, taken during 

pregnancy significantly decreases the risk of having a poor pregnancy outcome, compared 

to warfarin throughout pregnancy. An increase in maternal age and warfarin both 

significantly increase the risk of having a poor pregnancy outcome. When assessing 

pregnancy outcome with respect to warfarin dosage I found that there was an increase in 

the number of poor pregnancy outcomes with an increase in warfarin dosage. I 

hypothesised that patients taking a high dose of warfarin have a higher fraction of unbound 

warfarin which then crosses the placenta, exposing the developing fetus to higher doses of 

warfarin which then results in fetal warfarin effects. Thus patients taking a high dose of 

warfarin are at a higher risk of having a poor pregnancy outcome than those on a lower 

dose of warfarin.  

 

Based on the warfarin dosage vs. pregnancy outcome analysis I hypothesised that the 

variants that result in an increase in warfarin dosage would increase the risk of having a 

poor pregnancy outcome; and that variants that result in a decrease in warfarin dosage 

would decrease the risk of having a poor pregnancy outcome. When analysing the 14 

CYP2C9 and VKORC1 variants I found that the CYP2C9*9 variant that increases warfarin 
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dosage, increased the risk of having a poor pregnancy outcome. CYP2C9*11 and a novel 

CYP2C9 variant (11) which decrease warfarin dosage, decreased the risk of having a poor 

pregnancy outcome. Two variants that appear to have no influence on warfarin dosage 

(variants 9 and 10) appear to decrease the risk of having a poor pregnancy outcome. The 

L120L VKORC1 variant (variant 13) which appears to increase warfarin dosage decreases 

the risk of having a poor pregnancy outcome. The influence of these variants on pregnancy 

outcome would need to be studied further, using a larger sample size. 

 

Future studies arising as a result of this study involve: 

• Development of a model, which screens for the most common CYP2C9 and 

VKORC1 variants in the SA black population, and the use of this model in a pilot 

study to determine warfarin dose more effectively. 

• Functional analysis of all 27 novel CYP2C9 variants. 

• Determining the frequencies of the VKORC1 -1639 G>A and 1173 C>T variants in 

the SA black population. 

• Screen for variants in the promoter and regulatory regions, which could influence 

gene expression. 

• Screening for genetic variants in the remaining 28 genes (or the most significant) 

and identifying the most important environmental factors said to be involved in the 

mode of action of warfarin (described in section 1.5) in all SA populations (Black, 

Caucasian, Asian and mixed ancestry ). 

• Development of a rapid detection method to screen for the most frequent genetic 

(other than the 14 CYP2C9 and VKORC1 variants identified in this study) variants 

whose influence on warfarin dosage is known in SA populations to predict 

warfarin dosage more effectively. 
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• Verifying this test for the use of pre-administration pharmacogenomic testing for 

warfarin in SA populations. 

• Studying the influence of the different CYP2C9 and VKORC1 variants observed in 

the SA black population on pregnancy outcome in a larger sample size. 

• Setting up a rapid screening test to identify patients at an increased risk of having a 

poor pregnancy outcome. 

 

From this project I was able to provide more informative genetic counselling for patients 

on warfarin who are having or plan to have children, based on the knowledge of warfarin 

dosage and pregnancy outcomes. In addition this project has provided vital information 

into which CYP2C9 and VKORC1 variants are most common in the SA black population. 

Fourteen of these variants account for 34.7% of warfarin dosage variability in the SA black 

population.  

 

In November 2005, the Clinical Pharmacology Subcommittee (in the USA) agreed that 

sufficient evidence exists to support use of lower doses of warfarin for patients with 

genetic variants in CYP2C9 and VKORC1 that lead to reduced activities (based on the 

CYP2C9*2, CYP2C9*3 and VKORC1 -1639 G>A variants) (Kimball Genetics Website). A 

label change for warfarin is underway to reflect this recommendation (Kimball Genetics 

Website). None of the current pre-administration pharmacogenetics/genomics tests for 

warfarin are useful in the SA black population. It is thus imperative that a pre-

administration pharmacogenetics test for warfarin, specifically for SA black patients, be 

established. The accomplishment of this has been made easier through the information 

obtained in this project. It is my hope that in the near future similar studies will be 

established for all SA populations, providing the necessary information for the 
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development of pre-administration pharmacogenetics tests for warfarin for all SA 

populations, and perhaps the eventual establishment of larger pre-administration 

pharmacogenomics tests for warfarin for all SA populations.  
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Appendix A 

 

Solutions: 

 

3% Agarose Gel 

12g Agarose powder 

400ml 1 x TBE 

12µl EtBr (10mg/ml) 

Dissolve agarose and TBE in microwave 

Once cooled add EtBr 

Pour gel into a gel tray with combs to form wells and allow setting for approximately 

30min –one hour. 

 

0.5M EDTA 

93.06g EDTA in 400ml ddH2O 

pH to 8.0 with NaOH pellets 

Make up to 500ml 

Autoclave 

 

70% Ethanol 

70ml 100% Ethanol + 30ml ddH2O 

 

Ethidium Bromide (EtBr) (10mg/ml) 

10mg EtBr powder 

1ml ddH2O 

Store in a dark bottle 

Also commercially available from Sigma as an aqueous solution (10mg/ml) 
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Ficoll-bromophenol blue loading dye 

50g sucrose crystals 

0.1ml 0.5M EDTA (pH 7.0) 

0.1g Bromophenol blue dye 

10g Ficoll powder 

Make up to 100ml with ddH2O 

Aliquot into 1.5ml Eppendorf tubes 

Store at 4˚C 

 

1M MgCl 2 

50.83g MgCl2  

250ml ddH2O 

Autoclave 

 

1kb+ Molecular weight DNA marker 

11µl ladder 

10µl Ficoll loading dye 

73µl 1x TE 

 

Proteinase K solution (16 extractions) 

800µl 10% SDS 

32µl 0.5M EDTA 

5.6ml autoclaved ddH2O 

Add 1600µl 10mg Proteinase K just before use 

 

Saturated NaCl 

100ml autoclaved ddH2O 

Slowly add 40g NaCl until absolutely saturated 

Before use, agitate and let NaCl precipitate out 

 

10% SDS 

10g/100ml ddH2O 
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Sucrose-Triton X Lysing Buffer 

10ml 1M Tris-HCl (pH8) 

5ml 1M MgCl2 

10ml Triton-X 100 

Make up to 1l with ddH2O 

Autoclave 

Add 109.5g Sucrose just before use 

Keep solution chilled at 4˚C 

 

T20E5 

20ml 1M Tris-HCl (pH8) 

10ml 0.5M EDTA (pH8) 

Top up to 1l volume with ddH2O 

Autoclave 

 

10 x Tris Borate EDTA (TBE) 

109.02g Tris base 

55.64g Boric acid 

7.44g NaEDTA 

Adjust pH to 8.3 with HCl 

Make up to 1l with dH2O 

Dilute 10-fold before use 

Store at room temperature 

 

1 x Tris Borate EDTA (TBE) 

Dissolve 100ml 10 x TBE in 900ml dH2O 

 

1 x Tris-EDTA (TE) Buffer  

10 ml 1M Tris-HCl (pH8.0) 

2 ml 0.5M EDTA 

Make up to 1l with dH2O 

Autoclave and store at room temperature. 
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1M Tris-HCl (pH 8)  

121.1g Tris in 1l ddH2O 

pH to 8.0 using concentrated HCl 

Make up to 1l 

Autoclave 
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Appendix B 

 

Salting-out DNA Extraction Procedure (Miller et al., 1988) 

 

• Collect blood into a ACD or EDTA tube 

• Decant no more than 10ml of blood into a Nunc tube 

• Spin for ten minutes to remove plasma and freeze at -20˚C until extraction or begin 

immediately 

• Fill each tube to the 45/50ml mark with chilled Sucrose-Triton X Lysing Buffer 

• Invert the tube to mix 

• Spin for ten minutes at 2300rpm 

• Pour off the supernatant (the pellet should be reddish) 

• Resuspend the pellet in 20-25ml Sucrose-Triton X Lysing Buffer and place on ice for 

five minutes 

• Spin for five minutes at 2300rpm 

• Pour off the supernatant carefully (the pellet should now be pinkish/white) 

• Add the following to the pellet: 

o 3ml T20E5 

o 200µl 10% SDS 

o 500µl Proteinase K solution 

Mix by inversion  

• Incubate the samples at 42˚C to 50˚C overnight 

• Add 1ml of saturated NaCl and mix vigorously for 15 seconds 

• Spin for 15 minutes at 2500rpm 

• A white pellet should be visible which consists of protein and precipitated salt 

• Transfer the supernatant that contains the DNA to a new Nunc tube 

• Add two volumes alcohol to the supernatant 

• Agitate gently and spool DNA 

• Wash in 70% ice-cold ethanol 

• Place DNA in an eppendorf tube and air dry 

• Dissolve the DNA in the appropriate volume of TE buffer (200µl - 1000µl) 
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Appendix C 

 

 

 

Table 5.1: Primer sets for both CYP2C9 and VKORC1 gene amplicons 

CYP2C9 VKORC1 
Amplicon Primer Amplicon Primer 

F: 5'-ttt ttt att acc aat acc tag g-3' F: 5'-tcg ctg ttt tcc taa ctc-3'
  Exon 1 

R: 5'-ttt tac ttt acc att acc tct tg-3' 
Exon 1 

R: 5'-ccg atc cca gac tcc aga at-
3' 

F: 5'-tac aaa tac aat gaa aat atc 
atg-3' 

F: 5'-tga cat gga atc ctg acg tg-
3' 

Exons 2 & 3 
R: 5'-cta aca acc agg act cat aat 

g-3' 

Exon 2 
R: 5'-gag ctg acc aag ggg gat-3' 

F: 5'-tgt taa ggg aat ttg tag g-3' F: 5'-agt gcc tga agc cca cac-3' 
Exon 4 R: 5'-aat ttt gga ttt gtc aga a-3' Exon 3 R: 5'-ata acc acc ctt ccc agc ag-

3' 
F: 5'-cag agc ttg gta tat ggt atg-3' 

Exon 5 R: 5'-gta aac aca gaa cta gtc aac-
3' 

F: 5'-gtt tgg gca agt tgg tct a-3' 
Exon 6 R: 5'-aga aac agg aag gag gac ac-

3' 
F: 5'-ctc ctt ttc cat cag ttt tta ct-3' 

Exon 7 R: 5'-gat act atg aat ttg ggg act 
tc-3' 

F: 5'-ttc atg gct tct tta cag ct-3' 
Exon 8 

R: 5'-tcc cca aag tcc act aat ct-3' 
F: 5'-tat tgc ata ttc tgt ttg tgc-3' 

Exon 9 R: 5'-caa gta act cta aca ctc acc 
c-3' 

 

 

 

Table 5.2: 10x dNTP Mix 

DNTP Component [Stock] [Final] 1ml mix 
dATP 10mM 1.25mM 125µl 
dCTP 10mM 1.25mM 125µl 
dTTP 10mM 1.25mM 125µl 
dGTP 10mM 1.25mM 125µl 
ddH2O   500µl 
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Table 5.3: PCR Mix 

PCR Mix [Stock] [Final] 1 x Mix 
DNA   1 µl 

dNTP’s 10 x 1 x 2.5 µl 
Buffer 10 x 1 x 2.5 µl 
MgCl2 10 x 1 x 2.5 µl 

Primer F 100 ρM 10 ρM 1 µl 
Primer R 100 ρM 10 ρM 1 µl 

Ampli Taq 5U/µl 1U/µl 0.2 µl 
dH2O   14.3 µl 

Total Volume 25 µµµµl 
 

 

 

Table 5.4: PCR Conditions for all CYP2C9 and VKORC1 amplicons 

Initial  
Denaturation 

Denaturation Annealing  
(40 seconds) 

Extension Final 
Extension 

Hold 

30 Cycles 
Ex 1 – 51˚C 

Ex 2&3 - 
55˚C 

Ex 4 - 51˚C 
Ex 5 - 51˚C 
Ex 6 - 60˚C 
Ex 7 - 60˚C 
Ex 8 - 52˚C 

CYP2C9 

Ex 9 - 59˚C 
Ex 1 - 55˚C 
Ex 2 - 61˚C 

95˚C for 5  
minutes 95˚C for 40  

seconds 

VKORC1 
Ex 3 - 64˚C 

72˚C for  
1  

minute  
20  

seconds 

72˚C for  
7 minutes 

 

15˚C  
∞ 
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Appendix D 

 

 

 

Table 5.5: AvaII Digest for CYP2C9*2 

Digest Mix [Stock] [Final] 1 x Mix 
PCR Product   20µl 

AvaII 10U/µl 2.5U/µl 0.25µl 
Buffer R* 10x 1x 2.5µl 

ddH2O   2.25µl 
Total Volume 25µl 

* Provided with the enzyme. 
 

Digest for 2hrs at 37ºC 
Run products on 3% Agarose Gel 
 

 

Table 5.6: AluII Digest for CYP2C9*5 

 
 
 
 
 
 
 

* Provided with the enzyme. 
 

Digest for 2hrs at 37ºC 
Run products on 3% Agarose Gel 

 

 

 

Digest Mix [Stock] [Final] 1 x Mix 
PCR Product   20µl 

AluI 10U/µl 2.5U/µl 0.25µl 
Buffer R* 10x 1x 2.5µl 

ddH2O   2.25µl 
Total Volume 25µl 
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Appendix E 

 

 

 

 

 

Multiscreen ® PCRµ96 Cleanup Protocol 

 

• Place 20µl (remaining volume after 5µl was used to check for product on the 3% 

agarose gel) of PCR mix into the wells of the Multiscreen ® PCRµ96 Cleanup Filter 

plate. 

•  Place the plate on the vacuum filtration manifold (Millipore Millivac ® Maxi 

SD1P014M04) and vacuum for approximately 2-3 minutes or until the beds are dry at 

260kPa (the maximum pressure the vacuum could obtain at a high altitude 

(Johannesburg – approximately 2000m)).  

• Add 20µl of ddH2O to each of the wells. 

• Place the plate on a shaker (Labnet Orbit 1000) for two minutes at 300rpm.  

• Resuspend the samples by pipetting up and down approximately four times. 

• Transfer the samples into a new 96-well PCR plate, cover and store at 4ºC until needed.  
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Appendix F 

 

 

 

 

 

 

Table 5.7: Sequencing Reaction Setup (1/8x) 

Final Reaction Volume: 5µl 10µl 
PCR (10-50fmol/well) 2µl 2µl 

AB1 5x Sequencing Buffer 0.5µl 1.5µl 
Primer (5 pmol/µl) 1µl 1µl 

BDT Premix 1µl 1µl 
Milli-Q Water 0.5µl 4.5µl 
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Appendix G 

 

 

 

Montage SEQ96 Sequencing Reaction Cleanup Kit Protocol: 

 

• Dilute samples with 20µl of the injection solution (provided in the Montage Kit). 

• Mix by pipetting approximately four times.  

• Transferred the samples to the SEQ96 cleanup plate and place the plate onto the vacuum 

manifold.  

• Vacuum at approximately 260kPa for 2-3 minutes or until the membrane is dry.  

• Remove the plate from the vacuum and blot of excess liquid.  

• Add a further 30µl of injection solution to each well and replaced the plate on the 

vacuum manifold. 

• Vacuum for approximately 3-4 minutes or until the membrane is dry.  

• Re-blot to remove excess liquid.  

• Add a final volume of 20µl injection fluid to each well. 

• Place the plate on a shaker (Labnet Orbit 1000) and shake at 300 rpm for 

approximately two minutes. 

• Resuspend samples by pipetting up and down approximately four times.  

• Transfer the samples to a new 96-well plate with an injection cover for sequencing. 
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Appendix H 

 

Protocol on how to create and start a Sequencing run 

 

Plate Design 

• On the desktop of the computer in which the 3130xl Genetic Analyser’s software is 

loaded, click on the plate manager application 

• Click on new plate. A plate dialogue will open up. 

• In the plate dialogue you describe the name of the plate, the type of application 

(sequencing or microsatellite detection), type of plate (96 or 384 well), the owner and 

operator’s names. Click ok and a sequencing plate editor application will open. 

• In the sequencing plate editor application you describe each sample’s name, results 

group, and instrument and analysis protocols.  

• The results group is a folder in which all results will be stored.  

• The instrument protocol refers to the type of polymer, the capillary length and 

programme with which the samples will be run. The two protocols I used are 

Z.SEQ_Pop7.36.Rapid and Z.SEQ_Pop7.36.Ultra. These protocols used polymer seven 

(pop7) with a 36cm array. The rapid protocol is used for fragments above 500bp in 

length and the ultra is used for fragments of below 500bp in length. 

• The analysis protocol refers to the type of analysis. I used 3130 Pop7_BDTv3kb (3130 

polymer 7, Big Dye Terminator version 3). 

 

Starting the Sequencing run 

• Click on the Run scheduler application.  

• Click on plate view and update the list by clicking on “find all”.  

• Find the name of your plate (specified in the plate dialogue). 

• Click on the name of the plate and then the position of the plate (A or B), to link the 

name of your plate to the position of the plate in the genetic analyser.  

• Go to the run view, check that you have linked the correct plate and runs. 

• Click on the play button to start the run and confirm that you want to start the run by 

clicking “ok”. 
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Appendix I 

 

 

 

Protocol to Retrieve and Analyse a Sequencing run 

 

• Open the Sequencing Analysis 5.2 software by clicking on the short cut icon 

• Click on “file” and go to add samples 

• Find the name of the results group (specified in the sequencing plate editor) 

• Highlight the samples you wish to add and click on add selected samples and then ok 

• Click on the play button and the software will automatically analyse, allocate and call a 

base to each peak.  

• Each sample may be viewed as an electropherogram by clicking on the name of the 

sample.  

• The view of the electropherogram may be adjusted by making the peaks wider or closer 

together, higher or smaller by clicking on the appropriate icons.  

• When you close the application you have the option of saving the samples, which will 

then be stored in the results group folder and may then be transferred to a flash disk or 

printed using a laser printer. 
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Appendix J 

 

Statistical Values for the Variant Analyses 

All p-values highlighted in the tables are smaller than 0.05 and were considered 

significant. 

 

Table 5.8: Exact test for Hardy-Weinberg Equilibrium for all sample groups 

P-Values 
Variant 

Controls Patients Both 
1 1 1 1 
2 0.1416 0.518 1 
3 0.1714 1 0.2827 
4 0.1731 1 0.5269 
5 0.4547 1 0.7782 
6 0.6858 0.3709 0.7743 
7 0.6116 0.3709 0.1942 
8 0.2654 0.1071 0.5945 
9 1 1 1 
10 1 1 0.6067 
11 1 1 0.6052 
12 1 0.3709 0.7114 
13 0.7572 0.8058 1 
14 0.3043 0.702 0.2644 
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Table 5.9: P-values of Linkage Disequilibrium for Control Samples 

Variant  2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0.1063 0.7145 0.9946 0.9955 0.9953 0.9941 0.8998 0.9626 0.2611 0.2611 0.7904 0.0863 0.0322 
2  0.0762 0.9968 0.9974 0.4244 0.1494 0.9974 0.9751 0.995 0.995 0.08 0.0876 0.4268 
3   0.9919 0.6789 0.2709 0.1416 0.1103 0.9336 0.9855 0.9855 0.0667 0.0476 0.3978 
4    0.9995 0.9848 0.3732 0.9982 0.9761 0.9952 0.9952 0.9943 0.1384 0.1102 
5     0.9967 0.3955 0.6494 0.9801 0.996 0.996 0.9953 0.3663 0.1149 
6      0.6733 0.6872 0.9794 0.9958 0.7126 0.9951 0.032 0.0056 
7       0.2911 0.027 0.9947 0.9775 0.9938 0.1755 0.1811 
8        0.987 0.9974 0.7721 0.9063 0.3745 0.0247 
9         0.9573 0.9573 0.9648 0.0659 0.4526 
10          0.766 0.9929 0.3725 0.5225 
11           0.9929 0.3488 0.4848 
12            0.0219 0.0504 
13             0.9996 

1 = Linkage disequilibrium (LD), 0 = no LD. Significant values seen between variants 1-12 and 13-14 are not a measure of LD but  
rather show the presences of the same variants between individuals. The values in the table show the D’ measure. 
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Table 5.10: P-values of Linkage Disequilibrium for Patient Samples 

Variant  2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0.0184 0.9855 0.995 0.9971 0.5789 0.1717 0.7759 0.9795 0.9911 0.9911 0.9161 0.1942 0.1389 
2  0.2362 0.9979 0.9981 0.998 0.998 0.423 0.7703 0.0058 0.169 0.0889 0.3992 0.4209 
3   0.9839 0.986 0.003 0.9845 0.4906 0.923 0.969 0.9711 0.9845 0.5138 0.3316 
4    0.9995 0.9968 0.9966 0.9986 0.3471 0.9901 0.9901 0.9958 0.4756 0.4243 
5     0.6135 0.3628 0.8193 0.3166 0.9914 0.9914 0.9956 0.6454 0.2658 
6      0.8344 0.9429 0.978 0.9904 0.9904 0.9964 0.1566 0.2215 
7       0.831 0.978 0.9904 0.9904 0.2291 0.2519 0.0791 
8        0.9905 0.9959 0.9959 0.757 0.1703 0.0879 
9         0.956 0.9589 0.978 0.9894 0.9938 
10          0.9987 0.9904 0.2607 0.5446 
11           0.9904 0.1967 0.3742 
12            0.0459 0.0273 
13             0.9995 

1 = Linkage disequilibrium (LD), 0 = no LD. Significant values seen between variants 1-12 and 13-14 are not a measure of LD but  
rather show the presences of the same variants between individuals. The values in the table show the D’ measure.  
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Table 5.11: P-values of Linkage Disequilibrium for both Control and Patient Samples 

Variant  2 3 4 5 6 7 8 9 10 11 12 13 14 
1 0.0671 0.9822 0.994 0.9949 0.996 0.9939 0.8223 0.9735 0.8538 0.9197 0.8479 0.0998 0.1102 
2  0.0542 0.9959 0.9964 0.7097 0.6248 0.4771 0.981 0.9933 0.8628 0.0961 0.1143 0.881 
3   0.9843 0.9866 0.1564 0.0428 0.012 0.9284 0.9708 0.9718 0.3928 0.2834 0.0184 
4    0.9995 0.9958 0.8072 0.9985 0.0083 0.9903 0.9903 0.994 0.3044 0.2674 
5     0.7255 0.3738 0.7622 0.3149 0.9917 0.9917 0.9949 0.5059 0.1922 
6      0.765 0.8078 0.9786 0.9911 0.9911 0.995 0.0834 0.1181 
7       0.5999 0.9761 0.9901 0.9901 0.6419 0.2158 0.0108 
8        0.989 0.9954 0.9954 0.8171 0.1903 0.0503 
9         0.9565 0.958 0.9729 0.2265 0.1852 
10          0.8839 0.9888 0.3165 0.5316 
11           0.9888 0.2671 0.4362 
12            0.0106 0.0373 
13             0.9995 

1 = Linkage disequilibrium (LD), 0 = no LD. Significant values seen between variants 1-12 and 13-14 are not a measure of LD but  
rather show the presences of the same variants between individuals. The values in the table show the D’ measure.  
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Table 5.12: P-values from the Fisher’s Exact and Cochran/Armitage tests 

P-values 
Variant 

Fisher's Exact Test Cochran/Armitage Test 
1 - CYP2C9*8 R150H 0.1714 0.07717 
2 - CYP2C9*9 H251R 0.06649 0.1024 

3 - CYP2C9*11 R355W 0.8884 0.6278 
4 - CYP2C9 12930T>C 0.4858 0.8646 
5 - CYP2C9 16090 T>C 0.8764 0.7099 
6 - CYP2C9 16179 T>A 0.3199 0.5256 
7 - CYP2C9 21711 G>C 1 0.7871 
8 - CYP2C9 46028 A>G 0.05715 0.1854 
9 - CYP2C9 46092 C>T 1 0.8604 
10 - CYP2C9 60272 T>C 0.8396 0.729 

11 - CYP2C9 A441A 1 0.8778 
12 - CYP2C9 63113 C>T 0.307 0.2003 

13 - VKORC1 L120L 0.2798 0.1449 
14 - VKORC1 3730 G>A 0.8238 0.8615 

Fisher’s exact test = based on genotype frequencies; Cochran/Armitage Test = based on allele 
frequencies 
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Appendix K 

 

Statistical Values for the Dosage Analyses 

All p-values highlighted in the tables are smaller than 0.05 and were considered 

significant. 

 

Table 5.13: P-values of the influence of the concomitant drugs on warfarin dosage 

based on the Wilcoxon test 

Drug P-value 
Digoxin 0.7587 
Lasix 0.115 

Slow K 0.1409 
Beta Blockers 0.002019 

Aspirin 0.06759 
Aldactone 0.5793 
Moduretics 0.8573 

Ace Inhibitors 0.5502 
 

Table 5.14: P-values indicating the influence of the 14 CYP2C9 and VKORC1 variants 

based on the Kruskal-Wallis test 

Variants Chi-squared Degrees Freedom P-value 

1 - CYP2C9*8 R150H 7.6623 2 0.02168 

2 - CYP2C9*9 H251R 3.8516 2 0.1458 

3 - CYP2C9*11 R355W 0.6769 1 0.4106 

4 - CYP2C9 12930T>C 1.5347 2 0.4642 

5 - CYP2C9 16090 T>C 2.3641 2 0.3066 

6 - CYP2C9 16179 T>A 5.6741 2 0.0586 

7 - CYP2C9 21711 G>C 1.8214 2 0.4022 

8 - CYP2C9 46028 A>G 6.859 2 0.0324 

9 - CYP2C9 46092 C>T 0.2129 1 0.6445 

10 - CYP2C9 60272 T>C 0.3994 1 0.5274 

11 - CYP2C9 A441A 0.6458 1 0.4216 

12 - CYP2C9 63113 C>T 5.2319 2 0.0731 

13 - VKORC1 L120L 4.9481 2 0.08424 

14 - VKORC1 3730 G>A 2.1104 2 0.3481 
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Warfarin Dosage Linear Models 

Tables 5.15 – 5.33 represent all of the linear models that were created to assess the impact 

of all of our environmental factors and 14 CYP2C9 and VKORC1 variants on warfarin 

dosage. In each table the intercept represents the warfarin dosage, in mg/week, of a patient 

who is not taking any concomitant medication, is 0 years old and has the wildtype allele 

for all 14 variants. The percentage variability (described in section 3.2.2.4) was determined 

by multiplying the multiple r-squared values by 100. The estimated standard (described in 

section 3.2.2.4) shows the influence of each coefficient on warfarin dosage as compared to 

the intercept dosage. In each model N/V represents the heterozygous genotype and V/V 

represents the homozygous variant genotype. 

 

Table 5.15: Results of the linear model showing the influence of the four concomitant 

medications on warfarin dosage 

Coefficients Estimated Standard 3 P-value 

Intercept 1 43.26 <2e-16 

Lasix -3.075 0.5590 

Slow K 0.661 0.9020 

Beta Blockers -7.261 0.0310 

Aspirin 3.904 0.1590 

Model p-value 0.028   

Multiple r-squared 2 0.0975 9.7% 
1Intercept = warfarin dosage in mg/week if the patient is not taking any of the concomitant medications. 2 
Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients in the table account for. 
3 In the Estimated Standard column: a positive value = increase in warfarin dosage in mg/week; a negative 
value = decrease in warfarin dosage in mg/week. 
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Table 5.16: Results of the linear model showing the influence pact of the four 

concomitant medications and age on warfarin dosage 

Coefficients Estimated Standard 3 P-value 

Intercept 1 51.2414 4.44E-09 

Lasix -3.1892 0.5448 

Slow K 1.3030 0.8088 

Beta Blockers -7.3299 0.0292 

Aspirin 3.6735 0.1858 

Age -0.2324 0.3012 

Model p-value 0.03606   

Multiple r-squared 2 0.1068 10.6% 
1 Intercept = warfarin dosage in mg/week if the patient is 0 years old and is not taking any of the concomitant 
medications. 2 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients in the 
table account for. 3 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 

 

 

 

Table 5.17: Results of the linear model showing the influence of variant 1 on warfarin 

dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 5 P-value 
Intercept 3 51.677 2.1E-09 

N/V 1 -8.076 0.0092 
V/V 2 -1.063 0.91 
Lasix -4.085 0.4285 

Slow K 3.061 0.564 
Beta Blockers -7.578 0.0215 

Aspirin 3.71 0.1718 

Age -0.203 0.3607 

Model p-value 0.00887   

Multiple r-squared 4 0.165 16.5% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 
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Table 5.18: Results of the linear model showing the influence of variant 2 on warfarin 

dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 5 P-value 
Intercept 3 52.161 2.4E-09 

N/V 1 0.449 0.875 

V/V 2 18.396 0.063 

Lasix -2.476 0.639 

Slow K 1.45 0.788 

Beta Blockers -6.819 0.044 

Aspirin 4.456 0.118 

Age -0.295 0.194 

Model p-value 0.0315   

Multiple r-squared 4 0.137 13.7% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 

 

 

 

Table 5.19: Results of the linear model showing the influence of variant 3 on warfarin 

dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 4 P-value 
Intercept 2 52.58 2.8E-09 

N/V 1 -5.619 0.257 

Lasix -2.796 0.596 

Slow K 0.743 0.891 

Beta Blockers -7.385 0.028 

Aspirin 3.846 0.166 

Age -0.259 0.252 

Model p-value 0.0405   

Multiple r-squared 3 0.118 11.8% 
1 N/V = heterozygous genotype. 2 Intercept = warfarin dosage in mg/week if the patient is 0 years old, is not 
taking any of the concomitant medications and is homozygous for the wild-type alleles. 3 Multiple r-squared 
x 100 = Percentage of warfarin dosage variability the coefficients in the table account for. 4 In the Estimated 
Standard column: a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in 
warfarin dosage in mg/week. 
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Table 5.20: Results of the linear model showing the influence of variant four 

genotypes on warfarin dosage accounting for the four concomitant medications and 

age 

Coefficients Estimated Standard 5 P-value 
Intercept 3 51.01 1.1E-08 

N/V 1 3.071 0.322 

V/V 2 -4.273 0.756 

Lasix -4.206 0.434 

Slow K 2.113 0.699 

Beta Blockers -7.507 0.026 

Aspirin 3.807 0.174 

Age -0.241 0.294 

Model p-value 0.0738   

Multiple r-squared 4 0.116 11.6% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 

 

 

 

Table 5.21: Results of the linear model showing the influence of variant 5 on warfarin 

dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 5 P-value 

Intercept 3 51.77 9.E-09 

N/V 1 3.74 0.214 

V/V 2 -8.64 0.387 

Lasix -4.24 0.425 

Slow K 2.73 0.617 

Beta Blockers -7.57 0.024 

Aspirin 4.47 0.114 

Age -0.28 0.228 

Model p-value 0.0466   

Multiple r-squared 4  0.128 12.8% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 
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Table 5.22: Results of the linear model showing the influence of variant 6 on warfarin 

dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 5 P-value 

Intercept 3 55.158 5.6E-10 

N/V 1 -8.474 0.0084 

V/V 2 13.425 0.1513 

Lasix -3.746 0.4614 

Slow K 0.88 0.8653 

Beta Blockers -8.733 0.008 

Aspirin 3.385 0.2064 

Age -0.279 0.2081 

Model p-value 0.00304   

Multiple r-squared 4 0.186 18.6% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 

 

 

Table 5.23: Results of the linear model showing the influence of variant 7 on warfarin 

dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 5 P-value 

Intercept 3 50.911 6.3E-09 

N/V 1 -4.403 0.169 

V/V 2 14.531 0.13 

Lasix -2.671 0.608 

Slow K 0.175 0.974 

Beta Blockers -8.04 0.016 

Aspirin 3.502 0.202 

Age -0.192 0.39 

Model p-value 0.0221   

Multiple r-squared 4 0.145 14.5% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 
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Table 5.24: Results of the linear model showing the influence of variant 8 on warfarin 

dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 5 P-value 

Intercept 3 55.323 1.1E-09 

N/V 1 -3.927 0.161 

V/V 2 -8.794 0.037 

Lasix -3.897 0.454 

Slow K 1.868 0.725 

Beta Blockers -7.725 0.021 

Aspirin 3.367 0.221 

Age -0.276 0.222 

Model p-value 0.0164   

Multiple r-squared 4 0.151 15.1% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 
 

 

 

Table 5.25: Results of the linear model showing the influence of variant 9 on warfarin 

dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 4 P-value 

Intercept 2 51.249 5.4E-09 

N/V 1 -0.165 0.981 

Lasix -3.188 0.547 

Slow K 1.318 0.809 

Beta Blockers -7.343 0.032 

Aspirin 3.672 0.188 

Age -0.233 0.303 

Model p-value 0.0654   

Multiple r-squared 3 0.107 10.7% 
1 N/V = heterozygous genotype. 2 Intercept = warfarin dosage in mg/week if the patient is 0 years old, is not 
taking any of the concomitant medications and is homozygous for the wild-type alleles. 3 Multiple r-squared x 
100 = Percentage of warfarin dosage variability the coefficients in the table account for. 4 In the Estimated 
Standard column: a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in 
warfarin dosage in mg/week. 
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Table 5.26: Results of the linear model showing the influence of variant 10 on 

warfarin dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 4 P-value 

Intercept 2 51.275 5.1E-09 

N/V 1 1.532 0.692 

Lasix -3.258 0.538 

Slow K 1.461 0.788 

Beta Blockers -7.483 0.028 

Aspirin 3.593 0.199 

Age -0.238 0.292 

Model p-value 0.0617   

Multiple r-squared 3 0.108 10.8% 
1 N/V = heterozygous genotype. 2 Intercept = warfarin dosage in mg/week if the patient is 0 years old, is not 
taking any of the concomitant medications and is homozygous for the wild-type alleles. 3 Multiple r-squared x 
100 = Percentage of warfarin dosage variability the coefficients in the table account for. 4 In the Estimated 
Standard column: a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in 
warfarin dosage in mg/week. 

 

 

 

Table 5.27: Results of the linear model showing the influence of variant 11 on 

warfarin dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 4 P-value 

Intercept 2 51.415 4.8E-09 

N/V 1 1.72 0.649 

Lasix -3.278 0.536 

Slow K 1.479 0.785 

Beta Blockers -7.573 0.027 

Aspirin 3.585 0.199 

Age -0.243 0.284 

Model p-value 0.0606   

Multiple r-squared 3 0.109 10.9% 
1 N/V = heterozygous genotype. 2 Intercept = warfarin dosage in mg/week if the patient is 0 years old, is not 
taking any of the concomitant medications and is homozygous for the wild-type alleles. 3 Multiple r-squared x 
100 = Percentage of warfarin dosage variability the coefficients in the table account for. 4 In the Estimated 
Standard column: a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in 
warfarin dosage in mg/week. 
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Table 5.28: Results of the linear model showing the influence of variant 12 on 

warfarin dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 5 P-value 

Intercept 3 52.53 2.4E-09 

N/V 1 -5.678 0.082 

V/V 2 4.223 0.594 

Lasix -3.77 0.472 

Slow K 2.012 0.708 

Beta Blockers -6.587 0.05 

Aspirin 3.959 0.152 

Age -0.25 0.27 

Model p-value 0.0317   

Multiple r-squared 4 0.137 13.7% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 
 

 

Table 5.29: Results of the linear model showing the influence of variant 13 on 

warfarin dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 5 P-value 
Intercept 3 49.562 5.8E-09 

N/V 1 7.088 0.01 

V/V 2 8.975 0.075 

Lasix -1.673 0.745 

Slow K -1.768 0.741 

Beta Blockers -8.142 0.015 

Aspirin 3.142 0.245 

Age -0.249 0.256 

Model p-value 0.0055   

Multiple r-squared 4 0.175 17.5% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 
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Table 5.30: Results of the linear model showing the influence of variant 14 on 

warfarin dosage accounting for the four concomitant medications and age 

Coefficients Estimated Standard 5 P-value 
Intercept 3 46.955 6.50E-08 

N/V 1 5.807 0.044 

V/V 2 8.059 0.026 

Lasix -1.063 0.839 

Slow K -0.988 0.854 

Beta Blockers -8.192 0.014 

Aspirin 3.558 0.193 

Age -0.227 0.302 

Model p-value 0.0118   

Multiple r-squared 4 0.159 15.9% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 
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Table 5.31: Results of the linear model showing the influence of all the CYP2C9 

variants (1-12) on warfarin dosage accounting for the four concomitant medications 

and age 

Coefficients Estimated Std 5 P-value 

Intercept 3 59.1474 6.32E-09 

1-N/V 1 -14.295 0.05457 

1-V/V 2 -22.9568 0.1969 

2-N/V 1 -0.7984 0.78545 

2-V/V 2 15.247 0.12107 

3-N/V 1 -5.1644 0.30373 

4-N/V 1 2.129 0.79409 

4-V/V 2 9.7753 0.6336 

5-N/V 1 -0.4453 0.9559 

5-V/V 2 -18.3812 0.25286 

6-N/V 1 -9.1005 0.12782 

6-V/V 2 22.105 0.06138 

7-N/V 1 7.6084 0.17438 

7-V/V 2 NA NA 

8-N/V 1 0.4323 0.91455 

8-V/V 2 -9.4941 0.19506 

9-N/V 1 -4.7732 0.4911 

10-N/V 1 -3.4235 0.80967 

11-N/V 1 4.0242 0.76909 

12-N/V 1 8.9641 0.22087 

12-V/V 2 26.8789 0.08832 

Lasix -5.8703 0.26884 

Slow K 5.7497 0.3071 

Beta Blockers -11.2745 0.00222 

Aspirin 3.454 0.24394 

Age -0.3911 0.10842 

Model p-value 0.02373  

Multiple r-squared 4 0.3397 33.9% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 
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Table 5.32: Results of the linear model showing the influence of both VKORC1 

variants (13-14) on warfarin dosage accounting for the four concomitant medications 

and age 

Coefficients Estimated Std 5 P-value 

Intercept 3 47.9948 4.06E-08 

13-N/V 1 5.3134 0.1245 

13-V/V 2 6.9137 0.2836 

14-N/V 1 2.7914 0.4213 

14-V/V 2 3.235 0.4999 

Lasix -1.1177 0.8302 

Slow K -2.0321 0.7058 

Beta Blockers -8.3106 0.0137 

Aspirin 3.2553 0.2325 

Age -0.2415 0.2742 

Model p-value 0.01468   

Multiple r-squared 4 0.1804 18% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 
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Table 5.33: Results of the linear model showing the influence of all 14 variants on 

warfarin dosage accounting for the four concomitant medications and age 

Coefficients Estimated Std 5 P-value 

Intercept 3 56.61376 9.42E-09 

1-N/V 1 -15.297 0.040004 

1-V/V 2 -29.45639 0.082857 

2-N/V 1 0.53888 0.846085 

2-V/V 2 23.37698 0.014754 

3-N/V 1 -2.3126 0.631922 

4-N/V 1 5.83582 0.475047 

4-V/V 2 1.01425 0.960362 

5-N/V 1 -1.8898 0.812513 

5-V/V 2 -21.03899 0.192167 

6-N/V 1 -11.3522 0.048061 

6-V/V 2 20.08085 0.074411 

7-N/V 1 9.64084 0.074009 

7-V/V 2 -0.08806 0.981361 

8-N/V 1 -8.5237 0.21354 

8-V/V 2 -0.28036 0.966137 

9-N/V 1 -15.51771 0.25887 

10-N/V 1 14.60764 0.267305 

11-N/V 1 10.36136 0.150849 

12-N/V 1 32.85769 0.02807 

13-N/V 1 3.02794 0.387639 

13-V/V 2 -3.58363 0.587666 

14-N/V 1 6.24395 0.090399 

14-V/V 2  13.61741 0.007961 

Lasix -3.22576 0.518204 

Slow K 2.19805 0.684805 

Beta Blockers -11.74082 0.000811 

Aspirin 3.97906 0.154831 

Age -0.53102 0.022783 

Model p-value 0.00127   

Multiple r-squared 4 0.4526 45.3% 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = warfarin dosage in 
mg/week if the patient is 0 years old, is not taking any of the concomitant medications and is homozygous for 
the wild-type alleles. 4 Multiple r-squared x 100 = Percentage of warfarin dosage variability the coefficients 
in the table account for. 5 In the Estimated Standard column: a positive value = increase in warfarin dosage in 
mg/week; a negative value = decrease in warfarin dosage in mg/week. 
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Haplo.stats Results for warfarin dosage analysis 

Tables 5.34 – 5.43 show all the haplo.stats results used to determine the influence of 

certain allele combinations on warfarin dosage. Each Haplo.stats result has two tables. The 

first represents the possible allele combinations, for the different variants, found within the 

patients. The second shows the estimated standard and p-values for each allele 

combination. The intercept in each table represents the warfarin dosage (in mg/week) in a 

patient with the haplotype base or wild type allele combination (i.e. the allele combination 

contains all the wild type alleles). The allele combination frequency is the frequency of 

that particular allele combination in the patient sample group. The rare allele combinations 

are represented by an asterisk (*) in the different variant columns because there are too 

many possible alleles to be listed.  

 
Table 5.34: Haplo.stats results using all 12 CYP2C9 variants 

Allele 
combination 

1 2 3 4 5 6 7 8 9 10 11 12 
Allele 

combination 
Freq 

1 A A C T T T G G C T C T 0.072 
2 G A C C C T G A C T C C 0.1092 
3 G A C T T A C G C T C C 0.0921 
4 G A C T T T G A C C T C 0.0623 
5 G A C T T T G G C T C C 0.0369 
6 G A T T T T G A C T C C 0.0241 
7 G G C T T T G A C T C C 0.1317 

Rare * * * * * * * * * * * * 0.1419 
Haplo base 1 G A C T T T G A C T C C 0.3299 

 
Allele combination Estimated Standard 2 P-value 

Intercept 43.505 0.0000 
1 -6.542 0.0756 
2 0.836 0.7660 
3 -0.925 0.7380 
4 -0.615 0.8280 
5 -0.499 0.6780 
6 -1.982 0.0000 
7 2.129 0.4360 

Rare -3.342 0.1790 
1 Haplo base = allele combination with all the wild type alleles. 2 In the Estimated Standard column: 
a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in warfarin 
dosage in mg/week. 
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Table 5.35: Haplo.stats results using CYP2C9 variants 1 – 6 

Allele combination 1 2 3 4 5 6 Allele combination Freq 

1 A A C T T T 0.1054 

2 G A C C C T 0.1227 

3 G A C T T A 0.1074 

4 G G C T T T 0.1435 

Rare * * * * * * 0.0747 

Haplo Base 1 G A C T T T 0.4463 

 
Allele combination Estimated Standard 2 P-value 

Intercept 43.067 0 

1 -6.035 0.0368 

2 0.952 0.6984 

3 -1.206 0.6526 

4 2.434 0.3103 

Rare -3.28 0.2366 
1 Haplo base = allele combination with all the wild type alleles. 2 In the Estimated Standard column: 
a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in warfarin 
dosage in mg/week. 

 

 
Table 5.36: Haplo.stats results using CYP2C9 variants 2 – 7 

Allele combination 2 3 4 5 6 7 Allele combination Freq 

1 A C C C T G 0.1136 
2 A C T T A C 0.0909 
3 A T T T T G 0.0238 

4 G C T T T G 0.1545 

Rare * * * * * * 0.0631 

Haplo Base 1 A C T T T G 0.5541 

 
Allele combination Estimated Standard 2 P-value 

Intercept 40.791 0 

1 2.275 0.412 

2 -0.146 0.959 

3 -0.254 0.475 

4 2.148 0.393 

Rare 0.35 0.866 
1 Haplo base = allele combination with all the wild type alleles. 2 In the Estimated Standard column: 
a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in warfarin 
dosage in mg/week. 
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Table 5.37: Haplo.stats results using CYP2C9 variants 3 – 8 

Allele combination 3 4 5 6 7 8 Allele combination Freq 

1 C C C T G A 0.1148 
2 C T T A C G 0.0915 

3 C T T T G G 0.161 

4 T T T T G A 0.0323 

Rare * * * * * * 0.0549 

Haplo Base 1 C T T T G A 0.5455 

 
Allele combination Estimated Standard 2 P-value 

Intercept 44.268 0 

1 0.416 0.887 

2 -0.886 0.7713 

3 -5.888 0.0257 

4 -3.248 0.1029 

Rare -1.081 0.7871 
1 Haplo base = allele combination with all the wild type alleles. 2 In the Estimated Standard column: 
a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in warfarin 
dosage in mg/week. 

 

 

Table 5.38: Haplo.stats results using CYP2C9 variants 4 – 9 

Allele combination 4 5 6 7 8 9 Allele combination Freq 

1 C C T G A C 0.1077 

2 T T A C G C 0.0914 

3 T T T G G C 0.1611 

Rare * * * * * * 0.0731 

Haplo Base 1 T T T G A C 0.5666 

 

Allele combination Estimated Standard 2 P-value 

Intercept 44.114 0 

1 0.577 0.854 

2 -0.885 0.776 

3 -5.931 0.028 

Rare -1.289 0.741 
1 Haplo base = allele combination with all the wild type alleles. 2 In the Estimated Standard column: 
a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in warfarin 
dosage in mg/week. 
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Table 5.39: Haplo.stats results using CYP2C9 variants 5 – 10 

Allele combination 5 6 7 8 9 10 Allele combination Freq 

1 C T G A C T 0.1205 

2 T A C G C T 0.0932 

3 T T G A C C 0.0636 

4 T T G G C T 0.1615 

Rare * * * * * * 0.0615 

Haplo Base 1 T T G A C T 0.4996 

 

Allele combination Estimated Standard 2 P-value 

Intercept 44.601 0 

1 0.147 0.9611 

2 -1.638 0.5922 

3 -1.326 0.6482 

4 -6.148 0.012 

Rare -1.618 0.6337 
1 Haplo base = allele combination with all the wild type alleles. 2 In the Estimated Standard column: 
a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in warfarin 
dosage in mg/week. 

 
 
 
 

Table 5.40: Haplo.stats results using CYP2C9 variants 6 – 11 

Allele combination 6 7 8 9 10 11 Allele combination Freq 

1 A C G C T C 0.0997 

2 T G A C C T 0.0636 

3 T G G C T C 0.1561 

Rare * * * * * * 0.0596 

Haplo Base 1 T G A C T C 0.6209 

 

Allele combination Estimated Standard 2 P-value 

Intercept 44.68 0 

1 -1.64 0.5495 

2 -1.39 0.6204 

3 -6.08 0.0147 

Rare -2.54 0.3525 
1 Haplo base = allele combination with all the wild type alleles. 2 In the Estimated Standard column: 
a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in warfarin 
dosage in mg/week. 
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Table 5.41: Haplo.stats results using CYP2C9 variants 7 – 12 

Allele combination 7 8 9 10 11 12 Allele combination Freq 

1 C G C T C C 0.0986 

2 G A C C T C 0.0596 

3 G G C T C C 0.071 

4 G G C T C T 0.097 

Rare * * * * * * 0.0629 

Haplo Base 1 G A C T C C 0.6109 

 
Allele combination Estimated Standard 2 P-value 

Intercept 44.429 0 

1 -1.307 0.6454 

2 -0.892 0.7323 

3 -6.21 0.0514 

4 -6.339 0.0322 

Rare 0.194 0.9531 
1 Haplo base = allele combination with all the wild type alleles. 2 In the Estimated Standard column: 
a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in warfarin 
dosage in mg/week. 

 

 

Table 5.42: Haplo.stats results using VKORC1 variants 13 and 14 

Allele combination 13 14 Allele combination Freq 

1 C A 0.177 

2 T A 0.255 

Haplo Base 1 C G 0.568 

 

Allele combination Estimated Standard 2 P-value 

Intercept 38.84 0 

1 2.21 0.3641 

2 4.62 0.0315 
1 Haplo base = allele combination with all the wild type alleles. 2 In the Estimated Standard column: 
a positive value = increase in warfarin dosage in mg/week; a negative value = decrease in warfarin 
dosage in mg/week. 
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Table 5.43: Haplo.stats results using 13 of the CYP2C9 and VKORC1 variants* 

Allele 
combination 1 2 3 4 5 6 7 8 10 11 12 13 14 Allele 

combination Freq 

1 A A C T T T G G T C T C A 0.0305 

2 A A C T T T G G T C T C G 0.0308 

3 G A C C C T G A T C C C G 0.0822 

4 G A C T T A C G T C C C G 0.0428 

5 G A C T T A C G T C C T A 0.0341 

6 G A C T T T G A T C C C A 0.0441 

7 G A C T T T G A T C C T A 0.1266 

8 G A C T T T G G T C C C G 0.0313 

9 G G C T T T G A T C C C G 0.1021 

Rare * * * * * * * * * * * * * 0.2835 

Haplo Base 1 G A C T T T G A T C C C G 0.1919 

 
Allele combination Estimated Standard 2 P-value 

Intercept 33.298 0.0000 

1 -7.433 0.0000 

2 3.081 0.0000 

3 1.011 0.6040 

4 6.758 0.0000 

5 -0.391 0.0628 

6 0.343 0.2620 

7 11.592 0.0000 

8 3.802 0.0000 

9 6.11 0.0206 

Rare 6.655 0.0007 

* Variant 9 had to be excluded from the analysis because the numbers of patients with the variant allele 
were too small. 1 Haplo base = allele combination with all the wild type alleles. 2 In the Estimated 
Standard column: a positive value = increase in warfarin dosage in mg/week; a negative value = decrease 
in warfarin dosage in mg/week. 
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Appendix L 

 

Statistical Values for the Pregnancy Analyses 

All p-values highlighted in the tables are smaller than 0.05 and were considered 

significant. 

 

Bar Graphs 

The size of the bars in the graphs, shown in figures 5.1 and 5.2, represent the number of 

patients with that particular genotype. Some of these graphs lack the 3rd genotype because 

of the small numbers of patients with that genotype. These bar graphs are based on the 

outcome of the patients’ first pregnancy (n=108). The values on the Y-axis represent the 

frequencies of normal and poor pregnancies for the genotype represented on the X-axis. In 

the graphs the smallest bars are always the homozygous variant genotype (V/V). 
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Figure 5.1: Bar Graphs for variants 1 – 8 showing their influence on pregnancy 

outcome 
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Figure 5.2: Bar Graphs for variants 9 – 14 showing their influence on pregnancy 

outcome 

 

Generalised linear model results for pregnancy outcome analysis 

In these models the column labelled “value” represents the degree by which the factor 

(age, number of pregnancies, heparin, warfarin or variant) affects pregnancy outcome. 

Positive values represent an increase in the risk of having a poor pregnancy outcome. 

Negative values represent a decrease in the risk of having a poor pregnancy outcome. The 

intercept in these models show the risk of having a poor pregnancy outcome if the patients’ 

age is 0, had one pregnancy, and was not taking warfarin or heparin during pregnancy.  

 



153 

 

Table 5.44: Generalised linear model result for age and number of pregnancies 

Factors Value p-value 

Intercept -5.277 0.0000 

No. Pregnancies -0.323 0.0469 

Age 0.219 0.0000 
Intercept = risk of a poor pregnancy outcome if the patient is 0 years old and is having their 1st pregnancy. In 
the value column: a positive value = increased risk of having a poor pregnancy outcome; a negative value = 
decreased risk of having a poor pregnancy outcome. 
 
 

 
Table 5.45: Generalised linear model result for age, number of pregnancies, warfarin 

and heparin 

Factors Value 2 p-Value 

Intercept 1 -5.834143 0.0000 

No. Pregnancies -0.302832 0.0827 

Age 0.173328 0.0001 

Heparin -1.396958 0.0001 

Warfarin 2.805595 0.0000 
1 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy and is 
not taking heparin or warfarin. 2 In the value column: a positive value = increased risk of having a poor 
pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 
 

Table 5.46: Results of the generalised linear model showing the influence of variant 1 

on pregnancy outcome 

Factors Value 4 p-value 

Intercept 3 -6.111 0.0000 

No. Pregnancies -0.351 0.0547 

Age 0.182 0.0001 

Warfarin 2.867 0.0000 

Heparin -1.445 0.0001 

N/V 1 0.42 0.3113 

V/V 2 0.827 0.4329 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = risk of a poor 
pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is not taking heparin or 
warfarin and is homozygous for the wild-type alleles. 4 In the value column: a positive value = increased risk 
of having a poor pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 
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Table 5.47: Results of the generalised linear model showing the influence of variant 2 

on pregnancy outcome 

Factors Value 4 p-value 

Intercept 3 -5.878 0.0000 

No. Pregnancies -0.257 0.1622 

Age 0.159 0.0007 

Warfarin 2.879 0.0000 

Heparin -1.298 0.0008 

N/V 1 0.556 0.1297 

V/V 2 3.119 0.0382 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = risk of a poor 
pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is not taking heparin or 
warfarin and is homozygous for the wild-type alleles. 4 In the value column: a positive value = increased risk 
of having a poor pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 

 
Table 5.48: Results of the generalised linear model showing the influence of variant 3 

on pregnancy outcome 

Factors Value 3 p-value 

Intercept 2 -5.7813 0.0000 

No. Pregnancies -0.3003 0.0857 

Age 0.1717 0.0001 

Warfarin 2.8112 0.0000 

Heparin -1.39 0.0001 

N/V 1 -0.3026 0.6478 
1 N/V = heterozygous genotype. 2 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is 
having their 1st pregnancy, is not taking heparin or warfarin and is homozygous for the wild-type alleles. 3 In 
the value column: a positive value = increased risk of having a poor pregnancy outcome; a negative value = 
decreased risk of having a poor pregnancy outcome. 

 
Table 5.49: Results of the generalised linear model showing the influence of variant 4 

on pregnancy outcome 

Factors Value 4 p-value 

Intercept 3 -5.85853 0.0000 

No. Pregnancies -0.30184 0.0855 

Age 0.175363 0.0001 

Warfarin 2.772856 0.0000 

Heparin -1.37856 0.0001 

N/V 1 -0.11292 0.7878 

V/V 2 24.27095 0.9998 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = risk of a poor 
pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is not taking heparin or 
warfarin and is homozygous for the wild-type alleles. 4 In the value column: a positive value = increased risk 
of having a poor pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 
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Table 5.50: Results of the generalised linear model showing the influence of variant 5 

on pregnancy outcome 

Factors Value 4 p-value 

Intercept 3 -5.931135 0.0000 

No Pregnancies -0.298992 0.0873 

Age 0.176081 0.0001 

Warfarin 2.756591 0.0000 

Heparin -1.366261 0.0001 

N/V 1 0.080185 0.8436 

V/V 2 25.255988 0.9999 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = risk of a poor 
pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is not taking heparin or 
warfarin and is homozygous for the wild-type alleles. 4 In the value column: a positive value = increased risk 
of having a poor pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 

 
Table 5.51: Results of the generalised linear model showing the influence of variant 6 

on pregnancy outcome 

Factors Value 4 p-value 

Intercept 3 -5.844 0.0000 

No. Pregnancies -0.308 0.0823 

Age 0.174 0.0001 

Warfarin 2.819 0.0000 

Heparin -1.412 0.0001 

N/V 1 0.003 0.9944 

V/V 2 -0.523 0.7208 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = risk of a poor 
pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is not taking heparin or 
warfarin and is homozygous for the wild-type alleles. 4 In the value column: a positive value = increased risk 
of having a poor pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 

 
Table 5.52: Results of the generalised linear model showing the influence of variant 7 

on pregnancy outcome 

Factors Value 4 p-value 

Intercept 3 -5.856 0.0000 

No. Pregnancies -0.307 0.0817 

Age 0.174 0.0001 

Warfarin 2.819 0.0000 

Heparin -1.412 0.0000 

N/V 1 0.033 0.9420 

V/V 2 -0.517 0.7238 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = risk of a poor 
pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is not taking heparin or 
warfarin and is homozygous for the wild-type alleles. 4 In the value column: a positive value = increased risk 
of having a poor pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 
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Table 5.53: Results of the generalised linear model showing the influence of variant 8 

on pregnancy outcome 

Factors Value 4   p-value 

Intercept 3 -6.117 0.0000 

No. Pregnancies -0.313 0.0762 

Age 0.179 0.0001 

Warfarin 2.803 0.0000 

Heparin -1.418 0.0001 

N/V 1 0.463 0.2297 

V/V 2 0.126 0.8240 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = risk of a poor 
pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is not taking heparin or 
warfarin and is homozygous for the wild-type alleles. 4 In the value column: a positive value = increased risk 
of having a poor pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 
 
 
Table 5.54: Results of the generalised linear model showing the influence of variant 9 

on pregnancy outcome 

Factors Value 3 p-value 

Intercept 2 -5.843 0.0000 

No. Pregnancies -0.318 0.0711 

Age 0.176 0.0001 

Warfarin 2.78 0.0000 

Heparin -1.342 0.0002 

N/V 1 -1.415 0.2397 
1 N/V = heterozygous genotype. 2 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is 
having their 1st pregnancy, is not taking heparin or warfarin and is homozygous for the wild-type alleles. 3 In 
the value column: a positive value = increased risk of having a poor pregnancy outcome; a negative value = 
decreased risk of having a poor pregnancy outcome. 

 
Table 5.55: Results of the generalised linear model showing the influence of variant 

10 on pregnancy outcome 

Factors Value 3 p-value 

Intercept 2 -5.763 0.0000 

No. Pregnancies -0.305 0.0823 

Age 0.174 0.0001 

Warfarin 2.854 0.0000 

Heparin -1.425 0.0001 

N/V 1 -0.795 0.1290 
1 N/V = heterozygous genotype. 2 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is 
having their 1st pregnancy, is not taking heparin or warfarin and is homozygous for the wild-type alleles. 3 In 
the value column: a positive value = increased risk of having a poor pregnancy outcome; a negative value = 
decreased risk of having a poor pregnancy outcome. 
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Table 5.56: Results of the generalised linear model showing the influence of variant 

11 on pregnancy outcome 

Factors Value 3 p-value 

Intercept 2 -5.702 0.0000 

No. Pregnancies -0.278 0.1109 

Age 0.171 0.0001 

Warfarin 2.817 0.0000 

Heparin -1.395 0.0001 

N/V 1 -0.832 0.0916 
1 N/V = heterozygous genotype. 2 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is 
having their 1st pregnancy, is not taking heparin or warfarin and is homozygous for the wild-type alleles. 3 In 
the value column: a positive value = increased risk of having a poor pregnancy outcome; a negative value = 
decreased risk of having a poor pregnancy outcome. 

 
Table 5.57: Results of the generalised linear model showing the influence of variant 

12 on pregnancy outcome 

Factors Value 4 p-value 

Intercept 3 -6.231 0.0000 

No. Pregnancies -0.381 0.0376 

Age 0.185 0.0001 

Warfarin 2.957 0.0000 

Heparin -1.445 0.0001 

N/V 1 0.423 0.3483 

V/V 2 1.532 0.1010 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = risk of a poor 
pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is not taking heparin or 
warfarin and is homozygous for the wild-type alleles. 4 In the value column: a positive value = increased risk 
of having a poor pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 

 
Table 5.58: Results of the generalised linear model showing the influence of variant 

13 on pregnancy outcome 

Factors Value 4 p-value 

Intercept 3 -5.709 0.0000 

No. Pregnancies -0.351 0.0457 

Age 0.186 0.0000 

Warfarin 2.883 0.0000 

Heparin -1.511 0.0000 

N/V 1 -0.741 0.0440 

V/V 2 -1.407 0.0490 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = risk of a poor 
pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is not taking heparin or 
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warfarin and is homozygous for the wild-type alleles. 4 In the value column: a positive value = increased risk 
of having a poor pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 
 

Table 5.59: Results of the generalised linear model showing the influence of variant 

14 on pregnancy outcome 

Factors Value 4 p-value 

Intercept 3 -5.788 0.0000 

No. Pregnancies -0.355 0.0468 

Age 0.184 0.0001 

Warfarin 2.889 0.0000 

Heparin -1.479 0.0001 

N/V 1 -0.305 0.4355 

V/V 2 -0.703 0.1742 
1 N/V = heterozygous genotype; 2 V/V = homozygous variant genotype. 3 Intercept = risk of a poor 
pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is not taking heparin or 
warfarin and is homozygous for the wild-type alleles. 4 In the value column: a positive value = increased risk 
of having a poor pregnancy outcome; a negative value = decreased risk of having a poor pregnancy outcome. 
 

Interaction Models 

These models show the influence of the 14 CYP2C9 and VKORC1 variants on pregnancy 

outcome when they interact with warfarin, adjusting for the influence of the environmental 

factors identified in section 3.3.1. Each result has two sections. The first section describes 

the different factors (age, number of pregnancies, heparin, warfarin and variants), their 

level of influence on pregnancy outcome and their p-values. In this section the factor 

shown as Warfarin: V represents the interaction between warfarin and that variant. The 

second section shows the overall value of influence of a particular allele on pregnancy 

outcome when warfarin is and is not being taken during pregnancy. N represents the wild 

type allele and V represents the variant allele. If a patient has a normal allele and is taking 

warfarin the degree of influence is determined by the value shown when warfarin is taken 

(in the first section). If the patient is not taking warfarin and has the normal allele they will 

have no value of influence on pregnancy outcome. If the patient is not on warfarin but they 

have the variant allele their degree of influence is determined by the value of the variant 
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allele alone. If the patient is on warfarin and they have the variant allele their degree of 

influence is determined by the sum of the value of warfarin alone, the allele alone and the 

interaction of the allele and warfarin. I was unable to obtain results for variants 6, 9, 10, 11 

and 13 because the models gave large statistical errors. 

 
Table 5.60: Interaction model showing the influence of variant 1 on pregnancy 

outcome 

Factors Value 2 p-Value 

Intercept 1 -6.059 0.0000 

Pregnancy -0.367 0.0487 

Age 0.184 0.0001 

Heparin -1.455 0.0001 

Warfarin 2.766 0.0000 

Variant Allele 0.22 0.7443 

Warfarin : V 4 0.252 0.7270 

     

  N 3 V 4 

Warfarin (Yes) 2.766 3.238 

Warfarin (No) 0 0.220 
1 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is 
not taking heparin or warfarin and is homozygous for the wild-type alleles. 2 In the value column: a positive 
value = increased risk of having a poor pregnancy outcome; a negative value = decreased risk of having a 
poor pregnancy outcome.  3 N = wild-type allele, 4 V = variant allele. Warfarin (yes) = warfarin taken during 
pregnancy; Warfarin (no) = warfarin not taken during pregnancy. 
 
 

Table 5.61: Interaction model showing the influence of variant 2 on pregnancy 

outcome 

Factors Value 2 p-Value 

Intercept 1 -7.484 0.0000 

Pregnancy -0.385 0.0329 

Age 0.184 0.0001 

Heparin -1.519 0.0000 

Warfarin 4.182 0.0000 

Variant Allele 4 2.115 0.0111 

Warfarin : V 4 -1.509 0.0845 

     

  N 3 V 4 

Warfarin (Yes) 4.182 4.788 

Warfarin (No) 0 2.115 
1 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is 
not taking heparin or warfarin and is homozygous for the wild-type alleles. 2 In the value column: a positive 
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value = increased risk of having a poor pregnancy outcome; a negative value = decreased risk of having a 
poor pregnancy outcome.  3 N = wild-type allele, 4 V = variant allele. Warfarin (yes) = warfarin taken during 
pregnancy; Warfarin (no) = warfarin not taken during pregnancy. 
 

Table 5.62: Interaction model showing the influence of variant 3 on pregnancy 

outcome 

Factors Value 2 p-Value 

Intercept 1 -6.304 0.0000 

Pregnancy -0.351 0.0564 

Age 0.184 0.0001 

Heparin -1.554 0.0000 

Warfarin 3.234 0.0000 

Variant Allele 4 2.766 0.0503 

Warfarin : V 4 -3.51 0.0171 

     

  N 3 V 4 

Warfarin (Yes) 3.234 2.490 

Warfarin (No) 0 2.766 
1 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is 
not taking heparin or warfarin and is homozygous for the wild-type alleles. 2 In the value column: a positive 
value = increased risk of having a poor pregnancy outcome; a negative value = decreased risk of having a 
poor pregnancy outcome.  3 N = wild-type allele, 4 V = variant allele. Warfarin (yes) = warfarin taken during 
pregnancy; Warfarin (no) = warfarin not taken during pregnancy. 
 

Table 5.63: Interaction model showing the influence of variant 4 on pregnancy 

outcome 

Factors Value 2 p-Value 

Intercept 1 -5.746 0.0000 

Pregnancy -0.329 0.0618 

Age 0.18 0.0001 

Heparin -1.443 0.0001 

Warfarin 2.558 0.0000 

Variant Allele 4 -1.112 0.3010 

Warfarin : V 4 1.311 0.2434 

     

  N 3 V 4 

Warfarin (Yes) 2.558 2.757 

Warfarin (No) 0 -1.112 
1 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is 
not taking heparin or warfarin and is homozygous for the wild-type alleles. 2 In the value column: a positive 
value = increased risk of having a poor pregnancy outcome; a negative value = decreased risk of having a 
poor pregnancy outcome.  3 N = wild-type allele, 4 V = variant allele. Warfarin (yes) = warfarin taken during 
pregnancy; Warfarin (no) = warfarin not taken during pregnancy. 
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Table 5.64: Interaction model showing the influence of variant 5 on pregnancy 

outcome 

Factors Value 2 p-Value 

Intercept 1 -5.787 0.0000 

Pregnancy -0.331 0.0595 

Age 0.182 0.0001 

Heparin -1.449 0.0001 

Warfarin 2.485 0.0000 

Variant Allele 4 -1.112 0.2989 

Warfarin : V 4 1.586 0.1555 

     

  N 3 V 4 

Warfarin (Yes) 2.485 2.959 

Warfarin (No) 0 -1.112 
1 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is 
not taking heparin or warfarin and is homozygous for the wild-type alleles. 2 In the value column: a positive 
value = increased risk of having a poor pregnancy outcome; a negative value = decreased risk of having a 
poor pregnancy outcome.  3 N = wild-type allele, 4 V = variant allele. Warfarin (yes) = warfarin taken during 
pregnancy; Warfarin (no) = warfarin not taken during pregnancy. 
 

Table 5.65: Interaction model showing the influence of variant 7 on pregnancy 

outcome 

Factors Value 2 p-Value 

Intercept 1 -5.955 0.0000 

Pregnancy -0.309 0.0801 

Age 0.172 0.0001 

Heparin -1.406 0.0001 

Warfarin 3.017 0.0000 

Variant Allele 4 0.763 0.4131 

Warfarin : V 4 -0.935 0.3471 

     

  N 3 V 4 

Warfarin (Yes) 3.017 2.845 

Warfarin (No) 0 0.763 
1 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is 
not taking heparin or warfarin and is homozygous for the wild-type alleles. 2 In the value column: a positive 
value = increased risk of having a poor pregnancy outcome; a negative value = decreased risk of having a 
poor pregnancy outcome.  3 N = wild-type allele, 4 V = variant allele. Warfarin (yes) = warfarin taken during 
pregnancy; Warfarin (no) = warfarin not taken during pregnancy. 
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Table 5.66: Interaction model showing the influence of variant 8 on pregnancy 

outcome 

Factors Value 2 p-Value 

Intercept 1 -5.969 0.0000 

Pregnancy -0.313 0.0764 

Age 0.177 0.0001 

Heparin -1.408 0.0001 

Warfarin 2.763 0.0000 

Variant Allele 4 0.119 0.8353 

Warfarin : V 4 0.076 0.8998 

     

  N 3 V 4 

Warfarin (Yes) 2.763 2.958 

Warfarin (No) 0 0.119 
1 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is 
not taking heparin or warfarin and is homozygous for the wild-type alleles. 2 In the value column: a positive 
value = increased risk of having a poor pregnancy outcome; a negative value = decreased risk of having a 
poor pregnancy outcome.  3 N = wild-type allele, 4 V = variant allele. Warfarin (yes) = warfarin taken during 
pregnancy; Warfarin (no) = warfarin not taken during pregnancy. 

 

Table 5.67: Interaction model showing the influence of variant 12 on pregnancy 

outcome 

Factors Value 2 p-Value 

Intercept 1 -6.204 0.0000 

Pregnancy -0.362 0.0486 

Age 0.181 0.0001 

Heparin -1.444 0.0001 

Warfarin 2.979 0.0000 

Variant Allele 4 0.646 0.2594 

Warfarin : V 4 -0.083 0.8964 

     

  N 3 V 4 

Warfarin (Yes) 2.979 3.542 

Warfarin (No) 0 0.646 
1 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is 
not taking heparin or warfarin and is homozygous for the wild-type alleles. 2 In the value column: a positive 
value = increased risk of having a poor pregnancy outcome; a negative value = decreased risk of having a 
poor pregnancy outcome.  3 N = wild-type allele, 4 V = variant allele. Warfarin (yes) = warfarin taken during 
pregnancy; Warfarin (no) = warfarin not taken during pregnancy. 
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Table 5.68: Interaction model showing the influence of variant 14 on pregnancy 

outcome 

Factors Value 2 p-Value 

Intercept 1 -5.563 0.0000 

Pregnancy -0.443 0.0176 

Age 0.207 0.0000 

Heparin -1.521 0.0000 

Warfarin 1.922 0.0018 

Variant Allele 4 -1.357 0.0201 

Warfarin : V 4 1.397 0.0188 

     

  N 3 V 4 

Warfarin (Yes) 1.922 1.962 

Warfarin (No) 0 -1.357 
1 Intercept = risk of a poor pregnancy outcome if the patient is 0 years old, is having their 1st pregnancy, is 
not taking heparin or warfarin and is homozygous for the wild-type alleles. 2 In the value column: a positive 
value = increased risk of having a poor pregnancy outcome; a negative value = decreased risk of having a 
poor pregnancy outcome.  3 N = wild-type allele, 4 V = variant allele. Warfarin (yes) = warfarin taken during 
pregnancy; Warfarin (no) = warfarin not taken during pregnancy. 
 

Haplo.stats results for pregnancy outcome analysis 

These haplo.stats results show the influence of certain allele combinations on pregnancy 

outcome when warfarin is and is not taken during pregnancy, respectively. Each haplo.stats 

result contains two sections. In the top section, the pool allele combination frequency 

refers to the normal and poor outcome frequencies together. The haplo-score represents the 

influence of that particular allele combination on pregnancy outcome. Positive values 

result in an increase in the risk of having a poor pregnancy outcome. Negative values result 

in a decrease in having a poor pregnancy outcome. The p-values or sim p-values next to 

each allele combination is the p-value for that particular allele combination. The allele 

combinations in bold are the normal alleles, which are not always present in the analysis. 

The p-value in the bottom section is the probability value for the entire analysis.  
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Table 5.69: Haplo.stats result using variants 1-4 in pregnancies on warfarin 

Allele 
combination 

1 2 3 4 Haplo-
Score 

p-Value 
(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

2 G A C C -0.8718 0.3833 0.0905 0.1166 0.0662 
5 A A C C -0.5353 0.5924 0.6254 0.6481 0.6113 
4 A A C T 0.5638 0.5729 0.1173 0.0988 0.1315 
8 A G C C 0.5850 0.5586 0.1173 0.1019 0.1255 
1 G A C T NA NA 0.0000 0.0000 0.0000 
3 G G C C NA NA 0.0051 0.0000 0.0127 
6 A A T C NA NA 0.0272 0.0198 0.0331 
7 A G C T NA NA 0.0004 0.0012 0.0001 
9 A G T C NA NA 0.0170 0.0136 0.0195 
        Model: 

        
Global-

Stat 
1.7583 

        d.f 4 
        p-Value 0.7801 

The allele combination in bold = wild-type alleles 
 

Table 5.70: Haplo.stats result using variants 1-4 in pregnancies off warfarin  

Allele 
combination 1 2 3 4 Haplo-

Score 
Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. Freq 

(Poor) 
Haplo. 
Freq 

6 A A C C -1.4776 0.1680 0.4859 0.5085 0.2500 
5 A A C T -0.0869 1.0000 0.1342 0.1351 0.1250 
1 G A C C 0.6007 0.5880 0.1477 0.1395 0.2500 
9 A G C C 1.3390 0.2800 0.1842 0.1666 0.3750 
2 G A T C NA NA 0.0000 NA NA 
3 G G C C NA NA 0.0237 0.0233 0.0000 
4 G G T C NA NA 0.0116 0.0129 NA 
7 A A T C NA NA 0.0128 0.0142 NA 
8 A G C T NA NA 0.0000 0.0000 NA 

        Model: 
        Global-Stat 7.4808 
        d.f 4 
        p-Value 0.1126 
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Table 5.71: Haplo.stats result using variants 2-5 in pregnancies on warfarin 

Allele 
combination 

2 3 4 5 Haplo-
Score 

p-Value 
(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

3 A C C C -1.5659 0.1174 0.6962 0.7688 0.6374 
1 A C T T 0.5558 0.5784 0.1154 0.0954 0.1316 
6 G C C C 0.5953 0.5517 0.1200 0.0979 0.1389 
2 A C C T NA NA 0.0221 NA 0.0395 
4 A T C C NA NA 0.0266 0.0191 0.0336 
5 G C T T NA NA 0.0023 0.0046 0.0000 
7 G T C C NA NA 0.0175 0.0142 0.0190 
        Model: 

        
Global-

Stat 
3.3202 

        d.f 3 
        p-Value 0.3449 

The allele combination in bold = wild-type alleles 
 

 Table 5.72: Haplo.stats result using variants 2-5 in pregnancies off warfarin 

Allele 
combination 

2 3 4 5 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

3 A C C C -0.8224 0.5240 0.6154 0.6291 0.5000 
1 A C T T -0.0869 0.9640 0.1342 0.1351 0.1250 
6 G C C C 1.2539 0.2650 0.2138 0.1953 0.3750 
2 A C C T NA NA 0.0122 0.0135 NA 
4 A T C C NA NA 0.0187 0.0196 NA 
5 G C T T NA NA 0.0000 0.0000 NA 
7 G T C C NA NA 0.0057 0.0074 NA 
        Model: 

        
Global-

Stat 
1.7917 

        d.f 3 
        p-Value 0.6167 

The allele combination in bold = wild-type alleles 
 

Table 5.73: Haplo.stats result using variants 3-6 in pregnancies on warfarin 

Allele 
combination 

3 4 5 6 Haplo-
Score 

p-Value 
(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

5 C C C T -0.7833 0.4334 0.1490 0.1722 0.1297 
6 C C C A -0.5401 0.5891 0.6672 0.6945 0.6466 
2 C T T A 0.5652 0.5719 0.1177 0.1000 0.1316 
8 T C C A 0.6803 0.4963 0.0379 0.0222 0.0494 
1 C T T T NA NA 0.0000 NA 0.0000 
3 C C T T NA NA 0.0138 NA 0.0249 
4 C C T A NA NA 0.0082 NA 0.0145 
        Model: 

        
Global-

Stat 
3.1037 

        d.f 4 
        p-Value 0.5406 

The allele combination in bold = wild-type alleles 
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Table 5.74: Haplo.stats result using variants 3-6 in pregnancies off warfarin 

Allele 
combination 

3 4 5 6 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

1 C T T A -0.0869 0.8610 0.1341 0.1351 0.1250 
4 C C C A 0.7036 0.5970 0.7927 0.7838 0.8750 
2 C C T A NA NA 0.0122 0.0135 NA 
3 C C C T NA NA 0.0366 0.0405 NA 
5 T C C A NA NA 0.0244 0.0270 NA 
        Model: 

        
Global-

Stat 
0.85941 

        d.f 2 
        p-Value 0.6507 

 

Table 5.75: Haplo.stats result using variants 4-7 in pregnancies on warfarin 

Allele 
combination 

4 5 6 7 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

5 C C T G -1.7033 0.0940 0.1257 0.1833 0.0797 
7 C C A C -0.2688 0.7920 0.7052 0.7167 0.6966 
2 T T A C 0.5652 0.5900 0.1177 0.1000 0.1316 
1 T T T G NA NA 0.0000 NA 0.0000 
3 C T T G NA NA 0.0140 NA 0.0255 
4 C T A C NA NA 0.0080 NA 0.0139 
6 C C T C NA NA 0.0294 NA 0.0526 
        Model: 

        
Global-

Stat 
8.1166 

        d.f 3 
        p-Value 0.0437 

The allele combination in bold = wild-type alleles 
 

Table 5.76: Haplo.stats result using variants 4-7 in pregnancies off warfarin 

Allele 
combination 

4 5 6 7 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

2 T T A C -1.0299 0.4850 0.1139 0.1241 0.0000 
6 C C A C -0.5257 0.6820 0.7886 0.7948 0.7500 
1 T T A G NA NA 0.0203 0.0110 0.1250 
3 C T A C NA NA 0.0122 0.0135 NA 
4 C C T G NA NA 0.0366 0.0405 NA 
5 C C A G NA NA 0.0285 0.0160 0.1250 
        Model: 

        
Global-

Stat 
3.0579 

        d.f 2 
        p-Value 0.2168 
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Table 5.77: Haplo.stats result using variants 5-8 in pregnancies on warfarin 

Allele 
combination 

5 6 7 8 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

4 C T G G -1.6325 0.1160 0.1282 0.1833 0.0765 
7 C A C A -0.4592 0.6710 0.5605 0.5833 0.5501 
8 C A C G 0.2907 0.7730 0.1422 0.1333 0.1497 
2 T A C A 0.8908 0.4160 0.1282 0.1000 0.1423 
1 T T G G NA NA 0.0115 NA 0.0287 
3 T A C G NA NA 0.0000 0.0000 0.0000 
5 C T C A NA NA 0.0099 NA 0.0181 
6 C T C G NA NA 0.0196 NA 0.0346 
        Model: 

        
Global-

Stat 
8.0229 

        d.f 4 
        p-Value 0.0907 

 

Table 5.78: Haplo.stats result using variants 5-8 in pregnancies off warfarin 

Allele 
combination 

5 6 7 8 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

2 T A C A -1.1377 0.5640 0.1252 0.1392 NA 
7 C A C A -0.7546 0.4730 0.5943 0.6041 0.5000 
8 C A C G 0.3989 0.9070 0.1951 0.1892 0.2500 
1 T A G A NA NA 0.0211 0.0095 0.1250 
3 T A C G NA NA 0.0000 NA NA 
4 C T G G NA NA 0.0366 0.0405 NA 
5 C A G A NA NA 0.0155 0.0176 NA 
6 C A G G NA NA 0.0122 NA 0.1250 
        Model: 

        
Global-

Stat 
4.0127 

        d.f 3 
        p-Value 0.2601 

 

Table 5.79: Haplo.stats result using variants 6-9 in pregnancies on warfarin 

Allele 
combination 

6 7 8 9 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

1 T G G C -1.2534 0.2290 0.1397 0.1833 0.1053 
6 A C G C 0.2727 0.7990 0.1417 0.1333 0.1483 
4 A C A C 0.5254 0.5820 0.6745 0.6500 0.6938 
2 T C A C NA NA 0.0093 NA 0.0167 
3 T C G C NA NA 0.0201 NA 0.0359 
5 A C A T NA NA 0.0147 0.0333 NA 
        Model: 

        
Global-

Stat 
1.8403 

        d.f 3 
        p-Value 0.6062 
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Table 5.80: Haplo.stats result using variants 6-9 in pregnancies off warfarin 

Allele 
combination 

6 7 8 9 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

4 A C A C -1.2485 0.1810 0.6951 0.7162 0.5000 
6 A C G C 0.3989 0.8450 0.1951 0.1892 0.2500 
1 T G G C NA NA 0.0366 0.0405 NA 
2 A G A C NA NA 0.0366 0.0270 0.1250 
3 A G G C NA NA 0.0122 NA 0.1250 
5 A C A T NA NA 0.0244 0.0270 NA 
        Model: 

        
Global-

Stat 
2.4271 

        d.f 2 
        p-Value 0.2972 

 

Table 5.81: Haplo.stats result using variants 7-10 in pregnancies on warfarin 

Allele 
combination 7 8 9 10 Haplo-

Score 
Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

1 G G C C -1.2534 0.2530 0.1397 0.1833 0.1053 
2 C A C T -1.1148 0.4410 0.0588 0.0833 0.0395 
5 C G C C 0.8906 0.4030 0.1618 0.1333 0.1842 
3 C A C C 1.3146 0.2400 0.6250 0.5667 0.6711 
4 C A T C NA NA 0.0147 0.0333 NA 
        Model: 

        
Global-

Stat 
7.0695 

        d.f 4 
        p-Value 0.1323 

 

Table 5.82: Haplo.stats result using variants 7-10 in pregnancies off warfarin 

Allele 
combination 7 8 9 10 Haplo-

Score 
Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

4 C A C C -0.7989 0.2970 0.6283 0.6425 0.5000 
7 C G C C 0.3555 0.7810 0.2010 0.1953 0.2500 
1 G A C C NA NA 0.0424 0.0331 0.1250 
2 G G C C NA NA 0.0429 0.0344 0.1250 
3 C A C T NA NA 0.0610 0.0676 NA 
5 C A T C NA NA 0.0244 0.0270 NA 
6 C G C T NA NA 0.0000 0.0000 NA 
        Model: 

        
Global-

Stat 
0.74395 

        d.f 2 
        p-Value 0.6894 
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Table 5.83: Haplo.stats result using variants 8-11 in pregnancies on warfarin 

Allele 
combination 

8 9 10 11 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

1 A C T T -1.1148 0.4560 0.0588 0.0833 0.0395 
4 G C C C -0.3232 0.7600 0.3015 0.3167 0.2895 
2 A C C C 1.3146 0.2430 0.6250 0.5667 0.6711 
3 A T C C NA NA 0.0147 0.0333 NA 
        Model: 

        
Global-

Stat 
5.1863 

        d.f 3 
        p-Value 0.1587 

 

Table 5.84: Haplo.stats result using variants 8-11 in pregnancies off warfarin 

Allele 
combination 

8 9 10 11 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. Freq 

(Poor) 
Haplo. 
Freq 

2 A C C C -0.2813 0.8130 0.6707 0.6757 0.6250 
5 G C C C 0.9057 0.3750 0.2317 0.2162 0.3750 
1 A C T T NA NA 0.0610 0.0676 NA 
3 A T C C NA NA 0.0244 0.0270 NA 
4 G C T T NA NA 0.0000 0.0000 NA 
6 G C C T NA NA 0.0122 0.0135 NA 
        Model: 
        Global-Stat 1.5203 

        d.f 2 
        p-Value 0.4676 

 

Table 5.85: Haplo.stats result using variants 9-12 in pregnancies on warfarin 

Allele 
combination 9 10 11 12 Haplo-

Score 
Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

1 C T T C -1.1148 0.4640 0.0588 0.0833 0.0395 

3 C C C T -0.0975 1.0000 0.0809 0.0833 0.0789 

2 C C C C 1.4460 0.2040 0.8456 0.8000 0.8816 

4 T C C C NA NA 0.0147 0.0333 NA 

        Model: 

        
Global-

Stat 
4.2835 

        d.f 3 

        p-Value 0.2324 
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Table 5.86: Haplo.stats result using variants 9-12 in pregnancies off warfarin 

Allele 
combination 

9 10 11 12 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

3 C C C C -0.6864 0.5510 0.7329 0.7470 0.6250 

4 C C C T 1.4237 0.1450 0.1695 0.1449 0.3750 

1 C T T C NA NA 0.0476 0.0503 NA 

2 C T T T NA NA 0.0134 0.0173 NA 

5 C C T C NA NA 0.0122 0.0135 NA 

6 T C C C NA NA 0.0244 0.0270 NA 

        Model: 

        
Global-

Stat 
2.6497 

        d.f 2 

        p-Value 0.2659 

 

Table 5.87: Haplo.stats result using variants 13-14 in pregnancies on warfarin 

Allele 
combination 

13 14 Haplo-
Score 

Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. 
Freq 

(Poor) 
Haplo. 
Freq 

2 C A -0.6223 0.5460 0.5515 0.5833 0.5263 

3 T G 0.1650 0.9250 0.2574 0.2500 0.2632 

1 C G 0.6306 0.6380 0.1912 0.1667 0.2105 

      Model: 

      
Global-

Stat 
0.50992 

      d.f 2 

      p-Value 0.7750 

The allele combination in bold = wild-type alleles 
 

Table 5.88: Haplo.stats result using variants 13-14 in pregnancies off warfarin 

Allele 
combination 13 14 Haplo-

Score 
Sim p-
Value 

(Pool) 
Haplo. 
Freq 

(Normal) 
Haplo. Freq 

(Poor) 
Haplo. 
Freq 

3 T G -1.8295 0.0830 0.2561 0.2838 NA 

1 C G -0.1777 1.0000 0.1463 0.1487 0.1250 

2 C A 1.7420 0.0390 0.5976 0.5676 0.8750 

      Model: 

      Global-Stat 3.7977 

      d.f 2 

      p-Value 0.1497 

The allele combination in bold = wild-type alleles. The allele combination that has been highlighted = 
shows a significant sim p-value 
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Appendix M 

 

This appendix contains the raw genotype and clinical data that was collected and used for this project. Referred in the first paragraph of page 44. 

 

Genotype Data 

 

Table 5.89: Genotype Data for the first 15 previously described CYP2C9 variants in the 100 Control Samples 

Sample 
Number 

2 - 
R144C 

3 - 
I354K 

4 - 
I359T 

5 - 
D360E 

6 - 818 
delA 

7 - L19I 8 - 
R150H 

9 - 
H251R 

10 - 
E272G 

11 - 
R355W 

12 - 
P489S 

13 - 
L90P 

14 - 
R125H 

15 - 
S162X 

1 C/C A/A  T/T C/C A/A  C/C G/G A/A  A/A  C/C C/C T/T G/G C/C 
2 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
3 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
4 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
5 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
6 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
7 C/C A/A T/T C/G A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
8 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
9 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/T C/C T/T G/G C/C 
10 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
11 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
12 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 
13 C/C A/A T/T C/G A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
14 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
15 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
16 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
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17 C/C A/C T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
18 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
19 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
20 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
21 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
22 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
23 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
24 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
25 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
26 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
27 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
28 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
29 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
30 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
31 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
32 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
33 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/T C/C T/T G/G C/C 
34 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 
35 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
36 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/T C/C T/T G/G C/C 
37 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
38 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
39 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
40 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
41 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
42 C/C A/A T/T C/C A/A C/C G/G G/G A/A C/C C/C T/T G/G C/C 
43 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
44 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
45 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
46 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
47 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
48 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
49 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
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50 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
51 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
52 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
53 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
54 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
55 C/C A/A T/T C/C A/A C/C G/G G/G A/A C/C C/C T/T G/G C/C 
56 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
57 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
58 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
59 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 
60 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
61 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
62 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
63 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 
64 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/T C/C T/T G/G C/C 
65 C/C A/A T/T C/C A/A C/C G/G A/G A/A T/T C/C T/T G/G C/C 
66 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
67 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
68 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
69 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
70 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
71 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 
72 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
73 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
74 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
75 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
76 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
77 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
78 C/C A/A T/T C/C A/A C/C G/G G/G A/A C/C C/C T/T G/G C/C 
79 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
80 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
81 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
82 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
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83 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
84 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/T C/C T/T G/G C/C 
85 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
86 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
87 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
88 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
89 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
90 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
91 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
92 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 
93 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
94 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
95 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
96 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/T C/C T/T G/G C/C 
97 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
98 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
99 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/T C/C T/T G/G C/C 
100 C/C A/A T/T C/C A/- C/C G/G A/A A/A C/C C/C T/T G/G C/C 

TOTALS  C = 200 A = 199 T = 200 C = 198 A = 199 C = 200 G = 184 A = 176 A = 200 C = 191 C = 200 T = 200 G = 200 C = 200 

T = 0 C = 1 C = 0 G = 2 Del = 1 A = 0 A = 16 G = 24 G = 0 T = 9 T = 0 C = 0 A = 0 A = 0 
0 1 0 2 1 0 16 18 0 7 0 0 0 0 
0 0 0 0 0 0 0 3 0 1 0 0 0 0 

TOTALS 

              

In this table the variants that have been highlighted in blue are the variants for which some patients or controls were heterozygous or homozygous and were used in the analyses described 
in sections three to four. Heterozygotes are highlighted in orange and homozygotes in green.   

 
 



175 

 

Table 5.90: Genotype Data for variants 16 – 30 of the previously described CYP2C9 variants in the 100 Control Samples 

Sample 
Number 

16 - 
T299A 

17 - 
P382S 

18 - 
D397A 

19 - 
Q454H 

20 - 
G70R 

21 - 
P30L 

22 - 
N41D 

23 - 
V76M 

24 - 
E354K 

25 - 
353-

362del 

26 - 
T130R 

27 - 
R150L 

28 - 
Q214L 

29 - 
P279T 

30 - 
A477T 

1 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
2 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
3 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
4 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
5 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
6 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
7 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
8 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
9 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
10 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
11 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
12 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
13 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
14 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
15 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
16 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
17 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
18 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
19 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
20 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
21 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
22 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
23 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
24 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
25 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
26 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
27 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
28 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
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29 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
30 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
31 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
32 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
33 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
34 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
35 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
36 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
37 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
38 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
39 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
40 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
41 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
42 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
43 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
44 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
45 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
46 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
47 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
48 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
49 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
50 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
51 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
52 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
53 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
54 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
55 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
56 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
57 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
58 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
59 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
60 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
61 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
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62 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
63 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
64 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
65 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
66 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
67 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
68 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
69 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
70 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
71 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
72 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
73 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
74 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
75 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
76 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
77 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
78 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
79 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
80 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
81 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
82 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
83 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
84 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
85 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
86 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
87 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
88 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
89 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
90 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
91 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
92 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
93 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
94 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
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95 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
96 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
97 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
98 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/A A/A C/C G/G 
99 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 
100 A/A C/C A/A G/G G/G C/C A/A G/G G/G No Del C/C G/G A/A C/C G/G 

A = 
200 

C = 
200 

A = 200 G = 200 G = 200 
C = 
200 

A = 
200 

G = 
200 

G = 200 
No Del 
= 200 

C = 200 G = 184 
A = 
200 

C = 
200 

G = 200 

G = 0 T = 0 C = 0 C = 0 C = 0 T = 0 G = 0 A = 0 A = 0  G = 0 T = 0 T = 0 A = 0 A = 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOTALS  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 5.91: Genotype Data for the first 13 new CYP2C9 variants observed in the 100 Control Samples 

Variants: Exon 1 Fragment Exon 2 & 3 Fragment Exon 4 Fragment Exon 6 Fragment 
Sample 
Number 

I42V 
12930 
T>C 

I74V V76Q 
16060 
G>A 

16090 
T>C 

16094 
C>A 

16179 
T>A 

T130T 
21711 
G>C 

21748 
G>A 

46028 
A>G 

46092 
C>T 

1 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
2 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
3 A/A T/C A/A T/T G/G T/C C/C T/A G/G G/C G/G A/G C/C 
4 A/A T/C A/A T/T G/G T/C C/C T/A G/G G/C G/G A/G C/C 
5 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 
6 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
7 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 
8 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
9 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/A C/C 
10 A/A T/T A/A T/A G/G T/T C/C T/A G/G G/C G/G A/G C/C 
11 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/T 
12 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
13 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
14 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/T 
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15 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
16 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 
17 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
18 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
19 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/T 
20 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
21 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
22 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
23 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
24 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 
25 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
26 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
27 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
28 A/A T/C A/A T/T G/G T/C C/C T/A G/G G/C G/G A/G C/C 
29 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
30 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
31 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
32 A/A T/T A/A T/T G/G T/T C/C A/A G/G C/C G/G A/G C/C 
33 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
34 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
35 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 
36 A/A T/T A/A T/T G/G T/T C/A T/T G/T G/G G/G A/G C/C 
37 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
38 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/A C/C 
39 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
40 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 
41 A/A T/T A/A T/T G/A T/T C/C T/T G/G G/G G/G A/A C/C 
42 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
43 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
44 A/A T/T A/A T/T G/G T/T C/C T/T G/G C/C G/G A/A C/C 
45 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
46 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
47 A/A C/C A/A T/T G/G C/C C/C T/T G/G G/G G/G A/A C/C 
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48 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 
49 A/A C/C A/A T/T G/G C/C C/C T/T G/G G/G G/G A/A C/C 
50 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
51 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
52 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/C G/G A/G C/C 
53 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
54 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
55 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/A C/C 
56 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/A A/A C/C 
57 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 
58 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 
59 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
60 A/A T/T A/A T/T G/G T/T C/A T/A G/T G/C G/G G/G C/C 
61 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
62 A/A T/T A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
63 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
64 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/A C/C 
65 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 
66 A/A T/T A/A T/A G/G T/T C/C T/T G/G G/G G/G A/A C/C 
67 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
68 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
69 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
70 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 
71 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
72 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
73 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
74 A/A T/C A/A T/T G/G T/C C/C T/A G/G G/G G/G A/G C/C 
75 A/A C/C A/A T/T G/G C/C C/C T/T G/G G/G G/G A/A C/C 
76 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
77 A/A T/T A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
78 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
79 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
80 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
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81 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
82 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
83 A/A T/T A/A T/A G/G T/T C/C T/T G/G G/G G/G A/A C/C 
84 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
85 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 
86 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/C G/G A/A C/C 
87 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G G/G C/C 
88 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
89 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
90 A/A T/C A/A T/T G/G T/C C/C T/A G/G G/C G/G A/G C/C 
91 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
92 A/A T/T A/A T/T G/G T/C C/C T/T G/G G/C G/G A/A C/C 
93 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 
94 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/C G/G A/A C/T 
95 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 
96 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/A C/C 
97 A/A T/T A/A T/T G/G T/C C/C T/T G/G G/G G/G G/G C/C 
98 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
99 A/A T/T A/A T/T G/G T/C C/C T/T G/G G/G G/G A/G C/C 
100 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/G C/C 

A = 200 T = 175 A = 200 T = 197 G = 199 T = 170 C = 198 T = 171 G = 198 G = 177 G = 199 A = 154 C = 196 
G = 0 C = 25 G = 0 A = 3 A = 1 C = 30 A = 2 A = 29 T = 2 C = 23 A = 1 G = 46 T = 4 

0 19 0 3 1 24 2 27 2 19 1 40 4 
TOTALS  

0 3 0 0 0 3 0 1 0 2 0 3 0 

The variants in this table are highlighted according to the fragments in which the variants were observed. Heterozygotes are highlighted in orange and homozygotes in green. 
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Table 5.92: Genotype Data for the new CYP2C9 variants observed in the Exon 7, 8 and 9 fragments in the 100 Control Samples 

 

Variants: Exon 7 
Fragment 

Exon 8 Fragment Exon 9 Fragment 

Sample 
Number 

I327T  
60175 
A>G 

60225 
T>A 

60272 
T>C 

60318 
C>T 

60328 
A>T 

A441A  D463D  G465G   
63092 
C>T 

63113 
C>T 

63143 
C>G 

63169 
G>A 

63180 
C>T 

1 T/T A/A T/T T/T C/T A/A C/C C/C A/A C/C C/C C/C G/G C/C 
2 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
3 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
4 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
5 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
6 T/T A/A T/T T/C C/C A/T C/T C/C A/A C/C C/C C/C G/G C/C 
7 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
8 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
9 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
10 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
11 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
12 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
13 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
14 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
15 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
16 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
17 T/T A/A T/T T/T C/C A/A C/C C/C A/T C/C C/C C/C G/G C/C 
18 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
19 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
20 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
21 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
22 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
23 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
24 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
25 T/T A/A T/T T/T C/T A/A C/C C/C A/A C/C C/C C/C G/G C/C 
26 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
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27 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
28 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
29 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
30 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
31 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
32 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
33 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
34 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
35 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
36 T/T A/A T/T T/T C/C A/A C/C C/T A/A C/C C/C C/C G/G C/C 
37 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
38 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
39 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
40 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
41 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
42 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
43 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
44 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
45 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
46 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
47 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
48 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
49 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
50 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
51 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
52 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
53 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
54 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
55 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
56 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
57 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
58 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
59 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 



184 

 

60 T/T A/A T/T T/T C/C A/A C/C C/C A/T C/C C/C C/C G/G C/C 
61 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/T C/C G/G C/C 
62 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
63 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
64 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
65 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
66 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
67 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
68 T/T A/A T/T T/T C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
69 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
70 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
71 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
72 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
73 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
74 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
75 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
76 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
77 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
78 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
79 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
80 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
81 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
82 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
83 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
84 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
85 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
86 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
87 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
88 T/T A/A T/T T/T C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
89 T/T A/A T/T T/C C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
90 T/T A/A T/T T/T C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 
91 T/T A/A T/T T/C C/C A/A C/C C/C A/A C/C C/C C/G G/G C/C 
92 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
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93 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
94 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
95 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
96 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
97 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
98 T/T A/A T/T T/C C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
99 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 
100 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

T = 200 A = 200 
T = 
200 

T = 
186 

C = 
198 

A = 
199 

C = 185 C = 199 A = 198 
C = 
200 

C = 
183 

C = 
199 

G = 
200 

C = 
200 

C = 0 G = 0 A = 0 
C = 
14 

T = 2 T = 1 T = 15 T = 1 T = 2 T = 0 
T = 
17 

G = 1 A = 0 T = 0 

0 0 0 14 2 1 15 1 2 0 17 1 0 0 

TOTALS  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The variants in this table are highlighted according to the fragments in which the variants were observed. Heterozygotes are highlighted in orange and homozygotes in green. 
 

 

Table 5.93: Genotype Data for the first 15 previously described CYP2C9 variants observed in the 113 Patient Samples  

Sample 
Number 

2 - R144C 3 - I354K 4 - I359T 5 - D360E 6 - 818 delA 7 - L19I 8 - R150H 9 - H251R 10 - E272G 11 - R355W 12 - P489S 13 - L90P 14 - R125H 15 - S162X

1 C/C A/A  T/T C/C A/A  C/C G/G A/A  A/A  C/C C/C T/T G/G C/C 

2 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

3 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

4 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

5 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

6 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

7 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

8 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

9 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/T C/C T/T G/G C/C 

10 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
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11 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

12 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

13 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 

14 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

15 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

16 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

17 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

18 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

19 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

20 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

21 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

22 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

23 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

24 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/T C/C T/T G/G C/C 

25 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

26 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

27 C/C A/A T/T C/C A/A C/C A/A A/A A/A C/C C/C T/T G/G C/C 

28 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

29 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

30 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

31 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

32 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

33 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

34 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/T C/C T/T G/G C/C 

35 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

36 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

37 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

38 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

39 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

40 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
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41 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

42 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

43 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

44 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

45 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

46 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

47 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 

48 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

49 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

50 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

51 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 

52 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

53 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

54 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

55 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

56 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

57 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

58 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

59 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

60 C/C A/A T/T C/C A/A C/C G/G G/G A/A C/C C/C T/T G/G C/C 

61 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/T C/C T/T G/G C/C 

62 C/C A/A T/T C/C A/A C/C G/G G/G A/A C/C C/C T/T G/G C/C 

63 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

64 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/T C/C T/T G/G C/C 

65 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

66 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

67 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

68 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 

69 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 

70 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 
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71 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

72 C/C A/A T/T C/C A/A C/C A/A A/G A/A C/C C/C T/T G/G C/C 

73 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

74 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 

75 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

76 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

77 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

78 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

79 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 

80 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

81 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

82 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

83 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

84 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

85 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

86 C/C A/C T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

87 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

88 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

89 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

90 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

91 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

92 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

93 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

94 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

95 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

96 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

97 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

98 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/T C/C T/T G/G C/C 

99 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

100 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 
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101 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

102 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/C C/C T/T G/G C/C 

103 C/C A/A T/T C/C A/A C/C G/A A/A A/A C/C C/C T/T G/G C/C 

104 C/C A/A T/T C/C A/A C/C G/G A/G A/A C/T C/C T/T G/G C/C 

105 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

106 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

107 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

108 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

109 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

110 C/C A/A T/T C/C A/A C/C G/A A/G A/A C/C C/C T/T G/G C/C 

111 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

112 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/T C/C T/T G/G C/C 

113 C/C A/A T/T C/C A/A C/C G/G A/A A/A C/C C/C T/T G/G C/C 

C =  226 A = 225 T = 226 C = 226 A = 226 C = 226 G = 196 A = 186 A = 226 C = 218 C = 226 T = 226 G = 226 C = 226 

T =  0 C = 1 C = 0 G = 0  A = 0 A = 30 G = 40 G = 0 T = 8 T = 0 C = 0 A = 0 A = 0 

0 1 0 0 0 0 26 36 0 8 0 0 0 0 

Totals 
 

0 0 0 0 0 0 2 2 0 0 0 0 0 0 
In this table the variants that have been highlighted in blue are the variants for which some patients or controls were heterozygous or homozygous and were used in the analyses described 
in sections three to four. Heterozygotes are highlighted in orange and homozygotes in green.   

  

Table 5.94: Genotype Data for the previously described CYP2C9 variants 16 – 30, observed in the 113 Patient Samples  

Sample 
Number 

16 - 
T299A 

17 - 
P382S 

18 - 
D397A 

19 - 
Q454H 

20 - G70R 21 - 
P30L 

22 - 
N41D 

23 - 
V76M 

24 - 
E354K 

25 - 353-
362del 

26 - 
T130R 

27 - 
R150L 

28 - 
Q214L 

29 - 
P279T 

30 - 
A477T 

1 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

2 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

3 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

4 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

5 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 



190 

 

6 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

7 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

8 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

9 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

10 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

11 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

12 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

13 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

14 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

15 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

16 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

17 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

18 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

19 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

20 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

21 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

22 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

23 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

24 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

25 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

26 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

27 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C A/A A/A C/C G/G 

28 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

29 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

30 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

31 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

32 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

33 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

34 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

35 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 
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36 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

37 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

38 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

39 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

40 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

41 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

42 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

43 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

44 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

45 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

46 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

47 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

48 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

49 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

50 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

51 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

52 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

53 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

54 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

55 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

56 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

57 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

58 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

59 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

60 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

61 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

62 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

63 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

64 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

65 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 
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66 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

67 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

68 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

69 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

70 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

71 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

72 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C A/A A/A C/C G/G 

73 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

74 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

75 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

76 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

77 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

78 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

79 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

80 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

81 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

82 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

83 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

84 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

85 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

86 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

87 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

88 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

89 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

90 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

91 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

92 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

93 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

94 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

95 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 
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96 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

97 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

98 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

99 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

100 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

101 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

102 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

103 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

104 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

105 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

106 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

107 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

108 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

109 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

110 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/A A/A C/C G/G 

111 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

112 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

113 A/A C/C A/A G/G G/G C/C A/A G/G G/G No del C/C G/G A/A C/C G/G 

A = 226 C = 226 A = 226 G = 226 G = 226 C = 226 A = 226 G = 226 G = 226 
Normal = 

226 
C = 226 G = 196 A = 226 C = 226 G = 226 

G = 0 T = 0 C = 0 C = 0 C = 0 T = 0 G = 0 A = 0 A = 0 Del = 0 G = 0 T = 0 T = 0 A = 0 A = 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Totals 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 5.95: Genotype Data for the first 13 new CYP2C9 variants observed in the 113 Patient Samples  

Variants:  Exon 1 Fragment Exon 2 & 3 Fragment Exon 4 Fragment Exon 6 Fragment 
Sample 
Number 

I42V  
12930 
T>C 

I74V  V76Q  
16060 
G>A 

16090 
T>C 

16094 
C>A 

16179 
T>A 

T130  
21711 
G>C 

21748 
G>A 

46028 
A>G 

46092 
C>T 

1 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
2 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
3 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 

4 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
5 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

6 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

7 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
8 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
9 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

10 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/T 

11 A/A T/T A/A T/T G/G T/T C/C A/A G/G C/C G/G G/G C/C 
12 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 

13 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
14 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
15 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 

16 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
17 A/A T/C A/A T/T G/G C/C C/C T/A G/G G/C G/G A/G C/C 
18 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

19 A/A T/T A/A T/T G/G T/T C/C A/A G/G C/C G/G G/G C/C 
20 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 

21 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 

22 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
23 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
24 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 

25 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 
26 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/G C/C 
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27 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

28 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 

29 A/A T/T A/A T/T G/G T/C C/C T/A G/G G/C G/G A/G C/C 
30 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/A G/G C/C 

31 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 
32 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
33 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 

34 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
35 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
36 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 

37 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G G/G C/C 
38 A/A T/T A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 

39 A/A C/C A/A T/T G/G C/C C/C T/T G/G G/G G/G A/A C/C 

40 A/A T/C A/A T/T G/G T/C C/C T/A G/G G/C G/G A/G C/C 
41 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/G C/C 
42 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 

43 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/T 

44 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
45 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

46 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
47 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
48 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G G/G C/C 

49 A/G T/T A/G T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
50 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
51 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 

52 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G G/G C/C 
53 A/A T/T A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 

54 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 

55 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
56 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 
57 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
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58 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

59 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

60 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
61 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

62 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
63 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
64 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 

65 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/G C/C 
66 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 
67 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/G C/C 

68 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
69 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 

70 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

71 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
72 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G G/G C/C 
73 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 

74 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/C G/G G/G C/C 

75 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/A A/A C/C 
76 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 

77 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
78 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
79 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G G/G C/C 

80 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 
81 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/C G/G A/A C/C 
82 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/T 

83 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
84 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/G C/C 

85 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/C G/G A/A C/C 

86 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
87 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
88 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
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89 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

90 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/C G/G A/A C/C 

91 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/G G/G A/A C/C 
92 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

93 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
94 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
95 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

96 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
97 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
98 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

99 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 
100 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G G/G C/C 

101 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

102 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
103 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G G/G C/C 
104 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 

105 A/A T/T A/A T/T G/G T/T C/A T/A G/T G/C G/G G/G C/C 

106 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/C 
107 A/A T/T A/A T/T G/G T/T C/C T/A G/G G/C G/G A/G C/C 

108 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
109 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 
110 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/G C/C 

111 A/A T/T A/A T/T G/G T/T C/C A/A G/G C/C G/G G/G C/C 
112 A/A T/T A/A T/T G/G T/T C/C T/T G/G G/G G/G A/A C/C 

113 A/A T/C A/A T/T G/G T/C C/C T/T G/G G/G G/G A/A C/T 

A = 225 T = 199 A = 225 T = 226 G = 226 T = 195 C = 225 T = 198 G = 225 G = 198 G = 224 A = 161 C = 222 

G = 1 C = 27 G = 1 A = 0 A = 0 C = 31 A = 1 A = 28 T = 1 C = 28 A = 2 G = 65 T = 4 

1 25 1 0 0 27 1 22 1 22 2 39 4 
Totals 

0 1 0 0 0 2 0 3 0 3 0 13 0 

 The variants in this table are highlighted according to the fragments in which the variants were observed. Heterozygotes are highlighted in orange and homozygotes in green. 
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Table 5.96: Genotype Data for the new CYP2C9 variants observed in the Exon 7, 8 and 9 fragments of the 113 Patient Samples  

Variants:  Exon 7 
Fragment 

Exon 8 Fragment Exon 9 Fragment 

Sample 
Number 

I327T  
60175 
A>G 

60225 
T>A 

60272 
T>C 

60318 
C>T 

60328 
A>T 

A441A  D463D  G465G 
63092 
C>T 

63113 
C>T 

63143 
C>G 

63169 
G>A 

63180 
C>T 

1 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

2 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

3 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

4 T/T A/A T/T T/T C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

5 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

6 T/T A/A T/T T/T C/T A/A C/C C/C A/A C/C C/C C/C G/G C/C 

7 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

8 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

9 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

10 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

11 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

12 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

13 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

14 T/T A/A T/T T/T C/T A/A C/C C/C A/A C/C C/C C/C G/G C/C 

15 T/T A/A T/T T/T C/C A/A C/C C/C A/T C/C C/C C/C G/A C/C 

16 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

17 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

18 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

19 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

20 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

21 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

22 T/T A/A T/T T/T C/C A/T C/C C/C A/A C/C C/C C/C G/G C/C 

23 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

24 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
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25 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

26 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

27 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C T/T C/C G/G C/C 

28 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

29 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

30 T/T A/A A/T T/T C/C A/A C/C C/C A/T C/C C/C C/C G/A C/C 

31 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

32 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

33 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

34 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

35 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/T C/C G/G C/C 

36 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

37 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/T C/C C/C G/G C/T 

38 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

39 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

40 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

41 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

42 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

43 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

44 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

45 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

46 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

47 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

48 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

49 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

50 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

51 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

52 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

53 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

54 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
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55 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

56 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

57 T/T A/A T/T T/C C/T A/A C/T C/C A/A C/C C/C C/C G/G C/C 

58 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

59 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

60 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

61 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

62 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

63 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

64 T/C A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

65 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

66 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

67 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

68 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

69 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

70 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

71 T/T A/A T/T T/T C/C A/T C/C C/C A/A C/C C/C C/C G/G C/C 

72 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C T/T C/C G/G C/C 

73 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

74 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C T/T C/C G/G C/C 

75 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

76 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

77 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

78 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

79 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

80 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

81 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

82 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

83 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

84 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
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85 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

86 T/T A/A T/T T/T C/C A/A C/C C/C A/T C/C C/C C/C G/G C/C 

87 T/T A/G T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

88 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

89 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

90 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

91 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

92 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

93 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

94 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

95 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/T C/C G/G C/C 

96 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

97 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

98 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

99 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

100 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

101 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

102 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

103 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

104 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

105 T/T A/A T/T T/T C/C A/A C/C C/T A/A C/C C/C C/C G/G C/C 

106 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

107 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

108 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

109 T/T A/A T/T T/C C/C A/A C/T C/C A/A C/C C/C C/C G/G C/C 

110 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/T C/C G/G C/C 

111 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

112 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 

113 T/T A/A T/T T/T C/C A/A C/C C/C A/A C/C C/C C/C G/G C/C 
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T = 225 A = 225 T = 225 T = 212 C = 223 A = 224 C = 211 C = 225 A = 223 C = 225 C = 198 C = 226 G = 224 C = 225 

C = 1 G = 1 A = 1 C = 14 T = 3 T = 2 T = 15 T = 1 T = 3 T = 1 T = 28 G = 0 A = 2 T = 1 

1 1 1 14 3 2 15 1 3 1 22 0 2 1 
Totals 

0 0 0 0 0 0 0 0 0 0 3 0 0 0 

The variants in this table are highlighted according to the fragments in which the variants were observed. Heterozygotes are highlighted in orange and homozygotes in green.  

 

Table 5.96: Genotype Data for the previously described VKORC1 variants observed in the 100 Control Samples 

Sample Number V29L D38Y C43C V45A R56G V66M R98W L120L L128R R151G 3730 G>A 

1 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
2 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
3 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 
4 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
5 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
6 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
7 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
8 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
9 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
10 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
11 G/G G/G C/C T/T A/A G/A C/C C/C T/T G/G G/G 
12 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
13 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
14 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/A 
15 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 
16 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
17 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
18 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
19 G/G G/G C/C T/T A/A  C/C T/T T/T G/G A/A 
20 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
21 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
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22 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 
23 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 
24 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 
25 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 
26 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 
27 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 
28 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
29 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
30 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 
31 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 
32 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
33 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
34 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
35 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/A 
36 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
37 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
38 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 
39 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
40 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
41 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
42 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
43 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
44 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
45 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 
46 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 
47 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
48 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
49 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
50 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
51 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
52 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
53 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
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54 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
55 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
56 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
57 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
58 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
59 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/A 
60 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
61 G/G G/G C/C T/T A/A  C/C T/T T/T G/G A/A 
62 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
63 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
64 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
65 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
66 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
67 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/A 
68 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
69 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
70 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
71 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
72 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
73 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
74 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
75 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
76 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
77 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
78 G/G G/G C/C T/T A/A       
79 G/G G/G C/C T/T A/A  C/C C/T T/T G/G A/G 
80 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
81 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
82 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/A 
83 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
84 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
85 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
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86 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
87 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 
88 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/A 
89 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/A 
90 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
91 G/G G/G C/C T/T A/A  C/C T/T T/T G/G A/A 
92 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
93 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
94 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
95 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 
96 G/G G/G C/C T/T A/A   C/C T/T G/G A/G 
97 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/G 
98 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 
99 G/G G/G C/C T/T A/A  C/C C/C T/T G/G A/A 
100 G/G G/G C/C T/T A/A  C/C C/C T/T G/G G/G 

G = 200 G = 200 C = 200 T = 200 A = 200 G = 35 C = 196 C = 159 T = 198 G = 198 G = 113 
T = 0 T = 0 T = 0 C = 0 G = 0 A = 1 T = 0 T = 39 G = 0 A = 0 A = 85 

0 0 0 0 0 1 0 33 0 0 43 
TOTALS 

0 0 0 0 0 0 0 3 0 0 21 
In this table the variants that have been highlighted in blue are the variants for which some patients or controls were heterozygous or homozygous and were used in the analyses described 
in sections three to four. Heterozygotes are highlighted in orange and homozygotes in green. The gaps shown this table represent missing data. This was because I was unable to amplify 
exon 2 in the DNA of 82 of the control samples (described in section 2.2.2.2) and the sequences for 2 of the control samples for exon 3 did not cover all of the SNPs. 
 
 
 

Table 5.97: Genotype Data for the previously described VKORC1 variants observed in the 113 Patient Samples  

Sample Number V29L D38Y C43C V45A R56G V66M R98W L120L L128R R151G 3730 G>A 

1 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

2 G/G G/G C/C T/T A/A   C/C C/T T/T G/G A/A 

3 G/G G/G C/C T/T A/A   C/C C/T T/T G/G A/A 

4 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 
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5 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

6 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

7 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

8 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

9 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

10 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

11 G/G G/G C/C T/T A/A G/G C/C T/T T/T G/G A/A 

12 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

13 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

14 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

15 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

16 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

17 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

18 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

19 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

20 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

21 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

22 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

23 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

24 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/A 

25 G/G G/G C/C T/T A/A   C/C C/T T/T G/G A/A 

26 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

27 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

28 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

29 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

30 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

31 G/G G/G C/C T/T A/A G/G C/C T/T T/T G/G A/A 

32 G/G G/G C/C T/T A/A G/G C/C T/T T/T G/G A/A 

33 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/A 

34 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 
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35 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

36 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

37 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

38 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

39 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/A 

40 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

41 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

42 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

43 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

44 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

45 G/G G/G C/C T/T A/A G/G C/C T/T T/T G/G A/A 

46 G/G G/G C/C T/T A/A G/G C/C T/T T/T G/G A/A 

47 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/A 

48 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

49 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/A 

50 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

51 G/G G/G C/C T/T A/A A/G C/C C/T T/T G/G A/G 

52 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/A 

53 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/A 

54 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

55 G/G G/G C/C T/T A/A G/G C/C T/T T/T G/G A/A 

56 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

57 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/A 

58 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

59 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

60 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

61 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

62 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

63 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

64 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 
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65 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

66 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

67 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

68 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

69 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

70 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

71 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

72 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

73 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

74 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

75 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

76 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

77 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

78 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

79 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

80 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

81 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

82 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

83 G/G G/G C/C T/T A/A G/G C/C T/T T/T G/G A/A 

84 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/A 

85 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

86 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

87 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

88 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

89 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/A 

90 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

91 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

92 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

93 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

94 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 
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95 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

96 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

97 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

98 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

99 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/A 

100 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

101 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/G 

102 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

103 G/G G/G C/C T/T A/A G/G C/C C/T T/T G/G A/A 

104 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

105 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

106 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

107 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

108 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

109 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

110 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

111 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G A/G 

112 G/G G/G C/C T/T A/A G/G C/C T/T T/T G/G A/A 

113 G/G G/G C/C T/T A/A G/G C/C C/C T/T G/G G/G 

G = 226 G = 226 C = 226 T = 226 A = 226 G = 219 C = 226 C = 168 T = 226 G = 226 G = 127 

T = 0 T = 0 T = 0 C = 0 G = 0 A = 1 T = 0 T = 58 G = 0 A = 0 A = 99 

0 0 0 0 0 1 0 42 0 0 53 
TOTALS 

0 0 0 0 0 0 0 8 0 0 23 
In this table the variants that have been highlighted in blue are the variants for which some patients or controls were heterozygous or homozygous and were used in the analyses described 
in sections three to four. Heterozygotes are highlighted in orange and homozygotes in green. The gaps shown this table represent missing data. This was because I was unable to amplify 
exon 2 in the DNA of 3 of the patient samples (described in section 2.2.2.2) . 
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Clinical Data 

Table 5.98: Clinical Information collected from the 113 Patient Samples 

Sample Number Age1  Reason on Warfarin Dose/week1 INR1 
1 36 Mitral valve repair 27.5 2.4 
2 40 Artificial valve 52.5 3.39 
3 38 Artificial valve 70 1.41 
4 44 Mitral valve repair 35 1.52 
5 28 Artificial valve 35 2.89 
6 30 Artificial valve 60 1.43 
7 31 Artificial valve 52.5 2.38 
8 39 Mitral valve repair 40 4.3 
9 36 Artificial valve 62.5 2.35 
10 30 Artificial valve 45 2.43 
11 28 Artificial valve 35 2.18 
12 26 Artificial valve 52.5 1.74 
13 38 Artificial valve 35 1.75 
14 43 Artificial valve 40 2.4 
15 31 Artificial valve 42.5 2.41 
16 33 Artificial valve 47.5 2.88 
17 26 Artificial valve 35 2.31 
18 44 Artificial valve 40 1.79 
19 31 Artificial valve 77.5 1.78 
20 33 Artificial valve 52.5 1.05 
21 44 Mitral Stenosis 35 3.83 
22 30 Artificial valve 75 3.51 
23 38 Artificial valve 22.5 1.58 
24 26 Artificial valve 35 6.17 
25 38 Artificial valve 35 2.39 
26 30 Artificial valve 35 3.47 
27 44 Artificial valve 52.5 3.39 
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28 37 Artificial valve 47.5 1.15 
29 24 Artificial valve 42.5 1.44 
30 43 Artificial valve 40 4.68 
31 38 Artificial valve 47.5 1.45 
32 30 Artificial valve 52.5 2.52 
33 45 Artificial valve 17.5 1.99 
34 40 Artificial valve 42.5 1.31 
35 31 Artificial valve 65 2 
36 31 Mitral valve repair 35 2.55 
37 27 Artificial valve 17.5 3.21 
38 35 Artificial valve 42.5 1.24 
39 23 Artificial valve 45 1.69 
40 26 Artificial valve 87.5 6.56 
41 28 Artificial valve 47.5 2.35 
42 39 Artificial valve 35 1.58 
43 45 Artificial valve 35 2.77 
44 43 Artificial valve 37.5 2.71 
45 42 Artificial valve 42.5 1.11 
46 35 Artificial valve 65 1.81 
47 35 Artificial valve 65 4.07 
48 36 Artificial valve 25 2.21 
49 41 Artificial valve   2.43 
50 31 Artificial valve 42.5 3.82 
51         
52 36 Artificial valve 42.5 2.3 
53 37 Artificial valve 52.5 1.2 
54 37 Artificial valve 42.5 2.27 
55 34 Artificial valve 30 3.44 
56 29 Artificial valve 35 4.09 
57 31 Artificial valve 87.5 1.07 
58 45 Artificial valve 47.5 1.74 
59 29 Artificial valve 42.5 0.96 
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60 41 Artificial valve 55 3.31 
61 37 Artificial valve 35 5.39 
62 39 Artificial valve 62.5 4.95 
63 44 Artificial valve 35 3.51 
64 27 Artificial valve 35 1.08 
65 39 Artificial valve 12.5 2.25 
66 45 Artificial valve 42.5 1.84 
67 27 Artificial valve 47.5 2.41 
68 38 Artificial valve 35 1.48 
69 36 Artificial valve 35 2.65 
70 34 Artificial valve 35 2.76 
71 34 Artificial valve 35 2.08 
72 37 Artificial valve 35 2.7 
73 34 Artificial valve 35 1.34 
74 42 Artificial valve 52.5 1.04 
75 24 Artificial valve 42.5 1.8 
76 30 Artificial valve 40 1.09 
77 42 Artificial valve 42.5 2.89 
78 27 Artificial valve 40 2.68 
79 39 Artificial valve 25 1.34 
80 35 Artificial valve 25 1.08 
81 30 Post-surgery for AV canal defect 35 1.11 
82 36 Artificial valve 42.5 2.74 
83 28 Artificial valve 60 2.23 
84 32 Artificial valve 40 1.57 
85 42 Artificial valve 52.5 5.51 
86 30 Artificial valve 30 3.05 
87 28 Artificial valve 42.5 2.02 
88 36 Artificial valve 17.5 5.01 
89 33 Artificial valve 35 1.44 
90 43 Artificial valve 52.5 1.09 
91 33 Artificial valve 35 1.56 
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92 41 Artificial valve 35 0.96 
93 35 Mitral valve repair 42.5 1.03 
94 37 Artificial valve 60 3.63 
95 38 Artificial valve 27.5 2.22 
96 34 Artificial valve 35 3.55 
97 29 Mitral valve repair 52.5 2.17 
98 26 Artificial valve 47.5 1.15 
99 39 Artificial valve 35 1.47 
100 29 Artificial valve 35 2.67 
101 43 Artificial valve 35 1.46 
102 34 Pulmonary Hypertension 45 5.35 
103 44 Artificial valve 25 2.14 
104 28 Artificial valve 25 3.3 
105 36 Artificial valve 22.5 3.24 
106 44 Artificial valve 60 1.5 
107 37 Artificial valve 42.5 2.89 
108 29 Artificial valve 30 1.33 
109 33 Artificial valve 35 2.3 
110 37 Artificial valve 25 2.58 
111         
112 38 Artificial valve 27.5 2.15 

113 31 Artificial valve 45 1.62 
1 Age, Dosage and INR taken at the time of the study 
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Table 5.99: Concomitant Medication information collected from the 113 Patient Samples 

Sample 
Number 

Digoxin Lasix Slow 
K 

Beta-
block 

Aspirin Aldactone Moduretic ACE 
- I 

Nifedipine Cordarone Isoptin Amiloride Epanutin Tegretol Amitrypt  

1 yes no no yes no no yes no no no no no no no no 
2 no yes yes no yes no no no no no no no no no no 
3 no yes yes no no no no no no no no no no no no 
4 no yes yes yes no no no no no no no no no no no 
5 no no no no no no no no no no no no no no no 
6 no no no no yes no no no no no no no no no no 
7 no no no no no no no no no no no no no no no 
8 yes yes yes yes no no no no no no no no no no no 
9 no no no no no no no no no no no no no no no 
10 no yes yes no no no no no no no no no no no no 
11 no yes yes yes no no no no no no no no no no no 
12 no no no no yes no no no no no no no no no no 
13 no yes yes no no no yes no no no no no no no no 
14 yes yes yes no no no no no no no no no no no no 
15 no yes yes no no no no yes no no no no no no no 
16 no yes yes no no no no no no no no no no no no 
17 no yes yes no yes no no no no no no no no no no 
18 no yes yes no yes no no no no no no no no no no 
19 no no no no yes no no no no no no no no yes no 
20 no yes yes no no no no no no no no no no no no 
21 no yes yes yes no yes no no no no no no no no no 
22 yes yes yes no no no no yes no no no no no no no 
23 no yes yes yes no no no no no no no no no no no 
24 no no no no no no no no no no no no no no no 
25 no no no no yes no no no no no no no no no no 
26 no no no no yes no no no no no no no no no no 
27 yes yes yes no yes no no yes no no no no no no no 
28 no no no no yes no no no no no no no no no no 
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29 no no no no no no yes no no no no no no no no 
30 no no no no no no yes no no no no no no no no 
31 no no no no yes no no no no no no no no no no 
32 no no no yes yes no yes no no no no no no no no 
33 yes yes yes no no yes no yes no no no no no no no 
34 no yes yes no yes yes no no no no no no no no no 
35 no yes yes no yes no yes no no no no no no no no 
36 yes yes yes yes no no no no no no no no no no no 
37 no yes yes no yes no no no no no no no no no no 
38 no no no no no no no yes no no no no no no no 
39 no no no no yes no no no no no no no no no no 
40 no no no no yes no no no no no no no no no no 
41 no no no no no no no yes no no no no no no no 
42 no yes yes yes no no no no no no no no no no no 
43 yes yes yes no no no no yes no yes no no no no no 
44 no yes yes no no yes no no no no no no no no no 
45 no yes yes no no yes no no no no no no no no no 
46 no yes yes no no no no yes no no no no no no no 
47 no no no no no no no no no no no no no no no 
48 no no no no no no no no no no no no no no no 
49 yes yes yes no yes no no no no no no no no no no 
50 no no no no yes no no no no no no no no no no 
51 no no no no no no no no no no no no no no no 
52 no no no no no no no no no no no no no no no 
53 no no no no no no no no no no no no no no no 
54 no no no no no no no no no no no no no no no 
55 no yes yes yes no no no no no no no no no no no 
56 no yes yes yes no no no no no yes no no no no no 
57 no no no no yes no no no no no no no no no no 
58 no no no no yes no no no no no no no no no no 
59 no no yes no yes no yes no no no no no no no no 
60 no no no no no no yes no no no no no no no no 
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61 no no no no yes no no no no no no no no no no 
62 yes no no no no no yes no no no yes no no no no 
63 no no no no yes no no no no no no no no no no 
64 no yes no no yes no no yes no no no no no no no 
65 no yes yes yes no no no no no no no no no no no 
66 no no no no no no no no no no no no no no no 
67 no no no no no no no no no no no no no no no 
68 yes yes yes yes no no no no no no no no no no no 
69 no yes yes no no no no no no no no no no no no 
70 no no no no no no no yes no no no no no no no 
71 no yes yes no no no no no no no no no no no no 
72 no no no no no no no no no no no no no no no 
73 no yes yes no no no no no no no no no no no no 
74 yes yes yes no no no no no no yes no no yes no no 
75 no yes yes no no no no no no no no no no no no 
76 no no no no yes no no no no no no no no no no 
77 no no no no yes no no no no no no no no no no 
78 no no no yes no yes no no no no no no no no no 
79 no no no no no no no no no no no no no no no 
80 no no no yes no no yes yes no no no no no no no 
81 no yes no no no yes no yes no yes no no no no no 
82 no yes yes no yes no no no no no no no no no no 
83 no no no no yes no no no no no no no no no no 
84 no no no no no no no no no no no no no no no 
85 no no no no no no no no no yes no no no no no 
86 no yes no no no no no no no no no no no no no 
87 yes yes no no yes no no no no no no no no no no 
88 no yes yes no no no no no no yes yes no no no no 
89 no no no yes yes no no no no no no no no no no 
90 yes no no yes no yes no yes no no no no no no no 
91 no no no no no no no no no no no no no no no 
92 no no no no no no no no no no no no no no no 
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93 no yes yes no no no no no no no no no no no no 
94 yes yes yes no yes no no yes no no no no no no no 
95 no no no no yes no no no no no no yes no no yes 
96 no yes yes yes no no no no no no no no no no no 
97 no yes yes yes no no no no no no no no no no no 
98 no no no no no no no no yes no no no no no no 
99 yes yes yes yes yes no no no no yes no no no no no 
100 no no no no yes no yes no no no no no no no no 
101 yes yes yes no yes no no no no no no no no no no 
102 no yes no no no no no no yes no no no no no no 
103 yes yes yes no no no no yes no no no no no no no 
104 no no no no yes no no no no no no no no no no 
105 no yes yes no no no no no no no no no no no no 
106 no yes no no yes no no yes no no no no no no no 
107 no no no no yes no no no no no no no no no no 
108 no no no no yes no yes no no no no no no no no 
109 no no no yes no no no no no no no no no no no 
110 no no no no no no no no no no no no no no no 
111 no no no no no no no no no no no no no no no 
112 yes yes yes yes no no no no no no no no no no no 
113 no yes yes no no no no no no no no no no no no 
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Table 5.100: Pregnancy information collected from the 113 Patient Samples 

Sample 
Number 

Total Number of 
Preg 

Preg 1 Outcome Preg 2 
Outcome 

Preg 3 
Outcome 

Preg 4 Outcome Preg 5 
Outcome 

Preg 6 
Outcome 

Preg 7 
Outcome 

1 3 miscarriage normal liveborn miscarriage     
2 4 normal liveborn normal liveborn stillbirth TOP    
3 1 stillbirth       

4 6 normal liveborn normal liveborn 
normal 
liveborn 

normal liveborn, 
baby died 

normal 
liveborn 

normal 
liveborn 

 

5 3 normal liveborn miscarriage stillbirth     

6 1 
normal liveborn, 

baby died 
      

7 1 Stillbirth       

8 3 normal liveborn normal liveborn 
Physically & 

mentally 
abnormal 

    

9 3 

abnormal 
liveborn, 
mentally 
abnormal 

stillbirth 
Stillbirth, 
physically 
abnormal 

    

10 1 normal liveborn       
11 1 normal liveborn       
12 1 miscarriage       
13 3 normal liveborn normal liveborn stillbirth     

14 3 miscarriage 
Physically & 

mentally 
abnormal 

normal 
liveborn 

    

15 3 normal liveborn normal liveborn miscarriage     

16 4 stillbirth stillbirth 
normal 
liveborn 

stillbirth    

17 1 miscarriage       

18 6 normal liveborn miscarriage 
normal 
liveborn 

normal liveborn 
normal 
liveborn 

stillbirth  

19 2 miscarriage miscarriage      
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20 5 normal liveborn normal liveborn 
normal 
liveborn 

miscarriage miscarriage   

21 3 normal liveborn normal liveborn 
normal 
liveborn 

    

22 1 stillbirth       
23 2 normal liveborn normal liveborn      

24 2 
Physically 
abnormal 
liveborn 

normal liveborn      

25 3 normal liveborn miscarriage miscarriage     

26 1 
normal liveborn, 

baby died 
      

27 4 normal liveborn 
Physically & 

mentally 
abnormal 

normal 
liveborn 

normal liveborn    

28 3 stillbirth normal liveborn 
normal 
liveborn 

    

29 2 miscarriage stillbirth      

30 5 normal liveborn normal liveborn 
normal 
liveborn 

normal liveborn 
abnormal 
liveborn, 
baby died 

  

31 2 normal liveborn stillbirth      
32 2 miscarriage miscarriage      

33 3 normal liveborn normal liveborn 
Physically 
abnormal 

    

34 5 normal liveborn stillbirth 
normal 
liveborn 

normal liveborn TOP   

35 3 normal liveborn normal liveborn miscarriage     
36 5 stillbirth stillbirth stillbirth normal liveborn TOP   

37 3 stillbirth stillbirth 
normal 
liveborn 

    

38 2 normal liveborn 
physical, mental 

abnormal 
     

39 1 stillbirth       
40 1 stillbirth       
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41 2 normal liveborn normal liveborn      
42 5 normal liveborn normal liveborn stillbirth stillbirth stillbirth   

43 3 normal liveborn normal liveborn 
abnormal 

liveborn, baby 
died 

    

44 5 normal liveborn normal liveborn 
normal 
liveborn 

normal liveborn 
normal 
liveborn 

  

45 3 normal liveborn normal liveborn stillbirth     
46 4 stillbirth normal liveborn miscarriage normal liveborn    
47 1 ectopic       
48 1 normal liveborn       
49 1 normal liveborn       
50 2 miscarriage normal liveborn      
52 2 normal liveborn normal liveborn      

53 2 
normal liveborn, 

baby died 
miscarriage      

54 4 normal liveborn stillbirth 
normal 
liveborn 

Physically 
abnormal 

   

55 1 miscarriage       
56 1 normal liveborn       
57 1 normal liveborn       
58 3 normal liveborn miscarriage miscarriage     
59 2 normal liveborn normal liveborn      

60 3 stillbirth stillbirth 
normal 
liveborn 

    

61 3 normal liveborn normal liveborn stillbirth     

62 4 stillbirth miscarriage 
normal 

liveborn, baby 
died 

stillbirth    

63 2 miscarriage stillbirth      
64 2 normal liveborn ectopic      
65 3 normal liveborn normal liveborn miscarriage     

66 4 normal liveborn normal liveborn 
normal 
liveborn 

mental abnormal    
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67 2 stillbirth normal liveborn      

68 1 
abnormal 

liveborn, baby 
died 

      

69 4 normal liveborn stillbirth 
normal 
liveborn 

stillbirth    

70 3 miscarriage miscarriage miscarriage     
71 2 stillbirth miscarriage      
72 7 normal liveborn normal liveborn miscarriage ectopic miscarriage miscarriage miscarriage 

73 1 
Physically 
abnormal 
liveborn 

      

74 4 miscarriage normal liveborn stillbirth stillbirth    
75 1 normal liveborn       

76 3 
abnormal 

liveborn, baby 
died 

miscarriage stillbirth     

77 5 normal liveborn miscarriage miscarriage 
normal liveborn, 

baby died 
normal 
liveborn 

  

78 1 normal liveborn       

79 1 
Physically 
abnormal 
liveborn 

      

80 2 normal liveborn 
physically 
abnormal 

     

81 3 miscarriage normal liveborn miscarriage     

82 3 normal liveborn normal liveborn 
normal 
liveborn 

    

83 2 normal liveborn normal liveborn      
84 1 stillbirth       
85 2 normal liveborn normal liveborn      
86 1 normal liveborn       
87 1 normal liveborn       
88 1 normal liveborn       
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89 1 
abnormal 

liveborn, baby 
died 

      

90 8 normal liveborn normal liveborn stillbirth stillbirth stillbirth stillbirth stillbirth 
91 2 stillbirth stillbirth      
92 1 ectopic       

93 5 normal liveborn normal liveborn 
normal 
liveborn 

stillbirth miscarriage   

94 2 miscarriage miscarriage      

95 4 normal liveborn normal liveborn 
normal 
liveborn 

normal liveborn    

96 2 normal liveborn normal liveborn      
97 2 normal liveborn ectopic      
98 1 miscarriage       
99 5 normal liveborn miscarriage TOP stillbirth stillbirth   
100 2 normal liveborn miscarriage      
101 2 normal liveborn normal liveborn      
102 4 normal liveborn normal liveborn miscarriage miscarriage    

103 3 normal liveborn normal liveborn 
Physically 
abnormal 

    

104 3 miscarriage normal liveborn 
normal 
liveborn 

    

105 2 normal liveborn normal liveborn      
106 2 normal liveborn normal liveborn      
107 2 normal liveborn normal liveborn      
108 1 normal liveborn       

109 2 normal liveborn 
Mentally 
abnormal 

     

110 6 normal liveborn stillbirth stillbirth miscarriage miscarriage stillbirth  
112 2 normal liveborn normal liveborn      
113 1 normal liveborn       
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Appendix N 

 

This appendix contains pictures of some agarose gels and electropherograms used in this 

project, referred to in the first paragraph of page 44. 

 

Agarose Gel Pictures 

Figure 5.3 shows an agarose gel picture of PCR amplicons of exon 6 of the CYP2C9 gene 

in 46 control samples. Figure 5.4 shows an agarose gel picture of PCR amplicons of exon 8 

of the CYP2C9 gene of 46 patient samples. Figure 5.5 shows an agarose gel picture of PCR 

amplicons of exon 3 of the VKORC1 gene in 46 control samples 

 

 
Figure 5.3: Picture of an agarose gel run with CYP2C9 exon 6 fragments 

 

 
Figure 5.4: Picture of an agarose gel run with CYP2C9 exon 8 fragments 
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Figure 5.5: Picture of an agarose gel run with VKORC1 exon 3 fragments 

 

Electropherograms 

The following pictures are electropherograms taken from the 3130xl genetic analyzer for 

exon 1 of the VKORC1 gene for control sample 1 and exon 3 of the CYP2C9 gene for 

patient sample 4, respectively. 

 



225 

 

 

Figure 5.6: Electropherogram of VKORC1 exon 1 in control sample 1 
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Figure 5.7: Electropherogram of VKORC1 exon 1 in control sample 1, continued 
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Figure 5.8: Electropherogram of CYP2C9 exon 3, patient 4 
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Figure 5.9: Electropherogram of CYP2C9 exon 3, patient 4, continued 
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Figure 5.10: Electropherogram of CYP2C9 exon 3, patient 4, continued
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