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Abstract

Impala’s Minerals Processing Plant in the Rustenburg Area, South Afiica, uses
flotation to beneficiate precious metal bearing ores from the Bushvsld Complex,
Pyrrhotite is one of the sulphide minerals that is targeted but it is the least amenable to
current flotation conditions having the lowest recovery. Electrochemical techniques
{mixed potential measurements, cyclic voltammetry and current transient techniques)
were used to study the relevant reactions on the surface of pyrrhotite mineral
electrodes. Aspects investigated included the oxidation of the mineral in aqueous
alkaline solutions, activation by copper sulphate, kinetics of oxygen reduction and the
adsorption of isobutyl xanthate. Mixed potential measurements of mineral electrodes
were taken in batch flotation test work. In addition 2 novel qualitative measure of
.hydrophobicity was investigated. The oxidised surface of pyrrhotite is Ikely to be
covered with iron hydroxides and a sulphur rich sub-lattice. No direct evidence was
found for the activation of pyrthotite by copper sulphate in alkaline solutions. Tt was
shown however that activation could be achieved in mildly acidic media and that the
surface remained activated if subsequently exposed to alkaline conditions. When
achieved under acidic conditions activation was observed to enhance the degree of
interaction between the mineral and the xamthate collector. Also copper sulphate
appeared to aid the formation of a more hydrophobic surface (as indicated by the
hydrophobicity tests), Copper activation conducted in acidic media did not
significantly enhance the kinetics of oxygen reduction, a reaction seen as crucial to the
adsorption of xanthate. No evidence wes found for the initial chemisorption of
xanthate onto the mineral surface, However evidence was found for the oxidation of
xanthate to dixanthogan at sufficiently anodic potentials. It was concluded that the
relatively poor flotation performance of pyrrhotite could be combated by minimising
the extent of the oxidation, adding reagents as soon as possible before the mineral
becomes extensively oxidised and by removing surface hydroxides through lowering

the pH during conditioning.
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1. Introduction

Impala's Minegals Processing Plant in the Rustenburg area uses flotation as an initial
means of beneficiating run of mine ore and preparing it for subssquent matte smelting,
PGM’s are found in the ore body as discrete minerals, as metal alloys and in solid
solution within other non-precious metal sulphides. The minerals containing PGM's in
solid solution that are targeted include chalcopyrite, pytite, pentiandite and pyrthotite,
The basic flotation process comprises of activation with copper sulphate, followed by
collection with SIBX (see Figurc 1.1 for schematic of circuit). & is believed that the
relatively poor pyrrhotite recovery is responsible for a large portion of unrecovered
PGM's, although the exact extent to which pyrrhotite is individually responsible is not
knowi.
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Figare 1.1z Schematic of milling and flotation cirenit at Impala's Minerals
Processing Plant

A detailed QEM*SEM analysis {(Latti and Nolle, 1995} revealed a number of
interesting points regarding the performance of the sulphide minerals in general, and




specifically in the case of pyrrhotite. The report concluded that pyrthotite wag the least
amenable to the curreni flotation conditions. Although pyrrhotite was identified as a
slow floater it was not considered that additional flotation cells would significantly
- improve the recovery. Pyrrhotite should therefore be targeted either magnetically or
chemically. It was from this work that the motivation for the current research svolved.

On & microscopic scale flotation is predominantly dependent on solid/liguid/gas
surface interactions, It relies on rendering certain targeted minerals hydrophobic so as
to facilitate adhesion to gas bubbles. For minerais that do not show self induced
hydrophobicity the technique involves the use of surface active reagents, commonly
*armed collectors, that attach to the mineral thereby achieving hydrophobicity. Certain
miunerals however do not collect and it is then necessary (o activate the mineral. One

of the most important activation techniques is copper activation.

All of these processes involve surface reactions. Thus although bulk composition and
liberation characteristics are important aspects, surface composition and topography
control the surface reactivity of mineral particles. Consequ wutly these considerations
play a key role in determining the flotation behaviour of minerals. Knowledge of
surface composition allows for & fundamental understanding of the reaction

mechanisms that ocenr between mineral surfaces and raagents.

Electroch¢ mical techniques have been extcemely useful in studying aqueous mineral
systems in sifu. They are especially suited to following electrochemical reactions on
the surface of a mineral electrode and can be used diagnostically to study the nature of
the reacted mineral surface in terms of surface composition and concentration. This
research therefore aims to use electrochemical techniques to develop a fundamental
electrochernical understanding of the flotation of pyrrhotite, It is anticipated that once
such fundamental knowledge is available it can be translated into practical steps to
achieve the necessary recoveries of pymrhotite, thereby epbancing overall PGM

IeCOVErY.



2. Literature Review

2.1 Chemistry of pyrrhotite

Pyrthotite is an iron deficient sulphide mineral, Fey.98, with a range of
stoichiomeuries. A detailed discussion of the structures and properties of pyrrhotites
can be found in Power et gl (1976). There are two principal crystalline forms:
monoclinic and hexagonal, which can be distinguished by X-ray diffraction
technigues, The monoclinic form is richer in sulphur and is ferromagnetic, whitst
hexagonal form is poorer in sulphur, and is non- or weakly magnetic (Iwasaki, 1988).
This varied structure leads to a diverse chemistry which is only partially understood.

‘The By-pH diagrams for the relevant systems are shown in Figure 2,1,
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Figure 2.1: Ey-pH diagrams for iron, sulphur, pyrite and pyrrhotite systems
(Hamitton and Woods, 1981)

.Sulphur is not stable at high pH. Reeutions involving sulphate are however
irreversible and sulphur can be formed from the oxidation of the sulphide (Harnilton.
and Woods, 1981). The stable species in the Pe-H,O system, at alkaline pH’s, are
insoluble Fe(OH}; and Fe(OH); depending on the By, The stability phase diagram for
pyrrhotite indicates that, in oxidative alkaline solutions, the products of pyrrhotite

oxidation will include ferric hydroxide. At pH 9 pyrrhotite is unstable above =-0,25 V.



It is expected that pyrrhotite will be oxidised in conventional alksline flotation

circuits,

Hamilton and Woods (1981) used linear sweep voltammetry to study the oxidation of
pyrite and pyrrhotite electrodes in acidie and alkaline conditions. In acidic solutions
(pH 4.6), and below 0.400V, they considered the dominant oxidation reactions fo be:

FeSq3 = Fe?* + 1,138 + 2¢7 -1
and

FeSi13+ 4.52H0 — Fe®* + 113804 + 9.04H" + 8.78¢” (1-2)
At higher potentials, above 0,400V, they considered that Fe** was 6xidised directly to
Fe*: '

FeB, 13 + 30H -5 Fe(OH)3 + 1.138 + 3¢ (1-3)
and

FeSis + 4.52H,0 — Fe(OH); + 1.1380% + 9.04H" +9.78¢  (1-4)
In alkaline solutions (pH 9.2) they considered reactions (1-3) and (1-4) to be the
dominant oxidation reactions. The authors conducted a mass and charge balance in
order to determine the amounts of pyrrhotite oxidised to either sulphur or sulphate, It
was found that, in acidic and akaline solutions, more pyrrhotite was oxidised to
sulphur than to sulphate, although to a lessor extent in alkaline solutions. The amount
of sulphate produced increased as the potential increased.

Rnckley er al. (1982), in-an extension of the sbove study, used XPS to determine the
species formed on sulphide minerals after treatment at different oxidising potentials.
Their results fer pyrthotite supported the above electrochemical research with the
exception that in alkaline solutions the main oxidation reaction involved the formation
of sulphate, The authors resolved this discrepancy by considering the different time
" scales between the two approaches, that is, a sulphur-rich surface could form initially
and then be oxidised to sulphate. The overall conclusion reached was that the .
oxidation of pyrrhotite proceeds through the progressive removal of iron, leaving a
metal-deficient sulphide with the sulphur lattices unaltered.

Hodgson and Agar (1989) studied the effect of Ca®*, 8,05 and SO4* on the oxidation
of pyrrhotite and pentlandite. They identified two areas of oxidation for pyrhotite.
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The initial reaction involves the oxidation of FegyS to Fe(OH)«(S:)S. At higher
potentials (Sz)S oxidises to S and SO4*. In their analysis of the cathodic waves forms,
after anodic treatment, they attributed three cathodic reactions to: the reduction of
Fe(TH) to Fe(), $° to $,* and reduction of 5% and Fe(Il) to reform a metal sulphide. It
was observed that the thiosulphate and sulphate ions caused the anodic peaks to move
cathodic, but it was considered that these ions would have no adverse affect on
flotation response. Ca** ions were thought to adsorb at surfage sulphur sites. The
anthors also studied the interactions of the mineral with xanthate, but this will be
discussed in section 2.2.4,

Sui.et al. {1995) studied the galvanic interaction between pyrite, ,rrhotite, galena and
sphalerite by comparing the metal ion production of minerals by themselves and in
pairs, In terms of the theory of sulphide mineral galvanic interactions, minerals with
more positive rest potentials should act as cathodes in a galvanic couple, whilst the
less noble éulphide minerals act as the anodes (Holmes, 1994). The reaction at the
cathode is the reduction of oxygen:
11207 + Ha0 + 28" — 20K (1-5)

The authors used & « "eluting agent, EDTA, to extract metal ions from the minerals
surface, When a mineral was coupled with another mineral with a higher rest
potential, in neutral aqueous solutions, the former mineral produced more metal jons
than when in solution without other minerals present, Metal ion production was also
¢nhanced on the cathodic mineral. The anthors thought that OH produced during
oxygen reduction 1.1ay react with the mineral, however no specific reaction mechanism
to support this was put forward, It was also found that the amount of metal ion
Iproduction per unit surface area was independent of particle size, implying that fine
particles were not more susceptible to dissolution.

One of the criticisms of galvanic interactions between miners] particles in flotation
systems is that it is unlikely that sufficient physical contact occurs between mineral
particles in actual flotation pulps, where the sulphide mineral concentration is very
low. It is possible that intermediary reactions could still make it possible, for instance
a ferrous/ferric couple could act as a charge carrier between minerals that are not in
contact, but this has not been investigated,



2.2 Flotation of pyrrhotite

2.2.1 Electrochemical pot :ntial and mixed potentiai

A significant proportion of elecirochemical research into sulphide flotation has

concentrated on the role of electrochemicel potential (E,) on the recovei}' and

selectivity of flotation processes treating complex sulphide ores (Ralston, 1991,
Goktepe and Williams, 1995, Hintikka and Leppinen, 1995). The main drive has been

to identify electrochemical potential ranges where the flotation of various specific

sulphide minerals becomes favourable over that of other sulphide minerals, Examples

include the suppression of arsenopyrite and pyrite from the flotation of gold bearing

ores (Hintikka and Leppinen, 1995) and the targeting of chalcopyrite over pyrite in the

exploitation of copper bearing ores (Goktepe and Williams, 1995),

Tolley et al. (1995) pointed out that there is considerable disagreement over the
appropriate method to measure By, On the one hand inert precious metal electrodes are
advocated, whilst others maintain that the use of electrochemically prepared mineral
electrodes is necessary, There are also problems associated with placing too much
significance on By, and its e.f=2t on flotation, due to the practicalities of controliing Ej
effectively under plant conditions.

Part of this disagreement arises due to the inconsistent use of some of the potential
terms mentioned previously. For instance, Ralston (1991) noted that when considering
single sulphide minerals in the presence of collectors, the various reactions that occur
between the collector and the mineral surface are dependent on the potential across the
mineral-soiudon interface. The most effective measure of this potential is the mixed
potential of the mineral itself. Most often however, the flotation of individual minerals
is correlated with electrochemical potential, as measured by an inert precious metal
electrode, and termed Ey,. The effect of the various potential determining ions may not
be the same between the two different systems, although there will generally be &
correlation between the potential measured by for instance a platinum electrode and a
pysrhotite electrode,



The potential across the mineral-solution interface is only relevant to the flotation
response of a mineyal, in terms of the extent to which it controls what reactions may
occur on the surface of the mineral. It is then these surface products that directly affect
the hydrophobicity of the mineral surface and thus the flotation. This point was well
- illustrated by Allison et @l (1972), who correlated the mixed potential of various
sulphide minerals with the sutface product from xanthate interaction. This type of
fundamental understanding is not possible if only the overall electrochemical potential
is considered and this would help explain the appartent frustration at obtaining clear
correlation’s between pulp potential (Ey) an  otation response (Goktepe and
Williams, 1995). Therefore, in terms of developing a fundamental understanding.of
the flotation of specific sulphide minerals, the mixed potential of the mineral itself is
of great importance.

Allison et al, (1972) studied the interaction of xanthate collectors with a numbezr of
sulphide minerals including pyrrhotite. They found that all minerals with a rest
potential more ancdic than the equilibrium poiential of the dixanthogen/xanthaie
couple, of which pyrrhotite was one, formed dixanthogen as a major surface product,
and that an electrochemical mechanism was responsible for this formation. For
pyrrhotite they feported a rest potential, after 10 minutes, of 0.21 V {vs NHE) in a pH
7, 6.25x10°*M potassium ethy! xanthate solution. The comesponding equilibrium
potential for the dixanthogen/xanthate couple was found to be 0.13V. The importance
of the sample origin was noted. Different samples of the same mineral may have
different rest potentials due the differences in the relative rates of reactions that make
up the mixed potential. These differences may arise from slight differences in
stoichiometry, and due to the presence of impurities. Obviously it follows that these
differences in rest potential could alter the nature of the xanthate product formed on
the surface of the mineral,

Gokiepe and Willlams (1995) studied the flotation of copper ores, of which the
principal minerals were sphalerite, chalcopyrite and pyrite. They conducted batch
flotation tests investigating the effects of pH, oxygenation and nitrogenation on
recovery of copper, iror.; and zine. During the flotation tests the mixed potential of

8



chalcopyrite clectrodes was measured, as well as the potential of & platinum electrode.
Although the anthors did not interpret the mixed potential measurements in terms of
the work done by Allison et al. (1972), they did attempt to correlate the potential of
the chalcopyrite elecirode at the point of KAX addition with overall copper recovery
(chalcopyrite being the principal copper bearing mineral). The authois noted in their
final conclusion that "A general relationship between flotation and pulp potential (ed.
as measured by a chalcopyrite electrade at the point of KAX addition) could not be
found for the complex ore system.". This conclusion, however, cannot be accepted as
final. ¥ the oxidation of xanthate to dixanthogen by the reduction of oxygen is
conirolled by an electrochemical mechanismn then the mized potential after KAX

addition would be more relevant to & correlation with flotation recovery.

The above discussion highlights an important point, namely that mixed potential
measurements, and more generally Ey; measurements, need to first be considered in
terms of an understanding of actual surface reactions. Without this the correlation and
understanding of potential measurements and flotation recoveries of sulphide minerals

will continue to be inconclnsive.

2.2.2 Activation by Cu®* jons

Under certain conditions, suiphide minerals do -not respond readily to flotation
gollectors, The problem is often combated by the addition of heavy-metal cations,
inost commonly lead and copper, to the flotation slurries. For instance, the flotation of
sphalerite with xanthate collectors does not occur readily but, after activation with
copper ions, the flotation improves substantially (Woollacot and Eric, 1994).

In the simplest sense activation js achieved by altering the chemical composition of
the mineral surface to that which is more amenable to collector adsorption. Originally
this was thought to occur through simple jon exchange mechanisms. Bushell ef al.
(1961), considered the following reactions for the activation of sphalerite (ZnS) and

pyithotite (FeS) by copper ions:

ZnS + Cu®* — CuS + Zo* (1-6)
and

FeS + Cu® = CuS + Fe** (1-7)



The driving force for these reactions was considered to be the lower solubility of the
heavy-metal sulphide, CuS in the above case, as compared to the other meial
sulphides, MS (Nicol, 1984). This ion ey.;hange mechanism is however, too simﬁlistic
for a general description of activation of sulphide -~ingrals, and, depending on the
sulphide, more advénoed mechanisms have been proy - ed.

10
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Figure 2.Z: Ey-pH diagram at 25°C for the Cu-S-F,0 system (Robins, 1987)

Figure 2.2 shows the stebility diagram for the agueous copper-sulphur system. The
solubility product, K, of Cu{CH); is given as 6x10°% (Stranks et al., 1979). At PH 9,
this caloulates to 2 maximum Cu** concentration of 6x10"°M. Some of the Cu®* will
be stabilised throngh complex formation. The concentration of Cu™ available for

activation under alkaline conditions may however be extremely low.

Nicol {1984) used electrochemical techniques to stndy the reaction of copper ions with
the minerals galena, pyrite and pyrrhotite. It was proposed that the activation of galena
proceeded via two coupled electrochernical reactions (as opposed to ion exchange): -
PbS ~» P + 8 +2¢° (1-8)
PbS + 2CuZ* + 26" — Pb* + CusS (1-9)

A similar mechanism was proposed for pyrrhotite, the overall reaction being:

11



FegSi0 + 9Cu®* — 9Fe™ + 9CuS + 8 (1-10)

The effect of pH on the activation and floatability of pyrrhotite was investigated by
conducting micro-flotation tests. These flotation results are discussed further in
section 2.2.5. At pH 5 activation significantly enhanced the flotation response of
pyrrhotite, At pH 8 however, activation had no significant effect, even with excessive
amounts of collector. Rest potential measurements indicated that the effect of copper
ion addifion on the electrode mineral potential decreased with increasing pH. At pH 8
the oxidation of xanthate to dixanthogen was negligible compared to the oxidation of
the mineral itself, and the rest potential was similar to that in xanthate free solutions.

Iwasaki (1988) notes, in & review of inrrhotite flotation, that copper activation of
pyrrhotite under alkaline conditions has proved virtually ineffective, and that this may,
in part, be related to the extent of iron hydroxide coating,

Leppinen (1990) used FTIR and micro-flotation tests to- study the effect of copper
activation on ethyl xanthate adsorption on the minerals pyrite, pyrrhotite, chalcopyrite
and sphalerite. The dominant surface product for pyrite, activated in dilute eolutions
(10°M) of copper sulphate, was dixanthbgen, and if was suggested that this was an
indication of a lack of activation. At higher concentrations (3x10°M) FTIR spectra
indicated copper xanthate became the dominant product, although dixanthogen was
still present. At 10*M only copper xanthate was detected. The same behaviour was
reported for the other suiphides, and in the case of pyrhotite, the copper ion
concentration required for only copper xanthate to be detected was 3x10™M. .2 is
unfortunate that rest potential measurements were not taken in this study, as one
would expect, based on the work by Allison er al. (1972}, that if metal xanthate is the
dominant product on well «....: -ed Sulph.ide minerals, then the rest potential of the
mineral in Xanthate soluti. 1s should fall below the dixanthogen/xanthate equilibrium
potential, Although the fiotation results from this study are discussed in section 2.2.5, .
it is appropriate to point out that the authors did report improvems nts in recovery due
to copper activation up to pH 9.

Stowe et al. (1995) used TOF-SIMS to map the surface distribution of positive cations
on sphalerite, pyrrhotite, pyrite and quartz particles. The mineral particles were

12



separated from a final zinc concentrate produced at Geco Mine, Ontario, Canada. The
authors found that the distribution of copper ions on pyrrhotite particles was not
uniform. L.ead ions were uniformly distributed and were in higher concentration than
copper ions, The authors suggested on this basis thet pyrrhatite is more effectively
activated by lead than by copper. They did not however report what conditions the
particle had been subjected to, nor what the concentration of the respective ions was in

the flotation solutions.

Yoon et al. (1995) found that LIMS analysis indicated the presence of copper and
nickel on the surface of pyrrhotite particles which were floated in batch tests using
KAX, Dowfroth 1262 and DETA. The amount of ions present was greater on particles
from the concentrate than on particles from the tails, This led the authors to believe
that pyrrhotite could be activated by heavy metal ions. The authers did not report the
pH that the flotation tests where conducted at, although the PH was measured during
the flotation, It is likely that the flotation solutions were alkaline, since all the other
fundamental work in this study was conducted in pH 9.2, borate solutions. Without
knowing the flotation conditions more thoroughly it is difficult to comment on the

finding that pyrrhotite was suecessfully activated.

Recent studies (Leppinen, 1990, Senior et al, 1993 and Kelebek et al, 1996) on
pyrihotite flotation have indicated that activation is possible in alkaline (pH 9)
conditions, and that recoveries are significantly improved. 1.je basis for these findings
have been batch and micro flotation tests, These findings are discussed in section
225,
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2.2.3 Pyrrhotite as a catalyst for oxygen reduction

It is generally accepted that oxygen reduction plays a cructal role in the adsorption of
xanthate onto the m.iaeral surface (Wood: | 1984). A mixed potential mechanism exists
in which the anodic process is, for example in certain systems, the oxidation of
xanthate to dixanthogen, and the cathodic process is the reduction of oxygen:

2X - Xo+2e f1-11)

On + H10 + 26— 20H (1-12)
The rates of these reactions are determined by the potential 2cross the mineral
surface/solution interface. According to the mixed potential molel the interface will

assume a potential where the rates of the anodic and the cathodi: reactions are equal.

Rand (1977) studied oxygen reduction kinetics on sulphitle minerals, including
pyrrhotite, in both acidic and alkaline media using cyclic voltammetry. Well defined
limiting currents for oxygen reduction where observed for pymhotite in acidic
solutions at potentials below -0.050V. At more cathodic potentials hysteresis became
more significant and the electrode showed enhanced activity on the 3 anodic
sweeps, This was explained in terms of pyrrbritite being reduced to iron, which is a
better catalyst for oxygen reduction than the sulphide. In alkaline solutions limiting
currents were not observed and the hysteresis was significant over the entire scan. The
kinetically controlled region showed a simiiar dependence of cument density cn
potential in both acidic and alkaline solutions and yielded a Tafel slope of 183mV. He
presented a comparison of the requireme. . for oxygen during flotation with xanthate
collectors, described by Plaksin and Bessonov (1957), and the oxygen reduction
activity at pH 9.06, as given by the potential of the activation-controlled currents at
the foot of oxygen reduction waves (Figure 2.3).
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Figure 2... «' aparison of O; reduction activity and requirement for O, (not to
scale) (order of minerals taken from Rand (1977), and Plaksin and
Bessonov (1957) respectively)

The discrepancy of galena being the poorest catalyst for oxygen reduction yet having
the least requirement for oxygen is due to galena forming metal xanthate compounds
at potentials where galena floats whilst the other minerals form dixanthogen. There is
therefore a general correlation between the requirement for oxygen and oxygen
reduction activity. Pyrthotite is the poorest catalyst for oXygen reduction of the
minerals that form dixanthogen., This may in part explain the slow floating
characteristics of pyrrhotite.

Attempt;; to explain the oxygen reduction kinetics on pyrite, and therefore indirectly
sulphide minerals, in terms of semiconducting properties have failed. Biegler (1976)
found no systematic dependence of kinetic parameters on semiconducting type and in
subsequent work (Biegler ef al,,1977) he considered that the most important factor in

activity for oxygen reduction may be the level, and form, of impurities in the mineral,

2.2.4 Adsorption of xanthate

Tt is well accepted that the interaction of thiol collectors and sulphide minerals follows
a mixed potential mechanism. A thorough review of the development of this theory is
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given by Woods (1984). Deﬁendin_g on the mineral system there are different classes
of mechanism that may be relevant (Yoon and Basilio, 1993), One mechanism
involves the chemisorption of the thiol ion onto the mineral surface to form a metal
thiel compound. This mechanism appears most relevant to chalcocite and galena, A
second mechenism involves the heterogeneous catalytic oxidation of xanthate to
dixanthogen coupled to the reduction of oxygen, where the mineral acts as the passage
for electron transfer between the two re: :tion sites. This mechanism is considered to
be relévant to, amongst other minerals, pyrite and pyrrhotite. ‘There may be variations

in these mechanisms where th: mineral participates in the adsorption reactions.

Hodgson and Agar (1989) investigated xanthate interactions on pentlandite and
pyrrhotite. On the basis of their cyclic voltammetry results they argued that xanthate
interaction was not a direct chemisorption. The reasons for their conclusion were that
reduction reactions moved to more znodic potentials in the presence of xanthate. If
chemisorption were the mechanism then a cathodic shift in potentials would have
been expected. Rather xanthate was considered to adsorb onto the pymhotite surface
forming an Fe(OH),X product. This adsorption occurs through coulombic attraction
between cationic Fe(Ill) sites and xanthate ions, the Fe(IIl) sites being penerated
throvgh oxidation of the mineral. No additional peak was detected for the oxidation of
xanthate to dixenthogen when the potential was swept anodically in the presence of
xanthate. Due to this observation the authors considered that dixanthogen formation
occurred adjacent to the oxidised mineral surface and that it is subsequently
physisorbed.

A problem with reaching this conclusion is that the magnitude of cur. .’ t associated
with xanthate oxidation may be significantly smaller than the background current due
to the oxidation of the mineral. This is particularly a problem in the case of pyrhatite
as the mineral oxidises at potentials where the oxidation of xanthate is expected. One
therefore requires a very sensitive current scale in order to detect any xanthate
oxidaticn. The classic view of xanthate oxidation is that it is kinetically very slow and
that s:gnificant oxidation of xanthate to dixanthogen in the bulk solution is unlikely to
occur. The formation of dixanthogen only occurs, to significant degrees, on the
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sulphide mineral surface, as the mineral acts as a catalyst for the reactions. Thzarefore
it is unlikely that dixanthogen counld be formed adjacent to the mineral surface,

Rao and Finch (1991) studied the adsorption of amyl xanthate on pyrrhotite in the
presence of nitrogen at pH 6 and 8.4. UV spectrophotometry was used to measure
xanthate and dixanthogen in solution, whilst mineral surface products were extracted
using hexane followed by UV spectrophotometry tests. When nitrogen was used to
condition the slurry the total uptake of xanthate from the seclution decreased. No
diamyl dixanthogen was farened with nitrogen (neither on the mineral surface nor in
soluticn). Air resnlted in dixanthogen both in solution and on the mineral snrface, at
both acidic and alkaline pH's. Generally the overall uptahe of xanthate was
significantly enhanced when Cn®* ions were present, although dixanthogen formation
on the mineral surface was inhibited. The amount of dixanthogen in solution was
however enhanced with Cu® jons. When nitrogen was used as the conditioning gas,
and in the presence of Cu?* jons, dixanthogen was found in the solution, but not on the
mineral surface. In micro-flotution tests conducted at pH 6 and 8.4 the use of nitrogen
resulted in recovery values for pyrrhotite approximately half of that when air was
used. The authors pwt forward the foligwing interpretation of their results. They
concluded that, since xanthate uptake still occurs with nitrogen, at pH 84, the
adsorption of xanthate onto the mineral surface does not follow a charge transfer
mechanism. Rather the negatively charged xanthate jons are electrostatically attracted
to Fe(OH)* sites. These sites are formed through oxidation of the mineral surface.
When pitrogen is used these sites are considered to aﬁse through the superficial prior
oxidation of pyrthotite, At pH's above 9 the formation of Fe(OH); hinders the uptake
of xanthate. The presence of dixanthogen in solution when Cu®* ions are present and
nitrogen is used is considered to arise due to the oxidising power of the Cu** jons,
which oxidise the xanthate to dixanthogen. Dixanthogen in solution is kowever not

adsorbd onto the surface of the minerai.

Prestige et al. (1993) studied the competitive adsorption of cyanide and ethyl xanthate
on pyrite and pyrrhotite. The study was conducted in pH 9 solutions and the By, was
controlled through gas and reageat addition. They confirmed the formation of
dixanthogen at high Ej, (>0.250V), and pH 9, using UV-vis and FTIR spectroscopy. At
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lower Ej, values {<0.250V) the rate and extent of ethyl xanthate adsorption was
significantly reduced. It was noted that pyrrhotite appears to adsorb xanthate more
strongly than pyrite under low pH conditions. This may be due to the higher
susceptibility of pyrrhotite to superficial oxidation and dissolution, which results in
inereased formation of sites for xanthate adsorption as iron xanthate and iron hydroxy
xanthate species. In this study By, was measured using a platinum electrode nud the By,
velues were correlated with reactions on both pyrite and pyrthotite, even though these

minerals have different mixed potentiais,

Fornasiero et al, (1995) used UV and IR spectroscopy to follow the adsorption of
ethyl xanthate on pyrrvotite as a function of time, pH and ethyl xanthate
concentration, UV speciroscopy was used to monitor the solution species and IR
spectroscopy was used to monitor the species on the surface of the mineral, They
found that their absorbance spectra could be explained in terms of the spectra for ethyl
xanthate in solution, diethyl dixanthogen in solution and pyrrhotite dissolution
products. No other xanthate derivatives were observed. In the case of ethyl xanthate its
concentration decreased with time as it adsorbed onto the miineral surface. The
concentration of diethyi dixanthogen iricreased with time until it reached its solubility
limnit, From their IR analysis they concluded that the only surface species on pyrthotite
was dixanthogen. These authors note that the IR spectrum of ferric xanthate and
dixanthogen are very similar in the sense that the two main peaks occur at the same
positions. The intensity ratio of these peaks Is, however, fotally different in each
spectrum. The confusion regarding the dominant surface species, that is furric
xanthate or dixanthogen, may be partly due to the relatively high mineral contribution
in the infrared spectrum which makes interpretation in terms of surface species
difficult. The following kinetic model was proposed for the interaction of ethyl

xanthate with pyrrhotite;
M+ EXy — MEX {1-13})
MEX + EX;—> EXaa+ M (1-14)
EXay - Eage (1-15)

where BX; tefers to negatively charged ethyl xanthate ions in solution, MEX refers to
ethyl xanthate bound to a pyrrhotite adsorption site, M represents a positively charged
ferric or ferrons hydroxide site (e.g. Fe(OH)"), EXy, refers to adsorbed dixanthogen
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and BXor refers to dixanthogen in solution. An important aspect of this model is the
de-sorption of dixanthogen from the mineral surface. Forhasiero et al, (1995) note that
in a study conducted by Montalti (1994} it was shown that additions of dixanthogen
produced only slight improvements in pyrrhatite recovery. The conclusion reached
was that dixanthogen is only weakly adsorbed onto the mineral surface,

‘Yoon et al. (1995) studied the mechanism of depression of pyrrhotite by DETA at pH
9, using a variety of techniques including batch flotation, LIMS, XPS and FTIR. The
flotation tests confirmed that DETA was effective in depressing pyrrhotite flotation as
born out by the lower recoveries for this mineral. The FTIR spectra of pyrrhotite
samples contacted with 10”°M potassium amyl xanthate in borate solutions at pH 9
under potential control, indicated the presence of both iron xanthate and dixanthogen,
The results also appear to indicate that iron xanthate is favoured at the higher
potentials (>0,3V). The explanation put forward for this was that at higher potentials
the formation of iron hydroxide adsorption sites is favoured due to the more severe
oxidation of the mineral surface, Contact angle measurements were conducted on
pyrrhotite samples under potential contyol. These results were correlated with IR
intensity values which were also made under potential control. The contact angle and
TR intensity signal matcaed each other. Above OmV there was a sharp rise in both the
contast anle and the xanthate adsorption signal {above B %guuy dixanthogen
formation is favourable), In the presence of DETA the contact angles remained zero
until the potential reached 0.25mV and small amounts of dixanthogen were only
detected above this potential,

2.2.5 Studies of the recovery of pyrrhotite by flotation

The aim of the following section ig to try and present an overview of some of the
recent pyrrhotite flotation recovery data that has been reported from micro and batch
flotation tests. As f'ar as possible the conditions under which the flotation data was
generated will be summarised.

Nicol (.984) conducted micro-flotation tests on crushed natural pyrrhotite, KEX was
used as the collector and the flotation was conducted at pH 8, The effects of KEX
concentration, copper sulphate conditioning, and the pH of the conditioning stage
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were investigated. When no copper sulphate was used at pH 8, the recovery of
pyrrhotite was approximately 20% regardless of the collector concentration. At pH 8
copper sulphate had no effect on the recovery. When the pH of the activation stage
was dropped to 5 there = .s a significant improvement in recovery with xanthate
concentrations of Img/l and 5mg/ (recoveries of 32% and 41% respectively). From
these results it was conciuded that pyrrhotite cannot be expected to float above pH 6
and that copper activation is only effective when carried oui below pH 7.

Leppinen (1990} performed micro-flotation tests on non-activated and activated
pyrrhotite. The flotation of activated pyrrhotite showed a marked improvement up to
pH 9, as compared to unactivated pyrrhetite (=10% recovery for non-activated and
=G0% for activated pyrrhotite at pH 9), The minerals were activated in separate
solutions. The pH was controlled to within 0,05 units by additions of sodium
hydroxic_le and hydrochloric aeid, It is possible that on addition of copper sulphate the
pH may have become mildly acidic initially, even though the pH would have been re-
adjusted, If this was the case then the flotation results may bo misleading as conditions
were not strictly at pH 9. These considerations are however not discussed by the
authors.

Heiskanen ef gl. (1991) studied the collectorless flotation of nickel ores containing
pentlandite and pyrrhotite as the principal minerals, with chalcopyrite the only other
sulphide mineral. When the ore was ground in steel mills pyrrhotite, pentlandite and
chalcopyrite all floated readily in acidic conditions (pH 3-5). Pyrrhotite floated
especially well at acidic pH’s (iron recovery of =90%), but in alkaline conditions its
recovery was 5o low (=10%) that the anthors attributed it to mechanical entrainment
(although this was not substantiated by water balance data). Ceramic grinding
improved the flotation compared to stes! mills, especially for pentlandite and
pyrchotite (icon recovery at pH 9 =30%). This affect was not interpreted extensively by .
the authors, and there are varying ideas on what the role of abraded iron from milling
media are. These results support the model of pyrrhotite oxidation, that is a sulphur-
rich surface at acidic pH’s and a less sulphur-rich, hydroxide surface in alkaline

conditions. The results also point to the importance of grinding media.
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Senior et al. (1995) investigated the selective flotaticn of pentlandite from a nickel ore
containing pentiandite, pyrrhotite and talc as the principal minerals. They used batch
flotation fests to investigate the possibility of talc and pyrrhotite rejection by
differential flotation. Factors varied included KEX concentration, and the addition of
copper sulphate. The tests were conducted at pH 9 and the recoveries reported are for
an eight minute float time. The recovery of pyrrhotite from milled ore, with no copper
sulphate and 80g/t KEX, was =30%. The recovery of pymhotite improved to ~50%
when a collectorless talc pre-float was conducted on the ore prior to standard flotation
on the tails from this pre-float, Doubling the collector concentration to 160g/t resulted
in a =70% recovery of pyrrhotite from milled ore. The addition of 200g)t copper
sulphate resulted in pyrrhotite recoveries in excess of 90%. Particle size analysis of
the tails and concentrates identified that the fine pyrrhotite (sub 20um) had the lowest
recoveries. It was concluded from the results that pyrrhotite rejection can only be
achieved effectively, and without excessive pentlandite losses, at low collector
concentrations, without copper sulphate and in alkaline conditions, The finding that
pyrrhotite was significantly activated by copper sulphate at pH 9 is contrary to the
generally aceepted result that pyrrhotite cannot be activated by copper sulphate under
alkaline conditions.

Kelebek et al. (1996) investigated the differential flotation of chalcopyrite, pentlandite
and pyrrhotite from Ni-Cu sulphide ores using batch flotation tests. Most of the work
was done without a collector, although some tests with SIBX were conducted. Other
reagents included the depressants, sulphur dioxide and DETA, and copper sulphate as
an activator. The pH was between 9 and 9.5 for all the tests, and all flotation
recoveries were quoted for a flotation time of twelve minutes, In the baseline test it
was established that the collectoriess flotation recovery of pyrrhotite was ~40%. The
use of both sulphur dioxide and DETA effectively depressed pyrrhotite and.
pentlandite recoveries to below 5%, whilst chalcopyrite was unaffected. The addition
of 120g/t (=40ppm Cu®") of copper sulphate resulted in an improved recovery of
pyrrhotite to ~80%, even with sulphur dioxide and DETA depressants. After a pre-
float to remove chalcopyrite the separation of pentlandite and pymhotite was
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investigated, It was found that good pentlandite recoveries could be obtained whilst
suppressing pyrchotite recovery to below 20% by using sulphur dioxide and DETA,
but with SIBX as a collector,

2.3 Summary

There is good agreement (Hamilton and Woods, 1981 and Hodgson and Agar, 1989)
that pyrrhotite oxidation, at the anodic potentials of imterest to flotation, occurs
through the progressive removal of iron from the sulphide lattice leaving an
increasingly sulphur rich surface. The collectorless flotation results for pyrrhotite in
acid media support this overall model (Heiskanen et al., 1591).

Tt is difficult to interpret electrochemical results in tenms of whether elemental sulphur
exists on the surface of the oxidised mineral, In acidic conditions the formation of
sulphate is less favoured than in alkaline conditions, meaning that surfaces are likely
to be more sulphur rich in acidic conditions. Hodgson and Agar (1989) attempted to
assign a more specific structure to the oxide products but this may be speculative. In
alkaline conditions the iron from the sulphide mineral is likely to precipitate onto the

mineral surface as ferrous and ferric hydroxide depending on By,

Oxygen reduction is critical to sulphide mineral flotation with thicl collectors (Woods,
1984), 1t has been shown that pyrthotite is a poor catalyst for oxygen reduction as
compared to other sulphide minerals (Rand, 1977). This may, in part, explain
pyrthotite’s slow floating characteristics. Attempts to correlate the oxygen reduction
kinetics of sulphide minerals on semi-conducting properties have not been successful
(Biegler, 1976 and Biegler et al.,, 1977). 1t is likely that the stoichiometry and level] of
impurities within the mineral plays an important role in defining the kinetics of

oxygen reduction.

There is growing agreement that the initial adsorption of xanthate onto the mineral
surface occurs through physisorption rather than chemisorption (Hodgson and Agar,
1989, Rao and Finch, 1991, Fornasiero ef al,, 1995). It is proposed that the adsorption
accurs through electrostatic atiraction between the negatively charged xanﬁnate ions
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and positively charged iron hydroxide sites. The iron hydroxide sites are considered to
arise through oxidation of the mineral, although there is still controversy regarded the
exact nature of the sites. For instance, although a certain degree of oxidation appears
necessary for xanthate adsorption, it is clear that heavily oxidised particles are not
floated effectively due to the presence of hydrophilic passivating ferric hydroxide

layers.

The dominant surface product on pyrrhotite from interaction with xanthate, at pH 9,
has been identified as dixanthogen (Allison et al, 1972, Prestige et al, 1993,
Fornasiero et al., 1995). There are however reports of metal xanthate being detected in
addition to dixanthogen depending on conditions (Rao and Finch, 1991, Yoon et al.,
1995). No evidence has been found for the physisorption of dixanthogen onto the
mineral surface and it would appear that dixanthogen can only form on the mineral

surface through an electrochemical mechanism ocsurring on the mineral surface.

It is plausible that xanthate physisorbs onto the mineral surface, and that, provided
there is .a significantly anodic mixed potential, subsequent oxidation of xanthate to
dixanthogen occurs, Conventional theory suggests that dixanthogen formation is a
prerequisite for hydrophobicity, although its necessity is debatable in terms of a metal
xanthate species being effective to achieve hydrophobicity,

There is considerable controversy regarding the role and effectiveness of copper ions
for the activation of pyrrhotite under alkaline conditions. Fundamental work appears
to. indicate that copper activation is nct possible at pH 9 (Nicol, 1984). The
justification for this is, firstly that copper ions precipitate out of solution at pH 9 and
thus may not be available for reaction with the surface of the mineral, and secondly
that pyhotite particles are likely to be well oxidised and covered with iron
hydroxides which inhibit any reaction with the underlying mineral surface.

On the other hand, recent studies by Leppinen (1990}, Senior et al, (1995) and

Kelebek et al. (1996) have shown that pyrrhotite recoveries are significantly improved
when copper jons are present. Copper has been detected on concentrate particles from
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actual flotation circuits operating at pH 9 (Stowe et al., 1995, Yoon et al., 1995), thus
suggesting that pyrthotite was effectively activated.

There has beep relatively little work on understanding by what me: hanism/s copper
ions help with rendering the mineral surface hy« _hobic. It is thought that activation
results in z copper sulphide surface, which is then more beneficial for collector
adsorption. In this case the activated mineral is expected to behave similarly to bulk
copper sulphide minerals like chalcocite, forming metal xarthate compounds as
opposed to dixanthogen in the case of pyrrhotite. The activation reaction may aid the
formation of a sulphur rich surface due to a coupled oxidation of the mineral (’Nicol,.
1984), Another possible mechanism would be to protect the iron sulphide from
forming passivating hydroxide layers.



3. Experimental

3.1 Samples
Tabie 3-1 describes the pyrrhotite mineral samples that were obtained for this study.

Tab. J3-1: Pyrrhotite samples

Code Description ] Origin Source

A pentianciite in pyrrhotité Sudbury, Canada Ward's Natural
(massive) Science

B | nickelferrous pyrhotite Falconbridge, Ontario Ward's Natural
(massive) Science.

C ) purs pyrrhotite (massive) | unknown ‘Ward's Natural
Science

L | pyrrhotite (massive) unknown Local mineral dealer

The samples are referred to by their respective codes with a subscript indicated their
number (i.e. Cy, C; and Cy; would all refer to the same pure pyrrhotite sample),

Table 3-2: SEM spot analysis of pyrrhotite samples

Code ~ Description Major elements Trace elements
A | pentlandite in pyrthotite | Fe, S Al, 8i, P, K, Ca, Ni, Cu, Zn
B[ nickelterons pyrhotite | Fe, S Al, 8i, P, Ni, Cu
C | pure pyrihotite Fe, S Al 8i, P, K, Ni, Cu

SEM spot analysis was conducted on samg'es A, B and C. This gave a qualitative
indication of the elemental comgosition of ¢ ach sample which is shown in Table 3-2,

Detailed quantitative analysis was not performed.




3.2 Electrode preparation

Small pieces of mineral were cut from the main sample. These pieces were ground to
form a cylindrical riece of approximately 5mm diameter. Copper was
electrochemically plated onto one end of the cylindrical piece. This allowed for a
contact to be soldered onto the mineral end.

Stationary electrode Rotating electrode

| g szaled with epaxy

rotli——— glass or plastic lbe

, | ol it contec
l jp————plated coppec Bayer
Jo—- -epoxy casing

sipiple

Figure 3.1: Schematic of electrode construction {(not to scale)

Figure 3.1 gives a schematic of the electrode construction. For stationary electrodes
the rmineral sample, with the wire contact, was encased in epoxy resin within a glass
or plastic tube. In the case of rotating electrodes Teflon tubes were manufactured.
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Table 3-3; Areas of electrodes used in eyclic voltammetry

C, | stationary, pure pyrr, (Ward’s) 0.21
C: | stationary, pure pyrr, (Ward’s) 0.26
C. | rotating, pure pyrr, (Ward’s) 0.28
L | rotating, pyrr. (local) 0.71

The areas of the electiode surfaces are given in Table 3-3. In calculating the area for
each electrode surface the area of major inclusions (larger than 1mm?) was taken into
account and subtracted from the overall acea. ' '

3.3 Reagents

Electrolyte solutions were made vp from distilled water and AR grade resigents.
Anhydrous sodium sulphate and di-sodium tetraborate were supplied by SAARCHEM-
HOLPRO ANALYTICAL (Pty) Ltd. Sodium isobutyl xanthate was supplied by
SENMIN, a division c¢f SENTRACHEM Ltd, where it was specifically purified by
recrystallization, In unbuffered solutions the ~H was adjnsted by adding small amounts
of concentrated sulphuric acid an sodium hydroxide solution which were specifically
prepared in distilled water,

Fresh solutions were prepared for each experiment. The solutions were de-oxygenated
by sparging with nitrogen gas, Bottled air and oxygen could also be sparged into

solutions as necessary.

3.4 Equipment

A potentiostat and sweep generator manufactured by MINTEK were used to measure
and control the potential, A rotating disk assembly was obtained witk a stepping motor
which sllowed for rotation speeds of up to 1000RPM. The speed of the controller for
the motor was calibrated prior to the rotating disk work. The rotating shaft acted as
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the contact to the electrode, with the Teflon casing fitting over the shaft and the spring;
within the electrode casing slipping onto the shaft, The spring rested on the copper
plated section of the mineral sample (see schematic of rotating disk electrode in Figure
3.1) thus making contact be+ween the shaft and the mineral surface. The current and
potential ouiput from the potentiostat was recorded on an HP 705B X-Y Recorder.
A Metrohm 744 pH meter was used to measure the pH of the solutions, All
experiements were conducted at 25°C,

3.5 Techniques

The following section describes the experimentsl techniques used in the various -
experiments, In some cases more detailed specific explanations are given in the main
text.

3.5.1 Potential measv~ements on the _plant

Specially designed electrode probes were assembled. The probes where approximately
one meter long and vonsisted of a hollow PVC tube. Pyrrhotite electrodes were
inserted in one end of the tube and the tube sealed so that only the mineral surface was
exposed. The electrode was then connected to a coniact plug on the other end of the
tube viz a wire fed through the length of the tube. In addition to three pyrrhotite
elecirodes, a reference electrade, platinum electrode and pyrite electrode were also
agsembled in this fashion, By inserting the probes into the varous flotation unit
operations the mixed potential of the minerals relative to the reference electrode could
be measured.

Before each measurement the minersl electrodes were freshly exposed by grinding the
surface on 1000 um emery paper arxt washing with distilled water. The probes were
then inserted directly into the slury. Measurements were taken at the cyclone
overflow surge box, the surge tank, conditioning tank 1, conditioning tank 2 and along
the flotation bank stages. These measurements provide a pood indication of the
electrochemical environment throughout the flotation circyit. It was difficult to
measure a steady potential as the potentials tended to fluctuated significantly. This is
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probably due to the slurries being vigorously agitated. The measured value is therefore
an estimate taking into account the fluctuations,

3.5.2 Potential measurements from batch flotation tests

The details of the batch flotation expesiments and results are dealt with elsewhere
(Flodgkinson, 1996) and will only be discussed briefly here, Standard flotation tests
were conducted in 2 litre batch flotation cells. The concentrations of solids and
reagenis were the same as those used at the plant, The ore 'was mifled in laborarory
mills to 65% -75 microns, The desired pH was maintained throughout the float by
small additions of sulphuric acid. Initially a standard float was conducted at the natural
pH. The pH was then controlled at 3, 4 and 5,

The tests consisted of 2 two minute conditioning stage where the required pH was
achieved and maintained. Copper sulphate was then added and the pulp was
conditioned for 10 minutes. Collectors, depressant and frother were then added and
after a further 5 minute condiioning period the flotation was begun, Concentrates
were collected at 1, 5, 17 and 33 minutes.

The reagent dosage was similar to that used on a typical local suiphide flotation plant;
SIBX, DTP, Acrol IMP4 and Senfroth, SIBX is not ideally suited to fow pH
conditions, therefore tests were also conducted using MBT, The addition of SIBX
directly into the mill was also investigated,

Allowance was made for electrodes to be immersed directly into the flotation cell
during the tests, The mixed potential of the pyrrhotite mineral could thus be measured
throughout the various stages of the float. Nickelferrous pyrrhotite (B) and pure
pyrthotite {7} samples were used, each in duplicate, The clectrodes were freshly
ground at the beginning of each test. Electrodes B; and C, remained in the slurry
throughout the test, whilst electrodes Bo and C, were removed at the end of each stage
(conditioning, activating, collecting and floating) and were freshly exposed before
being re-immersed in the slurry,

2%



The changes in potential of electrodes By and C; and the reactions occurring at the
surface of these electrodes are most likely fo be the same as those experienced by
pyrrhotite mineral particles in the slurry, The measurements taken from B, and C; give
an indication of the potential that the mineral particles would assume were they freshly
exposed and non-cxidised.

3.5.3 Potential measurements in the Iaboratory

Electrodes were freshly exposed by rubbing with 1000 grade emery paper and washing
with distilled water. The surface was wiped with tissue paper to remove any residue
from the grinding. The electrodes where then immersed in the solution of interest and
the potential recorded once it had stabilised. Generally potentials stabilised within 2 to
5 minutes depending in the nature of the solutions. Solutions were prepared as
necessaty and were de-oxygenated by sparging with nitrogen. Al solutions were
thermostatted at 25°C.

The electrolyte penerally used for experiments was 0.1M Na;SO.;; In some cases
0.05M di-sodium tetraborate buffer solutions were used. Sodium sulphate was chosen
as an electrolyte as plant solutions are known to contain both sodium and sulphate
ions, The pH of the solutions was adjusted through small additions of concentrated
sulphuric acid and sodium hydroxide.

3.5.4 Cyclic voltammetry

Stationary and rotating electrodes were investigated, 0.1M sodium sulphate and 0,05M
di-sodium tetraborate were used as elactrolyte solutions. Sodium hydroxide and
sulphuric acid were used to adjust the pH of the sodium sulphate solutions to the
desired value. All experiments were conducted in & glass titration vessel, with an outer
thermostat compartment which was kept at 25°C by circulating water from a water
bath. Solutions were de-oxygenated by sparging with nitrogen as necesary. Before
each experiment electrodes were fresiily ground on 1000 grade emery paper ard
wash~J with distilled water. Surfaces were wiped with paper towel to remove residue
from the grinding, The electrodes were then immersed directly into the electrolyte
solutions. A potentiostat was used fo coatrol the potential at the working electrode.
The potentiostat was coupled to 2 potential wave generator which enabled the
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potential to be cycled between set limits, Current and potential were recorded directly
onto & X-Y recorder (this equipment has been described in Section 3-4).

3.5.5 Hydrophobicity tests

Small bubbles of nitrogen were injected onto the surface of the electrode using a
micro-syringe. The volume of the bubble was Gul. which gives a bubble diameter of
23mm, Care was taken to inject the bubble onto the surface of the electrode at the
same position each time, The electrode was then slowly accelerated uniil the bubble
detached. The set-up is shown in Figure 3,2

I
}
_ — !
Stepping moﬁto; A e electrode rotates
speed QOO ! i
L _ - about axis
L }
;
\
1 .
i -t electrolyte solution
| .
Fo—— nitrogen bubble

electrode casing
mineral surface

Figure 3.2: Experimental set-up for hydrophobicity tests

The rotation speed of the electrod.. o* the point of detachment was taken as 4 measure

of the strength of attachment of he bubble to the particle surface, and thus by
inference a qualitative measure of the hydrophobicity of the surface. The effect of

different conditioning treatments could then be yualitatively assessed in ferms of

strength of bubble attachment. The different types of conditioning emploved ars

described in Table 3-4.
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Table 3-4: Description of conditioning stages used for hydrophobicity tests

Trostment no, Description of conditioning stage

0.1M N2;S0; @ pH 9 (no CuSOy)

0.1M Na;50, @ pH 9; 10 CuSO4

0.05M NazB,0; @ pH 9.3 (no CuSOy)

0.05M N&zB,0; @ pH 9.3; 10™ CuS0,

0.1M Nay8SQ4 @ pH4 (no CuS0q)

G th] Al W N

0.1M NaxS0, @ pH4; 10°M CuSO,

The freshly exposed electrode was conditioned for =2 minutes. In the case of
treatments 5 and 6 the pH of the solution when the electrode was first immersed was _
pH 4, After this the pH was adjusted to =9, For all other treatments the PH at the start
of the test was =9, SIBX wus then added and the electrode conditioned for a farther 10
minutes. The concentration of SIBX after addition was 10°M. All solutio~s were
thermostatted at 25°C with an Oz sparge. The electrode was rotated at 500 RPM
during the conditioning stagés. In the case of the acidic conditioning the pH of the
solution was increase to =9.2 before SIBX was added. Following all the conditioning
stages the electrode was Kept stationary. A 6L nitrogen bubble was injected onto the
inverted surface of the electrode. The electrode was then slowly accelerated unti! the
bubble detached from the surface. The rotation speed at which this occurred was taken
as the qualitative measure of the strength of bubble attachment,
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4. Results and Discussion

4.1 Mixed petential measurements

The mixed potential of a mineral gives an important indication of the electrochemical
state that exists on the surface of the mineral, The mixed potentiul is defined by
competing reactions that occur on the surface. Thus an understanding of what effects
the mixed potential leads to an understanding of the reactions that are important to the
surface chemistry.

There is an important relationship betwesn thermodynamics and the mixed potential.
Thermodynamics gives equilibrium potentials for reacting couples. These equilibrium
potentials describe what is possible given sufficiently oxidising or reducing
conditions. In the case of mineral-solution systems the oxidising or reducing
- conditions are defined by the mixed potential that is assumed between the

mineral/solution interface.

The mixed potential of pyrrhotite electrodes has been extensively studied in this
investigation, Measurements were taken in plant flotation circuits, batch flotation tests

and in laboratory experiments,

4.1.1 Equilibrium potential of the dixanthogen/xanthate couple

The equilibrium potentiél of the xanthate/dixanthogen couple for sodium isobutyl
xanthate js not well reported elsewhere. Most research appears to be based on
potassium ethyl xanthate. It was thus necessary to measure the potential of this couple.

A 0.1M NayS0, supporting electrolyte solution was made with the pH adjusted to
9.22. Three different concentrations of xanthate were dissclved into this solution. A

platinum electrode was used as a working electrode and the potential was held anodic -
for several minutes, thereby oxidising xanthate to dixanthogen on the surface of the
platinum electrode. The electrode was then open-circuited for =5 minutes and the

resulting rest potential measured,
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Tke following reaction is assumed:

X+ 2 ©2X (3-1)
For unit activity X, the Nernst equation predicts:
B =E° - MpeIn[X]? (3-2)

The results are shown in Table 4-1.

Table 4-1: Equilibrium potentials for xanthate/dixanthogen couple (SIBX)

[SIBX)/{M) E/(V vz, SHE) E°/(V vs. SHE)
107 -0,009 0.127
10” +0.049 -0.128
10* .. +0.108 -0.128

The Nernst equation (equation 3-2) predicts a 59mV increase in equilibrium potential
for every order of magnitude decrease in concentration of xanthate. The above results
ar= in accord witil this prediction (58 and 59 mV observed chunge). Using the Nernst
equation E° can be calculated and the values are shown for each concentration of
SIBX. Winter and Woods (1973) report an E® value of -0.128V for n-butyl xanthate
which is in good agreement with the values reported in Table 4-1.

4.1.2 Potential measurements on the plant

The potential which the mineral assumes in the flotation environment is imporfant in
understanding how the varicus flotation reagents will react with the mineral surface,
as well as how the rnine-ral will react itself, The mechanism of the oxidation of the

rrineral, and therefore possibly the products of oxidation, will be dependent on the

potential at which the mineral oxidises.

Plant potential measurements were undertaken at the Minerals Processing Plant in
Rustenburg. The aim was to gain a better understanding of the potentials to which the
pyrrhotite mineral is snbjected, and to gauge the change in electrochemical

environment down the flotation circuit.
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4.1.2.1 Results and Discussion

The potential measurements taken at the plant down the flotation circuit are shown in
Figure 4.1,
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Figure 4.1: Plant potential measurements

There is a downward trend in the potential through the circuit. By the end of the
second conditioning stage the potential stabilises to some extent, It is expected that the
addition of the flotation reagents will lower the mixed potential of the minerals. The
erratic readings measured for the platinum elecirode are more likely due to
experimental error and the poorly poised potential than to any real effect. Pyrite is
more noble than the pyrrhotite samples as seen by the more anodic mixed potentials.
The pure pyrrhotite sample is the least noble as expected.

The potential range relevant to pyrrhotite flotation is defined on the cathodic side by
the equilibrium potential of the xanthate/dixanthogen couple and onh the anodic side by
the potentials measured by the pyrchotite electrode prior to xanthate addition. This .
gives a range from =0,100 to 0.250V,
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4.1.3 Potential measurements from batch ﬂbtation

The slurry at the Minerals Processing Plant tends to be buffered at approximately pH
9. It is thought that und: alkalive conditions the poor flotation response of pyrrhotite
is related to the formation of hydroxide layers on the surface of the mineral, These
hydrophilic hydroxide layers passivate the surface and inhibit interaction with
collectors. It was therefore proposed that the recovery of pyrrhotite could be improved
by performing the flotation under acidic conditions thereby minimising the formation
of hydroxide layers.

Batch flotation tests were performed on Merensky ore samples at the Gencor Process
Research Laboratories in order to test the effectiveness of acid flotation. Mixed
potential measurerients were taken in order to gain information on the
electrochemistty of the flotation. . .

4,1.3.1 Results and Discussion

Standard flotation with no sulphuric acid addition
The potentials of the electrodes during the test are shown in Figure 4.2, Note that in
Figures 4.2, 4.3 and 4.4 the arrows indicate the potential directly after the reagent

addition, The abscissa represents stages in the procedure and is not to scale (in time).
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Figui'e 4.2: Mixed potential measurements - Standard Flotation (pH 9)

There is very little change in the mixed potential of the B, and C, electrades. This
would indicate a lack of interaction between the mineral surface and the flotation
reagents, The equilibrium potential of the xanthate/dixanthogen couple at plant
concentrations (E=0.168V) lies more cathodic than the rest potential of the pyrrhotite
mineral. electrodes. On the addition of xanthate one would expect to see a shift in the
mixed potential to more cathodic potentials in line with the predictions of the mixed
potential model, and since the rest potential is more anodic than the equilibrium
potential for dixanthogen/xanthate couple, the formation of dixanthogen is favoured
(Allison et al., 1972),

In the case of electrodes By and C; the effeci of adding the various reagents is
apparent, The mixed potentials of electrodes Ba and C; increases on the addition of
CuS0Qy and decreases on the addition of SIBX.

The surface of electrodes B; and C; were freshly exposed at the end of each stage,
Electrodes B; and C, remain in solution throughout the test. It would therefore appear
that the lack of interaction between By and Cy, and the flotation reagents is caused by

passivation of the surface due to oxidation during the luitial conditioning stages,
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Acid Flotation using STBX
Three diﬁ‘erent_ pH’s were investigated: pH 3, 4 and 5, The results for pH 4 are shown
in Figure 4.3,
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Figure 4,3; Mixed potential measurements - pH 4, SIBX

There is a significant increase in the electrode potential when H;80; is added. The
potential decreases slightly by the end of the conditioning stage, On the addition of
CuS0;, there is & further increase in electrode potential. The putential decreases again
during the conditioning, The addifion of SIBX causes a drop in potential, Unlike the
standard float conditions (Figure 4,2) the potentials of the electrodes that remain in
solution are similar to those of the eiectrodes that are freshly exposed at the end of
each stage. By refreshing the electrode, surface products are removed and the effects
¢ "any passivation due to these products are eliminated. Refreshing the electrodes has
little effect on the potentials, as compared to those electrodes that are not ~efreshed,
This would indicate that under the scidic conditions investigated the mineral is not

being passivated by surface products as is the case under alkaline conditions, .

38

-



0250 \g - > f“‘*x_h\

LY
= B

0,150

Pﬂl‘s'lhl‘l\lnil-ﬂ
8

~—
-_
R

wollector ads;lhn Floli;lbrl
a.100 ~aef
i
D.050 ——
= Atandatd

0.000

Figure 4.4: Mixed poteniial measurements - Electrode CI, SIBX

The potentials of slectrode C; are shown in Figure 4.4 for the different pH conditivns
investigated, For standard conditions (pH 9) the potentials are significantly lower than
“those at more acidic pH’s, There is also less change in potential through the various

conditioning stages for pH 9,

Acid Flotation using MBT

The use of MBT as the collector should have no significant effect on the initial
conditioning stages and the electrochemical results for these stages were found to be -
similar to those for tests conducted with SIBX, MBT hé.s a similar redusing affent on
the mineral as SIBX. The same trerids were observed, in that the mineral showed

enhanced interaction under acidic conditlons.

Mineral Récoxeg_ Results

The electrochamical results outlined above suggest that the recovery of pyrrhotite
should be enhanced under acidic conditions, In an analysis of the actual recoveries for
{'.2se experiments, Hodgkirson (1996) found that, for SIBX as the collector, the
fraction of slow floating material increased under acidic conditiuns 1o, !l minerals (i.e.
flotation kinetics worsened under acidic conditions) . It is known that SIBX is not a
suitable coilector for acidic conditions and, as the pH was maintained at the acidic
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lewrels even during flotation, this conld explain the poor flotation. MBT, which is more
suitable for acidic conditions, was also tested, This showed an improvement in
flotation response. Another draw back of the test is that the effect of the acidic p.. on
the stability of the froth phase is not known. Thus improved chemical effects achieved
by acid conditioning may be masked out by poor physical factors of collector
efficiency and froth stability. These problems could be overcome by an alternative
experimental procedure whereby the pH is not maintained at acidic levels, but allowed
to return to its natural value after the activation stage. '

4.1.4 Potential measurements in the laboratory

In order to better understand the potential measurements made under plant conditions
and in batch flotation tests it is necessary to have a good understandiug of the mixed
potential of the mineral under controlled conditions. Under real conditions the mixed
potential is likely to comprise of a complex set of competing reactions, due to the
large number of potential determining ions in the plant solutions. Under laboratory
conditions, however, the mineral can be inolated to some extent. Reagents can then be
added to the solution and there respectii'e effects on the mixed potential observed,

4.1.4.1 Results and Discussion
The mixed potential of pyrrhotite electredes in de-oxygenaied sodium sulphate

solutions was measured at a number of pli values and the results are shown in Figure
4!5‘
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Figure 4,5: Mixed potential of pyrrhotite ys. pH (de-oxygenated)

Thete is a large amount of scatter in the readings. This indicates that in the absence of
any reagents the mixed potential of pyrrhotite is pootly defined making it difficult to

obtain reproducible reaaings. .
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Figure 4.6: Mixed poteniial of pyrrhotite - effeet of oxygen

The effect of oxygen in the solution is evident in Figure 4.6, The potentials are all
more anodic in the presence of oxygen by approximately 0.150V.
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The effect of SIBX on the mixed potential of a pyrrhotite electrode is shown in Figure
4.7 and Figure 4.8. Open circait and anodic pre-conditioning was investigated, and
two different xanthate concentrations were considered (10*M and 107M).
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Figure 4.7: Mixed potential of pyrrhotite - effect of xanthate [107M]

At a concentration of 10™*M, the dixanthogen/xanthate couple has an equilibrium
potential significantly more cathodic then that of pyrrhotite which causes the mixed
potential to move cathodic with respect to mixed potentials in xanthate free solutions.

As the concentration of SIBX decreases the xanthate/dixanthogen squilibrium
potential moves anodic, and at plant concentrations of 10*M, lies approximately
100mV cathodic of pyrrhotite’s rest potential, Open circuit conditioning of the
electrode did not significantly effect the mixed potential as compared to freshly -
exposed electrodes, Extensive anodic conditioning resulted in the mixed potential,
after addition of SIBX, being slightly more anodic than the open cirenit condition
treatments. -
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Figare 4.8: Mixed potential of pyrrhotite - effect of xanthate [10"M]

Potential measurements in a laboratory simulation were made using a pyrrhotite
electrode and solutions of similar composition and concentration to those used under
plaﬁt flotation conditions (the solution was sparged with air). Figure 4.9 shows the
potentials that were measured. The tests were conducted in sodium sulphate and
borate buffer solutions. Sodium sulphate {s more suitable in terms of corresponding to
plant solutions, but it is difficult to control the pH at the desired value (pH 9). For
instance on the addition of copper sulphate the pH drops to approximately 6.5 and the
pH must be raised by small additions of concentrated NaOH. This then affects the
potential that is measured, For this reason a borate sointion was a]so used.
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Figure 4.9;: Mixed potential of pyrrhotite - laboratory flotation simulation

On addition of copper sulphate the pH of the sulphate solutibn_ dropped to

sroximately 6.5, Consequently the measured potential of the pyrrhotite electrode
increased. It is difficult to estimate to what extent the rise in potential is due to the
copper sulphate or the drop in pt. There is a drop in potential on xanthate addition. In
the case of the borate solution there is no significant effect on the measured potential
on the addition of xanthae,



4.1.5 Discussion

Figure 4,10 shows a cor., ~arison of the various potential measurements, namely: plant,

batch flotation test and laboratory potentials.
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Figure 4,1¢: Comparison of plant, batch test and laboratory potential

measurements

All potentials measured are above the equilibrium potential for the
xanthate/dixanthogen couple (E=0,108Y) indicating that dixanthogen is the favoured
product from xanthate interaction with pyrrhotite (Allison ef al., 1972).

The potential measurements taken from baich flotation tests, under siandard
conditions, are the most significant (see Figure 4.2). These measurements provide
convincing evidence for the passivation of pyrrhotite by surface products. It is not
clear what these surface products are, nor how they form, although they are most
likely iron oxides/hydroxides formed through oxidative dissolution of the mineral

prior w reagent addition.

The role of surface products in passivation could be three fold. Firstly, they may
reduce the effective area available for reaction between the xanthate collectors and the

mineral surface. Secondly the surface products may be hydrophilic (for example
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hydroxides are penerally considered hydrophilic). Thirdly, they may have a
detrimental effect on the specific collector reactions themselves, These reactions are
the anodic adsorption of xanthate coupled to the reduction of oxygen. Interpreting
changes in rest potential in terms of the effect on these specific reactions is difficult in

‘the absence of other data.
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Figure 4.11: Hypothetical schematic of mixed potential model

For instance, as shown in Figure 4.11, the oxygen reduction reaction may be
unaffected by surface products yet these products may inhibit xanthate adsorption. In
this case an increase in rest potential is expected in accordance with mixed notential
theory. It is possible however that an increase in mixed potential could occ. » through
the enhancement of the oxygen reduction reaction only. Bqually so there may be
effects on both reactions to varying degrees which then yields differences in the mixed
potential. Results dealt with later have indicated that the oxygen raduction reaction is
not effected by differences in - rface composition, at least not to the extent that
xanthaie adsorption is.

There is a slight disagreement between the batch tests and the laboratory
measurements, Laboratory measuremen » showed that open circuit conditioning did
not affect the mixed potential of pyrrhotite electrodes in xanthate solutions. It would
be expected that, if incipient oxidation leads to passivation, then, after extensive open

46



circuit conditioning (10 minutes), potentials should be more anadic in the presence of
xanthate as compared to freshly exposed electrodes, where no surface products are
expected. Extensive closed circuit conditioning, at potentisls of least 100mV more
anodic than pyrrhotite open circuit potentials, did give more anodic potentials in the
presence of xanthate, as compared to freshly exposed electrodes. This then points to. -
some inhibition of the xanthate oxidation reaction, presuming that the oxygen
reduction reection is unaffected (refer to later sections), Interestingly, in pH 9 borate
buffer solutions, the addition of xanthate ha. .o effect on the rest potential of the
mineral elecirode. This may be due to the buffering action of the solution which
minimises local pH effects that may ocour in unbuffered sulphate solutions,

Plant potential measurements indicate that the maximum oxidising potential that the
mineral experiences is likely to be in the range of 0.2-0.25V, The milling environment
is certainly not expected to be more oxidising than this, due to the reducing affect of
iron residues, It could be argued, therefore, that these potentiais are anodic encugh to
cause surface oxidation products that inhibit xanthate adsorption.

47



4.2 Electrocheraistry of pyrrhotite in flotation

4,2.1 Electrochemistry of pyrrhotite

The response of pyrrhotite to flotation depends, in a chemical sense, on the
effectiveness of the activation and collector adsorption process. These processes occur
through reactions on the surface of pyrrhotite mineral particles, The state of the
minera! surface, in terms of its composition and concentration of surface products, is
likely to play an important role in the effectiveness of subsequent surfacs reactions,
The mineral surface is altered by incipient oxidation during the milling and conditioning
stages prior to the addition of flotation reagents, The reactions and subsequent
products formed through these reactions will be primarily dependent on the redox
potential of the pulp solution and on the pH.

The redox potential (E4) of the pulp solution gives an indication of the overall oxidising
strength of the environment, It is influenced by potential forming ions in solution,
oxygen concentration and the various minerals themselves. When considering specific
minetals it is better to consider the mixed potential of the mineral itself. This mixed
potential will reflect the extent and mechanism of the mineral oxidation, The products
formed and the stability of these products will alse be dependent on the mixed potential
of the mineral, Equally important is the pH of the solitions., This will effect the
equilibrium potentials of the reactions as well as the stability of the products,

The oxidation of pyrrhoiite has been investigated using cyclic voltammetrs. Of
particulat interest is the extent of oxidation, the products that are formed and the
extent of the surface coverage of the products that precipitate on the surface. The
knowledge of plant mixed potentials discv:ssed in section 3-1 is important in defining
what oxidative potentials are relevant to the uitimate flotation of pyrrhotite. The
oxidation of pyrrhotite should be interpreted according to the potential range it can be
expected to experience,
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4.2.1.1 Resuits

Oxidation under highly anedic conditions
Figure 4.12 shows the voltammogram for a pyrrhetite electrode at pH 9.3 in a borate
solution. The sweeps were commenced from the rest potential and the numbers refer

to the sweep number,
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Figure 4.12: Voltammograms of pyrrhotite electrode (L) at pH 9.3

Figure 4.13 shows the results of the same experiment but frr a different pyrrhotite

sample,
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Figure 4.13: Voltammogram for # pyrrhotite electrode (C,) at pH 2.3

In both experiments sweeps were initiated from the rest potential in the cathodic
direction. The potential was subsequently cycled. On the initial cathodic sweep there
is some indication of a reaction occurring at =-0.250V. On the first anodic swecp a
current plateau is formed at =0.200V. At 0.500V ihe anodic current increases forming
a platean at =0.800V. The subsequent increase in anodic current at potentials close to

1V is due to oxidation of HxO (oxygen evolution was observed at the working
electrode),

The second cathodic sweep indicated at least two cathodic reactions. In Figure 4.12
the first cathodic reaction reached its peak current dengity at =-0.500V. Fr - the sample
shown in Figure 4.13 this first cathodic peak appears to have occared at slightly more
anodic potentials with a peak current density at ~0.400V. For both samples a second
cathodic reaction at -0.000V is observed, although in Figure 4.12 this peak is not '
clearly defined on the second cathodic sweep.
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The second anodic sweep indicates at least two anodic reactions at -0.050V and
0.100V, At more ar. dic potentials the current platean observed on the first anodic
sweep is not present and this would indicate some passivation of the mineral.

On subsequent cycling the first cathodic reaction occurring at =0.500V (Figure 4.12)
and -0.400V (Figure 4.13) diminjshes, This suggests that the reactants for this reaction
are exhausted on the initial cathodic sweep and are not replerished on subsequent
anodic sweeps. The second cathodic reaction at -0.600V and the anodic reactions at
-0.050V and 0.100V are enbanced on subsequent sweeps.

Experiments were also conducted using rotating electrodes under the same conditions.
These voltammograms were similar to the stationary ones indicating that all reactions
involved solid reactants and were not controlled by mass transport to or from the
electrode.
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Figure 4.14: Voltanmogram of pyrrhotite electrode (Cs) at pH 9.2 (Na;S04)

Figure 4.14 shows the voltammogram for a pH 9.2 Na;SO, solution. There are &
number of notable differences as compared to sweeps conducted in borate solutions,

The anodic plateau at =0.200V on the first anodic sweep is the same as that observed
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in borate solutions however there is no evidence of a platean at higher anodic
poteatials, There is no clearly distingnishable peak at -0.050V. On the cathodic side
there arte still at least two main cathodic reactions although the first cathodiv reaction
at =-0.400V does not diminish on subsequent sweeps as was the case with borate
solutions, but increases in peak magnitude. The second cathodic peak is again only
pronounced on third anc subseguent cathodic sweeps. Strtionary electrodes gave
gimilar results although the cathodic peaks were more clearly distingnishable when
rotating electrodes were used.

Oxidation of pyrrhotite was briefly investigated in acidic conditions in order to aid in
the identification and understanding of the alkaline response. Figure 4.15 shows the
voltammogram for pH 4.6.
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Figure 4.15: Voltammogram of pyrrhotite elecirode (L) at pH 4.6

At pH 4.6 there was a new cathodic peak at 0,400V, There is an indication of a
cathodie reaction at =0.100V, The peaks observed under alkaline conditions at -
0.600V and =0.400V appear to have shifted slightly more anodic by =0.050V. On the
return anodic sweeps there is only one clearly visible anodic peak at 0.100V, Sweeps
were also conducted using a rotating electrode. The main difference between rotating
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and stationary electrodes was that the cathodic peak at 0.400V disappeared suggesting

that this reaction involved soluble reactants.
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Figure 4.16: Voltammogram of pyrrhetite electrode (L) with varying potential
limits

In Figure 4.16 the potential limits were varied as the sweeps progressed. The initial
anodic potential limit was set to 0.800V to allow the mineral to extensively oxidise.
On subsequent return anodic sweeps the potential was limited to 0.300V. The cathodic
limit was set first to -0.400V and then to -0.700V,

After the first anodic sweep a large cathodic current is observed at -0.400V. The
sweep direction was then reversed and a large peak at 0,050V was ~bserved. The
potential was then cycled once again between 0.300V and -0.400V. The peak at -
0.400V is less pronounced and shifted anodic to =-0.300V, although at -0.400V the
cuwrent increases due to another reaction. On the third anodic sweep the peak is
diminished at 0.050V. It would therefore appear that there is a reaction couple
occurring at these potentials which involves either a soluble oxidation product or an
oxidation product that requires more cathodic potentials to be reduced. This accounts
for the peak dying out on subsequent sweeps. The same experiment was conducted
using a stationary electrode with the same result. It is therefore more likely that
soluble products are not involved but that the oxidation product requires a more
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cathodic limit to be rednced. The cathodic limit was then extended to -0.700V
(cathodic sweep 3). Two cathodic peaks are visible at -0.450V and -0.500V, On the
final cathodic sweep (cathodic sweocp 4) only the pesk at -0.4350V is visible.
Corresponding anodic peaks are observed with slightly different peak potentials,

Oxidation imder mildiy anodic conditions

The oxidation of pyrrhotite appears to occur via two different mechanisms depending
on the potential, The one mechanism occurs at potentials of between 0.200V and
0.500V whilst the other mechanism occurs at higher anodic potentials, Mixed
potential measurements with pyvrhotite electrodes indicate that the mechanism
occurzing between 0.200V and 0.500V is more relevant, Pyrrhotite pasticles are
unlikely to experience potentials more anodic than 0,300V in normal alkaline flotation
environments, Oxidation of the mineral in this range was therefore inve;stigatcd mere
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Figure 4.17: Voltammogram of pyrrhotite electrode (Ly,) after mild anodic
conditioning

In Figure 4.17 the electrode was held at 0.300V for 2 minutes. The potential was then

swept in the cathodic direction. There is cathodic peak at =-0.250V. No anodic peaks

are visible on the anodic scan. The experiment was also performed using a stationary

electrode with similar results.

54



8]

.08M NaaB:Or; pH 8.3; atetiarary !
slactrode; swesp rate=Bmvis;
condifionsd ler & min (sxapt for reshly
axposed slacrode): Semple: C

g frashly e:xposad, nlirogen
E epon clreult, axygin
:
[+

300mV, iirogen

D4 0.3 0.2 0.1 29 01 02 0.3
Potentiay va BHE}
Figure 4.18: Cathodic wave forms for pyrrhotite electrode (C): freshly exposed,
mild anodic conditioning and oxygen saturated conditioning

Figure 4.18 shows the results from an experiment conducted on a different pyrrhotite
sample, With the exception of the freshiy exposed case, the electrode was conditioned
for 5 minutes under open circuit, oxygen saturated, pH 9.3 borate solution, and, under
closed circuit, 0.300V, pH 9.3 borate solutions. |

As already observed the freshly exposed electrode gave no significant cathndic
reactions. The conditioning at 0.300V and open circuit yielded similar results with a
cathodic reaction occurring at =-0.250V. After conditioning at open circuit in the
oxygenated solutions the rest potential of the electrode was 0.262V. Thus conditioning
the electrode at 0,300V is similar to conditioning in open circuit oxygenated solutions
were the rest potential approaches 0.300V.
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Oxidation under acidic open cirevit conditions

There has been considerable interest within industry of acid conditioning sulphide
mineral slurries prior to addition of reagents. This inferest stems from the generally
accepted idea that less noble sulphide minerals, like pyrrhotitt, oxidise under alkaline
conditions forming oxide/hydroxide surface layers, which then, either inhibit
collection directly, or reduce the effective mineral surface area available for collector

attachment.

It is anticipated that such an acid conditioning stage would dissolve oxidation
products (especially hydroxides) on the surface thus effectively chemically cleaning
the minerals and presenting them freshly exposed to the flotation reagents, Practically
this would be done by spiking the pH to a low value (pH 4-6) and then allowing the
natural buffering capacity of the slurry to bring the pH back up to pH=0 before the
various activators, collectors and frothing agents are added.

There has been no direct experimental evidence to suggest that such a treatment would
be effective, and there are a number of issues that remain unresolved. For the specific
case of pyrrhotite the mechanism of oxidation in acidic solutions may be different to
alkaline sclutions resulting in different surface products. The stability of the mineral

surface after acidic oxidation is also not known.
The effect of acidic uxidiition on the surface was therefore studied. Mineral el_ectrodes

were condition in separate pH 4 sodium sulphate solutions. The electrodes were then
transferred ta 2 0.05M sodinm tetraborate solution at pH 9.3,
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Figure 4.19;: Voltamamograms showing cathodic wave forms with and without
acid conditioning (L)

Figure 4.19 shows the cathodic wave forms for electrodes after anodic oxidation, open
circuit conditioning at pH 9 and acid conditioning at pH4. All solutions were sparged
with nitrogen. After the electrode had been swept anodic there are two cathodic peaks
on the reverse sweep at 0,300V and 0.400V, When the electrode had been open circuit
couditioned only the peak at 0.400V is visible, whilst after acidic conditioning the
peak at 0.300V is visible, There are therefore differences in the cathodic behaviour of
the mineral between the different treatments.
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Figure 4.20: Voltammograms showing cathodic wave forms with and without

acid conditioning (Cp}

In Figure 4.20 a different pymhotite sample was investigaied. In this case the
conditioning solutions were saturated with oxygen, but the sweep solution was de-
oxygenated. Unlike the results shown in Figure 4.19 the alkaline conditioned electrode
gives a cathodic reaction at slightly more anodic potentials than the acid conditioned
electrode.

4.2.1,2 Discussion

The anodic behaviour of the two pyrrhotite samples show very similar oxidation
mechanisms and there is good agreement with Hamilton and Woods {1981) and
Hodgson and Agar (1989). These researchers have suggested that the initial oxidation
ocours through the progrescive removal of iron leaving a sulphur rich mineral surfacs.
At higher potentials sulphur is oxidised_ directly to sulphate (Hodgson and Agar,
1989).

There are differences in the anodic waves between borate and sodium sulphate
solutions. Oxidation in borate solutions at higher potentials forms 3 shoulder before
the anodic current increases rapidly due to oxidation of H,O leading to O evolution,
This shoulder is not visible in sodium sulphate solutions. Related to this is the
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obiservation that, on second and subseguent sweeps in boreie solutions, the oxidation
appears to passivate (Figure 4.12 and Figure 4.13). This does not occor in sulphate
solutions (Figure 4.14), This could be due to local pH affects at the mineral surface, as
the oxidation of pyrrhotite directly to sulphate involves the production of H' ions (
reaction (1-4)). The use of a buffer solution may counter act this effect.

There is still considerable specuiation about the exact nature of the pyrrhotite surface
after oxidation. An investigation of the cathodic currents after anodic sweeps reveals
at least two, possibie three, cathodic reactions that arise through the previous
oxidation {these cathodic reactions are nJat visible when swept cathodically after being
freshly exposed). Possible reduction reactions can only include: reduction of sulphur
(either elemental or from a suiphur rich lattice), reduction of ferric hydroxide to
ferrous hydroxide, further reduction of ferrous to metal, and the re-formation of
pyrrhotite or other iron sulphide from oxidatien products. The relevant reactions with
their equilibrium potentials are given below:

S+2¢ +H © HS Epo = 0328V (E°=-0062V) (4-1)
Fe(OH); + & +H' & Fe(CHR +H:0  Epuo=-0.250 V (B" = +0.280 V) (4-2)
§ + Fe(OH) + 2¢” & Fe§ + 20H Eppo = -0.081 V(E°=-0376V) (4-3)
Fe(OH), + 2¢” ¢ Fe(s) 26}{ Eguo = -0.584 V (B°=-0.879 V)  (4-4)

The standard potentials for reactions 4-1 and 4-2 are taken from Hamilton and Woods
(1981). The standard potentials for reactions 4-3 and 4-4 where calculated from the
bulk thermodynamic properties of the products and reactants involved in the reactions.
Thermodynamic data was taken from Perry (1984). Exact identification of cathodic -
reactions is complicated due to differences in the thermodynaric properties of surface
species as compared to bulk thermodynamic properties (Woods, 1984).

The cathodic reactions after anodic sweeps are different for the two samples in that the
first cathodic reaction occurs at slightly different potentials depending in the sample.
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At slower sweep rates it also appears that the first cathodic peak is in fact two
reactions (Figure 4.16 and Figare 4.19). The fact that the potential of the reactions is
dependent on sample origin would tend to supggest that the surface species are not
elemental, but rather still associated with the mineral lattice,

In terms of the actual flotation characteristics, the surface products after wnild
oxidation, within the potential range defined by the mixed potential measurements, is
of importance. The results show that open-circuit conditioning in oxygen saturated
solutions does give rise to a surface product which is reduced oa cathodic sweeps
(Figure 4.17 and Figure 4.18). There is however no corresponding anodic reaction,
- This reaction is most likely reduction of Fe(OH), and/or S. In the case of sulphur this
would explain the absence of any anodic reaction, however stationary electrodes also
do not show an anodic reaction. For Fe{QH); its reduction may result in the formation
of Fe(OH); which is considerably more soluble than Fe(OH)s. These factors,
combined with the comparatively small amounts of surface product, may explain the
lack of any anodic oxidation of reduced surface species resulting from mild oxidation,

Conditioning the mineral in acidic solutions appears to alter the reactivity of the
mineral éompared to alkaline condijtioned cases. It is noted however that the effect is
again different for the two samples investigated. Under acidic conditions hydroxides
will not precipitate on the mineral surface, Thus oxidation in acidic sclutions wili
leave “he mineral surface predominantly sulphur rich. This would then account for the
different cathodic behaviours observed. After acidic conditioning the amount of
hydroxides available for reduction is very small compared to surfaces conditioned in
alkaline solutions.
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4.2.2 Interaction with Cu** fons

Experiments were conducted in two main phases. In the first phase the aim was to
identify and characterise an activated pyrrhotite surface. To achieve this acidic pH's
and high copper sulphate concentrations were used. In the second phase the effect of
oxidation and pH were investigated. The experimental set-up and electrodes used
were the same as that used for the previously outlined voltammetry.

4.2.21 Resulis

Characterisation of activated mineral
In Figure 4.21 the pyrrhotise electrode was conditioned in a 5x10° M CuS0,, sodium
sulphate solution at pH 4. An acidic pH was used to counter act any hycioxide layer

“formation and ensure that the electrode surface was available for activation.

The first anodic sweep in the absence of copper sulphate shows no significant anodic
currents. The rest potential of the pyrrhotite is 0.250V more anodic in the presence of
copper sulphate. An anodic peak (4) is observed at =0.550V. This peak quickly
decays. On the reverse cathodic sweep, a cathodic peak (5) is cobserved at 0.400V.
This peak decays inte another cathodic reaction which is then followed by a cathodic
current plateaw, On the second anedic sweep three oxidising reactions are observed at
0.350V, 0.450V and 0.550V. |
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Figure 4.21: Characterisation of activated pyrrhotite surface

There are no anodic peaks in the absence of copper sulphate therefore the anodic
peaks observed when copper sulphate is present must be due to the oxidation of
‘copper compounds on the pyrchotite surface.

The couple

 Cuep + 26 & Cug 4-5) .
has a standard reduction potential of 340mV. Correcting for the concentration of
copper ions gives 0,272V, At potentials lower than 0,272V one would expect copper
to begin plating out onto the electrode, This would account for the current platean on
the cathddic sweep, The first anodic peak (1) at =0.320V after the potential has been
swept cathodlic is probably therefore the oxidation of a copper layer back to Cu®,
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The second anodic peak (2) may be the oxidation of Cu,$ to either Cu$ and Cu®*, or
Cu®* and S. The reactions with their equilibrium potentials (taking into account Cu?*

concentration of 5x10°M) are given below (the reactions e written in the ditection

they occur):
CuzS — 2Cu** 4 &= +4e E=0.499V (4-6)
or
CuaS ~> CuS + Co®* 42e E=0.450V @7

Thermodynamically the ox.dation of CusS to CuS and Cu®* will occur first.

The final anodic peak (3} is probably due to the reaction:
CuS — Cu®* 4+ § 4 2¢° B=0.548V (4-8)

On the first anodic sweep aiter activation a single anodic peak (4) is observed. This
peak occurs. at 0.550V, and is likely the same reaction as that occurring on the
subsequent anodic sweeps (peak 3). )
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Figure 4.22:  Voltammogram of activated pyrrhotite electrode - swept
immediately

Figure 4,27 shows the voltammogram for a pyrrhotite electrode activated in a stirred -
pH 4, 10*M copper sulphate solution, before being transferred to a 0.1M Na;SO4
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solution at pH 4. The sweeps were therefore performed in solutions that did not
contain copper sulphate (mineral was activated in a separate solution). The anodic
peak at 0.500V is observed indicating an activated surface. The charge density
associated with this reaction was caleulated from the area of the peak as 910pC.cm™,
There is a cathodic peak at 0.300V. This peak is considerably smaller than the
corresponding anodic peak indicating that not afl of the oxidised products from the
anodic reaction are available for reduction on the cathodic sweep. This indicates that
the reaction products of the oxidation are likely to be soluble and thus diffiise away
from the mineral surface. On the second anodic sweep there is an anodic reaction of
similar magnitide to the preceding cathodic reaction.
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Figure 4.23: Voltammogram of activated pyrrhotite electrode - conditioned

before sweep

In Figure 4.23 the electrode was conditioned in the copper free solution for 5 minutes
under open circuit, after being activated separately. This was done to investigate
whether the pyrrhotite surface remained activated even in the absence of copper
sulphate. The magnitude of the anodic peak associated with the activated surface is
smaller after the electrode has been conditioned compared to Sigure 4.22 where the
potential was swept immediately (in Figure 4,23 the charge associated with this peak
is =475uC.cr’?), Under open circuit the mixed potential of the activated mineral in
copper sulphate free solutions decreases by =0,100V in 5 minutes. The electrodes can
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therefore, within the time scales investigated, be activated in separate solutions, and
then transferred to copper sulphate free solutions for further investigation,
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Figure 4.24; Effect of stirring st anodic limit on catkodic wave form

In Figure 4,24 a pre-activated pyrrhotite electrede was =wept from its rest poten.dal
anodically, At the anodic limit the potential was held whilst the solution was stired.
The stirring action would ensure that any soluble reaction products are removed from
the electrode surface, The potential was then swept cathodically. There is no cathodic
reaction at 0.300V (as was observed in Figure 4.22 and Figure 4.23). This confirms
that the reaction products from the anodic reaction at 0.500V are soluble and are
temoved from the surface of the mineral.

In Figure 4.22 cycling the potential resulted in a reaction couple at 0.300V and 0.500V
which dimished on subsequent sweeps. In Figure 4.21 the following reaction was
agsigned to the second anodic peak (2):
CupS - CuS + Cu®* + 2¢” (4-9)

This reac.don is sbsest in Figure 4.22 eventhough the potential has been cycled
cathodic. The diffetence between these to cases is that in Figure 4.22 the Cu®
concentration at the electrode surface is very low and results only from the oxidation
of the activated minera! surface via reaction 4-6. In Figurs 4.21 copper is plated out
onto the electrode surface and it is possible that on oxidation of this copper surface a
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Cu,S species i3 formed. This species iz however not formed when a freshly exposed

electrode is immersed in Cu®* solutions.

3t is therefore proposed that the surface product of copper activation at pH 4 is CuS, A
possible reaction mechanism for the formation of this species was proposed by Nicol
(1984):
FegSip + 9Cu® -3 9Fe?* 4+ 9CuS + § _ (4-10)

This surface product begins to oxidise off the surface of the mineral at potentials more
anodic than =0,400V. The oxidation of this surface product can be used to identify an .
activated pyrrhotite mineral surface. The magnitude of the peak caused through
oxidation of this surface activation product is an indication of the degree and extent of
the activation.

Factors effecting activation

In the previous section the activation was conducted at pH 4. This is in line with the =

classic theory of pyrrhotite passivation in alkaline pH's. Activation is often attempted
in industrial flotation circuits under alkaline conditions. Alkaline conditions were
therefore investigated to check whether activation occurs and to explore ways of

enbancing the activation,
Sodium sulphate solutions were prepared at pH's 4, 6.5 and 9. Freshly exposed

pyrrhotite minerals were conditioned in the solution for 5 minutes before copper
sulphate was added. The concentration of copper sulphate after addition was 10"M.
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Figure 4.25: Effect of pH on activation of pyrrhotite

After the 5 minute conditioning period the potential was swept anodically from the
rest potential. The voltammograms are shown in Figure 4.25. In the case of activation
at pH 4 a large anodic peak is visible at 0.500V which is characteristic of an activated
' pyrthotite surface. With increasing pH this peak diminishes. In the case of pH & the
rest potential of the mineral after activation is ~0.100V more cathodic than in the ¢ se
of pH 4 and 6.4. As unbuffered solutions were used the pH after copper sulphate
addition decreased. This would enhance the activatien slightly. The results at pH 9 are
thérefore not representative of plant solutions where the pH is naturally buffered at pH
9, No evidence was found for activation during experiments conducted in 0.05M
borate buffer solutions.

In order to investigate the mechanism of the activation procers activation was
conducted with the electrode potentiostated at different potentials. If the activation
process is.coupled with the oxidation of the mineral then it should be possible to
inhibit this activation by keeping the potential of the electrode cathodic thus limiiting
its incipient oxidation. The Ey-pH diagram for the aqueous pyrrhotite system (Figure
1.2) indicates that pyrrhotite is stable between «0.2V and OV, If the activation process
is a coupled process involving oxidation of the mineral, as opposed to a simple ion
exchange mechanism, then no activation should be possible when the potential of the
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electrode is held in this region. The situation is complicated however due to the fact
that at 10™*M, copper ions are expected to begin plating out onto the electrode at
potentials more cathodic than 0.2V. There is therefore no potential region where
thermodynamically both pyrrhotite and Cu® are stable.

TE403

5

5

Charge density asscctated with Rrst anodic pesk atis
activation{uC.cafy
: £

2E+02 1
1EA03 4

- (o paak visibie)
OE+00 —— + +

1] 04 &

Potanilefof oleciroda diring activaton{V)

Figure 4.26: Effect of potential during activation on degree of activation

Activation was carried out with the electrode potentiostated at 0, 0.2, 0.3, 0.4 and
0.5V. The activation was done in a stirred, pH 4, 10"*M CuS0y solution for 5 minutes.
The potential was then swept anodically. The charge associated with the characteristic
anodic peak at 0.500V was calculated from the voltammograms, These values are
shown in Figure 4.26.

As would be expected there is no activation at 0.5V, This is because the product of
activation is oxidised at this potential, Similarly the decrease in charge density from
0.2V through to 0.4V may be due to initial oxidation of the product of activation at
these potentials, although the cathodic process still dominates. The increase in charge
density, and thus the degree of activation from 0V to 0.2V, is consistent with the
mechanism of activation wlereby it is coupled with the oxidation of the mineral. That
is apart from the fact that the activation product becomes unstable at potentials
approaching 0,5V, the activation is favoured by more oxidising conditions on the

electrode surface,
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4.2.2.2 Discussion

The present work indicates that the surface product of activation under acidic
conditions is CuS. The activation process is favoured by oxidising conditions,
although the activation product is unstable above 0.4V and quickly oxidises to soluble
products. The mineral remains activated in alkaline conditions in the absence of
copper suiphate within the time-scale investigated, and it is not anticipsted that
deactivation would be a significant problem in actual flotation conditions.

There is considerable evidence, both from the present investigation, and from previous
studies (Bushell er al, 1961, Nicol, 1984 and Iwasaki, 1988) to conclude that
activation is ineffective in alkaline, pH 9, solutions. The reason for this may be related
to the low solubility of copper hydroxide, as well as to the extent of hydroxide surface
coverage on the pyrthotite mineral itself. There are however reports that indicats that
activation can be achieved at pH 9, and that the susequent recovery of pyrrhotite is
enhanced (Leppinen, 1990, Senior et al., 1995, Stowe ef al., 1995, Yoon ef al., 1995
and Kelebek et al., 1996). It is possible that differences arise due to the 'varying nature
" of ores that are tested, Different ores have differing pH buffering capacities and the
pH may be temporarily affected by copper sulphate addition, From an electrochemical
viewpoint there has been no evidence for copper activation at pH 9, This has
important implications for alkaline industrial flotation processes where copper
sulphate is used as an activator. Activation may have to be performed under acidic to
neutral conditions if it is required for effective pyrrhotite flotation.
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4.2.3 Oxygen reduction

Kanthate/mineral interaciion in most sulphide minerals is thought to occur via a
charge transfer mechanism. This mechanism involves oxidation of xanthate to
dixanthogen at the mineral surface coupled with the reduction of oxygen. A mixed
potential is set up by these reactions. '

By using potentiostatic techniques the individual reactions of xanthate oxidation and
oxygen reduction have been studied separately. Emphasis has been placed on
understanding what effects these reactions and how they may be enhanced. Factors
considered includes the effect of oxidation of the pyrihotite mineral surface and the

effect of copper activation.
4.2,3.1 Results
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Figure 4.27: Oxygen reduction sweeps of pyrrhotite in boratz solution

Figure 4.27 shiows oxygen reduction sweeps for a freshly exposed pyrrhotite electrode -
at different electrode rotation speeds. Also shown is the cathodic behaviour in de-
oxygenated solutions (sparged with Np).
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At potentials more cathodic than =-0.300V a limiting current is observed for low
rotatio.* speeds.
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Figure 4.28: Oxygen reduction sweeps of pyrrhotite in Na,SO, (pH 9) solution

In Figure 4.28 the oxygen reduction sweeps are shown for a freshly exposed pyrrhotite
electrode in a pH 9 sodium sulphate solution. Unlike the case for borate solutions no
limiting currents are chserved even at potentials 0,300V more cathodic, although there
is still a dependence of current density on rotation speed. The reduction of oxygen
produces H* jons and in unbuffered solutions this could result in the pH at the surface
of the electrode increasing;
0, +4H* + 4" — 2H,0 (4-11)

This would account for the more cathodic potentials in Na;SO4 solutions.

Pyrrhotite is known to be a poor catalyst for oxygen reduction compared to other
sulphide minerals (Rand, 1977). Figure 4.29 shows the oxygen reduction sweeps for
freshly exposed pyrite and pyrrhotite in pH 9 sodium sulphate. The current densities
are significantly smaller on pyrrhotite as compared to pyrite, Limiting currents are
observed on pyrite.
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Figure 4.29; Comparison of pyrite and pyrrhotite oxygen reduction curves, pH 9
Na;SO.; . . .

The effect of oxidation on the kinetics of oxygen reduction was investigated. The
electrode was conditioned at different anodic potentials from 0 to 0.600V for =5
minutes. The potential was then stepped to a cathodic potential in the region where
oxygen reduction occurs. The resulting current transient was then recorded, Cathodic
potentials of -0.300V and OV were investigated. A rotating electrode was used -
(392RPM). Experiments were performed in (.05M NagB40O5 at pH 9.3, Solutions were
saturated with OXygen.
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Figure 4.30: Effect of oxidation on kinetics of oxygen reduction

From these experiments (Figure 4.30) it was observed that the magnitude of the
current densities at steady state did not exhibit any systematic dependence on the
extent of prior oxidation. Initially the current densities were higher for more anodic
treatments, but this is likely due to the reduction of oxidation products being enhanced
by the more anodic pre-treatment.

If poor oxygen reduction kinetics is an inhibiting factor in pyrrhotite flotation then the
effect of copper activation on oxygen reduction is an important consideration. The
oxygen reduction sweeps are shown in Figure 4.31 for a pyrrhotite electrode that was
activated under favourable acidic conditions prior to being transferred to copper
sulphate free solutions, No limiting cui.cots are observed and the dependence of
electrode rotation speed does not appear as pronounced as for non-activated
electrodes.
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- Figure 4,31: Oxygen reduction sweeps for previonsly activated pyrrhotite
electrodes

Figur= 4,32 shows a comparison of the oxygen reduction wave between an activated
and non-activated pyrrhotite electrode, The current densities for activated electrades
are generally lower than non-activated especiatly at high cathodic potentials,
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Figure 4.32: Oxygen reduction sweeps for activated and non-activated pyrrhotite
electrodes
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The kinetics of oxysen reduction m the potential range that the mineral is likely to
assume is of particvlar importance. Such a potential range has been discussed in
section 4-1 where a large amount of mixed poteniial measurernents for pyrhotite
electrodes are presented. By consider ng these potential measurements and the oxygen
reduction sweeps presented previously it was decided to study oxygen reduction at
0.107V and 0,157V, The mixed potential of pyrrhotite particles is likely to be slightly
more ancdic (based on electrode potential measurements) but the cumrent densities at
potentials more anodic than 0.157V are very small and difficult to analyse

meani~ My,

In ordet tc measure the kinetics of oxygen reduction, current transient techniques were
used. A freshly exposed pyrrhotite electrode was conditioned under closed circuit.
conditions at 0.107V and 0.157V respectively under 2 nitrogen atmu.p... ~ Once a
steady state current had been achieved (typically @ 30s) oxygen was introduced. The
steady state current was then measured (@=2-3 minutes). This was done at both 0.107
and 0.157V. In order to investipate the effect of activation on oxygen reduction, at
these potentials, the experiments were repeated, but with electrodes that had besn
peviously activated in 2x10™M CuSO;4 (0,1M Na,SO; base electrolyte) at pH 4 for 2
minutes. Anodic sweeps were petformed after the current transients to ensure that the
elecirode had remained activated throughout the experiment. In all cases the
characteristic anodic peak at =0,500V confirmed that the mineral surface had

rernained activated.

i sle 4-2: Summary of exygen reduction current transients

Non-activated Activated
Potential/(V vs SHE) No. ( Mean 5 | No.Obs. | Meon s
current current
density density
Hpaem®) Hpasom®)
0.107 2 42.7 4.8 4 38,0 5.5
0.157 2 20.3 1.9 4 203 1.1
Tafel slopeX(-(3E/Blogysi)/mV) 155 184
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Summary statistics for the current transients are shown in Table 4-2. The reported
Tafel slopes were not calculated from a cyclic voltammogram but from the mean
current densities at steady-state. Note that when reporting the mean current densities
the background current was not subtracted. Thus the current represents Oy reduction
as well as background cathodic currents. It does not appear that the current densities
are significantly effected by activation at the potentials investigated. The Tafel slope
for the non-activated pyrrhotite was lower than that reported by Rand (1977) who
gives 183mV.

4.2.3.2 Discussion
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Figure 4.33: Comp» <on of activation controlled currents

Figure 4.33 shows the activation controlled current taken from the foot of the oxygen
reduction wave, from the present investigation, and from Rand (1977). There are
differences between the two samples. Such differences are not uncommeon and Rand
(1977) notes that galena samples showed current densities that varied by three times
depending on the sample origin.
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Evidence suggests that oxygen reduction plays a significant role in the rate of
flotation. It is surprising that copper activation does not effect oxygen reduction for
pyrrhotite, yet it has been shown that copper activation, carried out at neutral to acidic
pH's, does enhance the alkaline floatability of pyrrhotite (Leppinen, 1990). The
activation work indicated that the product of copper activation under acidie conditions
is CuS. Thus one would expect the oxygen reduction kinetics of well activated
pyrthotite to approach that of covellite. Rand (1977) showed that covellite {CuS) and
chalcocite (CusS) have better oxygen reduction Kinetics than pyrrhotite. The céverage
of 4 copper sulphide species on pyrrhotite may however not be complete and thus the
oxygen reduction kinetics may still be dominated by the pyrrhotite surface. The
oxygen reduction kinetics of copper activated pyrrhotite at low pH was not
Investigated and such work may improve the understanding of activation in terms of
its affect on oxygen reducfion kinetics,

It is significant that galena, which hes the poorest kinetics for oxygen reduction, yet
has the least requirement for oxygen during flotation (Figure 2.3), forms lead xanthate
compounds, and that Leppinen showed that activated pyrrhotite alsc formed copper
xanthate as opposed to dixanthogen. Thus it is possible that in non-activated minerals
oxygen reduction is an inhibiting factor in the collection process, but, that upon
activation, the mechanism of xanthate adsorption is altered to that forming a copper
xanthate product, and thus reducing the need for high oxygen reduction kinetics, The

adsorption of xanthate on activated minerals therefore needs more attention,
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4.2.4 Xanthate adsorption

4.2.4,1 Results
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Figure 4.34: Voliammogram in the presence and without SIBX (sedium
sulphate solution)

Figure 4,34 shows the anodic behaviour of a pyrrhotite electrode in a pH 9,19, sodium
sulphate solution, The elecirode surface was freshly exposed and then placed directly
into the solution, SIBX was added to the solution before the electrode was immersed.
A relatively high (10°M) concentration of SIBX was used. The anodic currents are
larger when SIBX is present than compared to xanthate free solutions, This would
indicate either a charge transfer adsorption and/or oxidation of xenthate.
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Figure 4.35; Voltammogram in the presence and without SIBX (borate solution)

Ini Figure 4,35 the same experiment was repeated but in a borate electrolyte solution at
pH 9.3, Borate solutions in general give lower curvent densities. As in the case of
sodium sulphate solutions enhanced ar ydic currents were ohserved,

The effect of electrode rotation speed on the anodic current in the prerence of 10°M
SIBX was investigated. Experiments were conducted in 0.1M Nay8Qy at pH 9.2 and
the solution was de-oxygenated with nitrogen. A sweep rate of 2mV/s and rotation
épeéds of 0, 500, 610 and 740 RPM were used, From these experiments no significant
dependernice of rotation speed on current density was detected,

Atternpts to detect reduction reactions associated with the enhanced anodic cutrents in
the presence of xanthate were not successful, Jf the enhanced anodic currents result in
dixanthogen then one would expect to detect the reduction of dixanthogen. This was
however not possible. The reasons for this may be related to the sensitivity of the
experiments and the magnitude of the background cathedic currents.

At lower SIBX concenteations of 10°M and 10°M it was difficult to observe any
differences between sweeps conducted with and without xanthate in the solutions, and
at 10™*M no differences were observed. This may be cansed by the current densities
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due to xanthate interaction being lo small compared to the actual oxidation of the
mineral itself.
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Figure 4.36: Effect of anodic treatment on anodic xanthate initeraction

In Figure 4.36 the effect of extensive anodic conditioning on the xanthate interaction
wave is shown. The anodic conditioning was achieved by holding the potential of the
clecirode at 0.500V for 10 minutes. The potential was then set to 0,100V and swept
anodically. In solutions withont xanthate present the current densitles are lower after
the anodic treatment. This is expected as after the anodic treatment the mineral is
already substantially oxidised, In the presence of 10°M SIBX there is an enhanced
anodic cugrent as compared to the xanthate fre. sweeps, even after extensive anodic
conditioning. There is however a significant increase in the current when the electrode
is freshly exposed prior to sweeping in the xanthate solution. Thus the anodic
conditioning does inhibit the anodic interaction of xanthate with the mineral but does
not completely passivate it.

One of the problems with the above voltammograms is that the mineral is oxidising at
the potentials investigated. Thus it is not possible to detect currents that are solely due
to xanthate intecaction, For this reason current transient techniques were attempted.
The mineral was held at a specific potential until the oxidation currents decayed or
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stabilised. SIBX was then added to the solutions. The subseqﬁent current transient was
recorded.
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Figure 4.37: Current transients for xanthate addition (250RPM)

Figure 4.37 shows the currents with the electrode rotating at 250RPM. At 0,007V the
_ addition of the xanthate causes a very small cathodic current which diminishes
quickly. From 0.057V to 0,257V anodic currents were observed which increased with
increasing potential. There is a significant larger increase in current when the potential
is above 0.257V. Further increases in potential do not have a significant effect on the
magnitude of the current density. '
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Figure 4.38; Carrent transients for xanthate addition (S00RPM)

In Figure 4.38 the current transients for the addition of SIBX are shown with the
electrode rotating .t S00RPM. The results are similar to those in Figure 4,37,
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Figure 4.39: Current transients for xanthate addition after acid conditioning

The effect of conditioning the electrode at pH 4 prior to xanthate exposure was
investigated, The electrodes were conditioned in separate solutions for 5 minutes and
then transferred to a pH 9 borate solution and the potential set. Once the anodic

82



current had stabilised SIBX was added as in previous experiments, The resulting
current transients are shown in Figure 4.39, Acid conditioning does not appear to have
effected the magnitude of the increase in current density on addition of xanthate. The
background anodic currents are however smaller sfter the acidic treatment.
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Figure 4.40: Voltammogram for an non-activated and activated pyrrhotite
electrode in the presence of SIBX '

The effect of activating pyrrhotite on the anodic sweep in the presence of xanthate was
investigated. The electrode was activated in a pI 3.4 solution containing 2x10°M Cu®*"
ions. The electode was then transfered to a pH 9.2 solution with the potential set to
-93mV, The potential was then swept anodically. Figure 4.40 shows the anodic wavez
from this experiment, The magnitude of the anodic current is larger after activation.
This would suggest that the anodic interaction between the mineral and xanthate is
enhanced upo . activation.

Figure 4.41 shows the mixed potential of pyrrhotite electrodes after various types of
conditioning, The electrade was conditioned for two mimstes in solutions with and
without copper sulphate being present and at varying pET's. After the conditioning the
pH was adjusted to between & and 10, SIBX was then added, The potential that the
electrode assumed on addition of the SIBX was then recorded.

83



120

0.3M N3, 50y 257C; rypan RBRIRtRd; pi B 10 H B
10 (e ¥) Bt lor coppar acivation
AW Cuss0,; minaml eonditionad for 2 minutes; $07M SBX
100 ackerd allar eoncitioning erd pH acfustronk; ¢ -
Taamiec c, \
w #T :
&
g o E
% 80 . .
8.l
» pH Y, no G
wpHE, Cu
20 1 &PH7, o Gy
®pH T, Cu
zpH5m O
a pHS, Gu n
o - } — } |
T g ] w ¥
. -pH -
Figure 441:  Mixed potential of pyrrhotite in the presence ot : -~ SIBX -
effect of activation and pH

There is a general trend for the potential to be lower in the presence of SIBX when the
pH of the conditioning stage is acidic, The presence of copper sulphate alsc appears to
result in generally lower potentials. There are insufficient data points to make a
statistically significant conclusion, however potential measurements recorded during
hydrophobicity tests gave the same general trend {see Figure 4.42), -

These lower potentials are expected based on activation enhancing the anodic
interaction with xanthate, Due to the enhanced anodic reactions the mixed potential
shifts cathodic to balance the nett current. '

4.2.4.2 Discussion

Gardner and Woods (1974) studied the interaction between alkylxanthates, and galena
and pyrite. Inn the case of galena the authors were able to detect the chemisorption of
ethylxanthate as a distinct anodic peak at =0V. The rise in current after the '
chemisorptiont peak was due to dixanthogen and lead xanthate formation. On reverse
sweeps thé reduction of dixanthogen and lead xanthate was also detected. Tu ..e case
pyrite a distinct chemisorption peak could not be identified although anodic currents
were abserved above the equilibrium potential for the xanthate/dixanthogen couple.
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Cathodic current peaks were observed after anodic treatment in the presence of
xanthate,

In this study no anodic peak could be detected for the chemisorr 1 of xanthate onto
the surface of the miners! {as observed by Gardner and Woods (1¥74) on galens). The
voltammograms in Figure 4.34 and Figure 4.35 indicate enhanced anodic reactions
above ~0,050V. The measured equilibrium potential for the xanthate/dixanthogen
couple is -0.009V (Tsble 4-1) at 10?M SIBX. Current transients confirmed that
xanthate interacts anodically with the mineral surfiace sbove a certain potential (Figure
4.37 and Figure 4.38).

It is plausible that the anodic currents when xanthate is present are due to the oxidation
of xanthate to dixanthogen at the mixersl surface. This is supported by dixanthogen
being identified as the dominant surfuce product from a variety of surface analysis
techniques (Allison ef al., 1972, Prestige et al., 1993, Fomasiero et al,, 1995),

Potentials measured in: batch tests (Figure 4.2) and plant measurements (Figure 4.1)
indicate that the potential of pyzrhotite in the flotation environment is within the
potential region where anodic currents related to the oxidation of xanthate are
observed, The formation of dixanthogen in flotation puips at pH 9 is thus
Yermodynamically possible, In flotation environmenis here is Jikely to be significant
vsidation of the mineral, Figure 4.36 indicates that oxide layers do inhibit the anodic
interaction of pyrrhotite with xanthate but that the interaction is not completely
passivaied,

Previous researchers have proposed that the mechanism for xanthate adsorption is one
of coulombic atiraction between positively charged ferrous hydroxide sites, Fe(OH)",
and negatively charged xanthate ions (Rao and Finch, 1991, Hodgson and Agar, 1989).
This does not necessarily suggest that the oxidation of pyrhotite to form ferrous
hydroxides sites is a prerequisite for effective xanthate adsorption, Xanthate may
chemisorb more effectively on non-oxidised pyrrhotite surfaces. The problem is that
non-oxidised pyrrhotite mineral surfaces. are unlikely to exist Jue to the susceptibility
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of pymhotite to * .- . at oxidation. That is ‘o say that physisorption is not the
preferred mecha - .~. ¢ shemisorption, but that physisorption is the only mechanisn
available due to the oxidised state of pyrrhotite,

There is probably & delicate balance between favourable ferrous hydroxide adsorption
sites and passivating ferric hydroxide, The stability diagram for the Fe-H,O system
(Figure 2.1) indicates that ferrous hydroxide hecomes more unstable at increasing pH's
with ferric hydroxide predominating. Ferrous hydroxide is mgmﬂc:mtly more soluble
than ferric hydroxide. At high pH and under relatively oxidiging conditions ferric
hydroxide passivation may become an inhibiting factor in the fAotation of pyrrhotite. If
E; conditions are such that ferrous hydroxides are favoured then the oxidation of the
mineral may not be as inhibiting,

The effect of oxidising the mineral under acidic conditions prior to interaction with
xanthate at pET 9 was investigated. Under acidic conditions the formation of a sulphur
rich surfuce without iron hydroxides is favoured. It was anticipated (% such a pre-
oxidising treatment may favour the interaction of the mineral watt xanthate. The
current transients in Figure 4,39 did not indicate amy signi.’.ant effect on the
interaction, It is possible that the acidic conditioning may merely enhance the extent of
‘hydrophobic species (or minimise hydrophilic species) through the formation of &
sulphur rich surface, rather than enhance the collector reactions,

Both the voltummetry results and the mixed potential measurements (Figure 4,39 and
Figure 4.41) appear to indicate that the anodic interaction with xanthate is enhanced
after effective activation with Cu®". This is only after the mineral has been activated in
acidic conditions. The interaction between xanthate and the mineral at pH 9, with o
ions present, was not directly investigated as previous work indicated that the minersl
was not activated under alkaline conditions.

There may be a mechanism for copper interaction with the minerai at pEl S which is
different to acidic conditions and is not elecirochemical. For instance copper hydroxide
may precipitate on the surface of the mineral, which may or may not enhance xanthate
interaction, The justification for this speculation is the indication from flotation tests
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by previous researchers that the presence of copper enhances pyrrhotite flotation and
that copper 1ons have been identified on concentrate particles (Leppinen, 1990, Senior
et al., 1995, Kelebek ef af,, 1996, Stowe ef al., 1995, Yoon et al., 1995). Additional
work will however be required to investigate this,



4.3 Hydrophobicity tests

Flotation is dependent on the aitachment of the mivers! particles to bubbles. This
occurs through rendering the mineral surface hydropl.obic, in this study by means of
reaction with SIBX, and subsequently contacting the mineral with air bubl s.
Generally speaking an increase in the hydrophobic nature of particles results in
improved bubble sttachment, and correspondingly improved flotation recovery. A
thorough review of the meaning of and relation between, floatability and -
hydrophobicity is given by Laskowski (1986).

In the present study a qualitative measure of hydrophobicity was developed. A relative
measure of the strsagth of bubble attachment was used to gange the degree of
hydrophobicity. This was correfated with different conditioning freatments, The
* technique sllowed for messurements to be made directly on a rotating disk electrode
without removing it from the solution,

4.3.1 Results

Table 4-3 shows the results of the experiments, After each type of conditioning
treatment indicated SIBX was added with a concentration after addition of 10°M.
Each type of conditioning treatment was repeated twice, with six separate bubble
detachment measurements being made each time. In total twelve measurements were
taken for each treatment,
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Table 4.3: Hydrophobicity results for different conditioning treatments

Treatmwent Description of { Average rotation speed | Stardard
no. conditioning stage atpointof Deviation
detachment/(RPM)
1 0.IM N;80; @ pH 9 271 50
(no copper sulphate)
2 (0.1IM Nax80, @ pH 9; 410 55
10M CuS0,
3 0.05M NayB,0; @ pH 9.3 no attachment
_ {no copper sulphate)
4 0.05M NagB,0; @pH 9.3; 285 81
_  10*MCuSO, -
5 ~ 0.1M Na,80, @ pH 4 604 47
(no copper sulphate)
6 0.1M N&;S0; @ pH 4; 643 59
10"M cuso,

A single factor analysis of variance was conducted on the data sets, This indicated that the

treatments gave at least one set of significantly different means, A Bonferroni Multiple

Comparison of Treatment. Population Means (Lapin, 1990) was conducted between

different pairs of treatinents. To a 95% overall confidence level it was found, in terms of

strength of bubble attachment, that:

» with no copper activation the acidic conditioning treatment is significantly better than
the alkaline conditioning treatment

» in alkaline sodium sulphate solutions copper activation significantly improves bubble
attachment

s in acidic conditioning solutions copper activation does not significantly enhance to
bubble attachment
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» in buffered borate solutions no bubble attachment is achieved without copper

activation |
In the case of alkaline sodium sulphate solutions the addition of copper sulphate lowers
the pH slightly. The pIH then has to be readjusted to 9 before the collector is added. In
a follow-up test the copper sulphate was added before the conditioning and the piH
adjusted to 9. The electrode was then conditioned as per the previous tests, In this case
the average speed for bubble detachment was 260 RPM (434), This is very similar to
the treatment at pH 9 without copper sulphate and would suggest that the
enhancement caused by copper sulphate is more related to a slight acidic effect in
unbufiered solutions than to activation, It should however be pointed cut that in borate
buffer solutions copper sulphate was significant in the sense that without it no
attachment was achieved. Overall therefore the effect of copper sulphate appears
unresolved,

During the conditioning stages the potential of the electrode was recorded. These
potential measurements are given Figure 4,42,
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Figure 4.42: Potential measurements of pyrrhotite eleci, ode during conditioning
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Consistent trends between relative hydrophobicity and potential dre difficult because of
the varishility of the potential measurements. There does however appear to be a
significant inverse relationship between the relative hydrophobicity and the potential
after xanthote addition and conditioning, In treatments 5 and & the potentials after
xanthate additiun are the lowest and they correspondingly have significantly stronger
bubble attachmeit. Treatment 3 has the highest potential after xanthate addition and no
bubbie attachment was achieved.

4.3.2 Discussion

The results give convincing evidence that acidic conditioning significantly enhances the
hydropholiicity of the mineral surface even aer the pH has been adjusted back to pH
9, There are two possible explanations for this. Firstly the acidic conditioning may
lcach iroa froi the mineral lattice leaving a sulphur rich surface, Due to the acidic pH
the iron does not precipitate as iron hydroxide. The presence of the sulphur and the
lack of Lydroxides conmtribute to the hydrophobicity, Secondly the formation of a
sulphur rich surface and the lack of hydroxides may favour the formation of
dixanthogen, This is supporied by the observation that the mixed potential of the
minera! electrode becomes more cathodic afier the acidic conditioning than after
standard conditioning, Most fikely a combination of both of these factors explains the
enhanced hydrophobicity.

The results also indicate that copper sulphate does aid the formation of a hydrophobic
surfece even when added at pEl( 9. This is contrary to what would be expected from the
electrochemical work conducted on copper activation where no evidence for activation
of the mineral by copper could be found. A possible explanation js that the activation
occurs via s different non-electrochemical mechanism in alkaline environments
compared to acidic environments, For instance copper hydroxide may precipitate on
the surface rather than form a copper sulphide.

In terms of industrial flotation the results indicate that significant improvements in
pyithotite recoveries may be possible if the rainerat is conditioned in slightly acidic
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pH's before reagent addition, It should be noted that it does not appear to be necessary
to maintain the acidic pH after initial conditioning,



5. Conclusions and Recommendations

A comparison of the potential measurements made during batch flotation and planit circait
measurements with the stability diagram for pyrrhotite indicates that pyrrhotite is unstable
under these potentials. The susceptibility of pyrrhotite for incipient oxidation is well
known, The mineral is thus likely to be well oxidisud before it comes into contact with
flotation reagents. Voltammetric sweeps of pyrrhotite conditioned under mildly anodic
conditions (i.e. at potentials that are expected in flotation environments) indicated the
formation of surface products. These surface species are likely to include iron hydroxides
and a sulphur rich sub-lattics. “he potential lies above the equilibrium potential of the
xanthate/dixanthogen couple at the concentrations of SIBX used. This weuld indicate that
provided sufficient interaction between the mineral and xanthate occurs, the formation of

dixanthogen is thermodynamically favourable.

The potential measurements taken during batch flotation indicated that passivation was

occurririg and that there was little electrochemical interaction between the oxidised

mineral and the flotation reagents. This was gauged by the lack of any effect on the

potential of the mineral when the reagents were added to the pulp. Results from this study

and the literature favour a physisorption model for the initial adsorption of ranthate onto
 the surface of the mineral, as opposed tc chemisorption.

Tests done in laboratary prepared clear solutions (no mineral particles present) indicated
that even after extensive anodic conditioning, at potentials above that likely to occur in
flotation environments, there was still an electrochemical interaction between the mineral
and xanthate, The interaction was however diminished compared to freshly exposed
mineral. Voltammetric and current transient techniques were able to detect anodic
interaction between the mineral and xanthate. There may be differences between the
extent of oxidation between flotation pulp environments and clear solutions even at

similar pH ard reagent concentrations. For instance the pulp solutions may contain
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significant amounts of dissolved iron which enhance the precipitation of iron hydroxides
on the pyrrhotite surface.

There is broad agreement that dixanthogen is the dominant surface product on pyrrhotite
as opposed to metal xanthate. If is therefore reasonable to assign the enhanced anodic
currents observed when pyrrhotite is swept anodic, in the presence of xanthate, to
xanthate oxidation to dixanthogen, however it should be noted that no corresponding
cathodic reaction for the reduction of dixanthogen could be detected,

The oxygen reduction kinetics « * pyrrhotite are poor compared to other sulphide minerals.
In flotation pulps xanthate may be consumed through anedic adsorption with other
sulphide minerals which have more favourable oxygen reduction kinetics. This resﬁ]ts in
pycrhotite being starved of xanthate interaction. The problem may be aggravated in
flotation processes where copper sulphate is added and conswmes xanthate by the
formation of copper xanthate. This is especially the case when copper sulphate is added in
staichiometric excess to SIBX.

The role of copper ions in activating pyrrhotite remains unresolved. In this study no
evidence for activation by an electrochemical interaction could be found at pH 9. In acidic
pH'’s the mineral activated reédily with a characteristic surface product that could be
oxidised at specific potentials. The surface remained activated even in the absence of
copper ions and in pH 9 solutions. The effect of activating the mineral in acidic
conditions on oxygen reduction and xanthate interaction were investigated. It was thought
that if oxygen reduction could explain pyrrhotites relatively poor flotation kinetics, and
that if activation enhanced pyrrhotite flotation, then activation weuld be expecied to
effect the oxygen reduction kinetics. It was found however that within the potential range
of interest the oxygen reduction kinetics were not significantly effected by prior
activation. Activation under acidic conditions did however enhance the anodic xanthate

interaction.
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Fiotation research has indicated that copper jons do appear to activate pyrrhotite under
alkaline conditions and that this resnlts in enhanced pymhotite recoveries, The
hydrophobicity results conducted in this study support the case for some form of
activation orcurring in alkaline conditions. A possibie explanation for this is that copper
activatioc occurs via a different mechanism at pH 9. This may possibly involve the
precipitation of copper hydroxides on the surface of pyrrhotite which may then favour
xanthate adsorption. This should however be confirmed experimentally by studying the

xanthate adsorption wave after interaction with copper ions at pH 9.

There has been considerable interest in wnditioniﬁg suiphide mineral particles in acidic
conditions, The rationale behind this is that during the oxidation hydroxide films form on
the mineral particles thus inhibiting interaction with flotation reagents, but that in acidic
conditions the hydroxides would be soluble, Thus the particles would be chemical
cleaned in acidic conditions priot to reagent addition. Of considerable interest is whether
the pulp pH can be allowed to go back to alkaline pH’s after the acidic conditioning, This
is particulariy important for ores that have a natural buffering capacity where keeping the

pH acidic would result in significant acid consumption.

Voltammetry results from this study suggest that acidic conditioning does minimise the
surface coverage of hydroxides and promote a sulphur rich surface. It appears that these
effects remain even after the pH returns to ~9, This is supportcd by the hydrophobicity
results where acidic conditioning significantly enhanced the bubble attachment strength.
The mechanism of this enhancement may be two fold: firstly the formation of a sulphur
rich surface with minimal hydroxide coverage will naturaily contribute to the
hydrophobicity of the mineral, and secondly the minimal hydroxide coverage may aid the
interaction of xanthate to form dixanthogen at the mijneral surface, The first consideration
is expected to apply and potential measurements taken during the hydrophobicity tests
support the second .-tor,
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The passivation of pyrrhotite appears to be a significant problem in industr:-? flotation
operations. The effects may be enhanced when the dissolved iron content in the pulps is
high. This could be combated through more careful selection of milling media to avoid
the formation of abraded iron. The problem could be combated by keeping the potential
relatively low;. firstly to minimise pyrrhotite oxidation, and secondly to favour ferrous
hydroxide over ferric hydroxide formation. The pulp potential during the conditioning
stage could be controlled by gas composition using nitrogen. Alternatively indications are
that a short acidic conditioning stage may significantly enhance the hydrophobicity of the
mineral and thus its flotation, particularly if capper sulphate were added during the acidic
conditioning stage. .The addition of rcagents as soon after the milling operation as
possible should also combat the problems associated with excessive oxidation of the
mineral. The role of copper sulphate needs more attention before a definite conclusion

can be reached regarding its use.
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