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Abstract 

Modeling and forecasting volatility is one of the crucial functions in various fields of financial 

engineering, especially in the quantitative risk management departments of banks and insurance 

companies. Forecasting volatility is a task of any analyst in the space of portfolio management, 

risk management and option pricing. In this study we examined different GARCH models in 

Johannesburg Stock Exchange (JSE) using univariate GARCH models (GARCH (1, 1), 

EGARCH (1, 1), GARCH-M (1, 1) GJR-GARCH (1, 1) and PGARCH (1, 1)). 

Daily log-returns were used on JSE ALSH, Resource 20, Industrial 25 and Top 40 indices over a 

period of 12 years. Both symmetric and asymmetric models were examined. The results showed 

that GARCH (1, 1) model dominate other models both in-sample and out-of-sample in modeling 

the volatility clustering and leptokurtosis in financial data of JSE sectoral indices. 

The results showed that the JSE All Share Index and all other indices studied here can be best 

modeled by GARCH (1, 1) and out-of-sample for JSE All Share index proved to be best for 

GARCH (1, 1). In forecasting out-of-sample EGARCH (1, 1) proved to outperformed other 

forecasting models based on different procedures for JSE All Share index and Top 40 but for  

Resource 20 RJR-GARCH (1, 1) is the best model and Industrial 25 data suggest PGARCH (1, 

1) 
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CHAPTER 1: Introduction 

1.1 Introduction 

The main characteristic of any financial asset is its returns, returns are typically considered to be 

a random variable. The spread outcomes of this variable known as assets volatility plays 

important role in numerous financial applications, economics, hedging, and calculating measures 

of risk. Volatility is defined as a measure of dispersion of returns for a given security or market 

index (Tsay, 2010). In simple terms, volatility can be defined as a relative rate at which the price 

of a market oscillates around its expected value. Volatility is one of the most important concepts 

in finance. The primary usage is the estimation of the value of market risk. Volatility is the key 

parameter for pricing financial derivatives. All modern option-pricing techniques rely on a 

volatility parameter for price evaluation, which first appeared in Black-Scholes model for option 

pricing (Black, 1976). Volatility is also used for risk management applications and in general 

portfolio management. It is crucial for financial institutions not only to know the current values 

of the volatility of the managed assets, but also to be able to estimate their future values. 

Volatility makes investors more averse to holding stocks due to uncertainty; investors in turn 

demand a higher risk premium to insure against the increased uncertainty. A greater risk 

premium results in a higher cost of capital, which subsequently leads to less private investment 

(Emenike, 2010). Therefore, modeling volatility improves the usefulness of measuring the 

intrinsic value of securities and in the process it becomes easy for a firm to raise funds in the 

market. Additionally, the detection of volatility provides an insight for a better way to design an 

appropriate investment strategy. Traders (equity or financial derivatives known as options) and 
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investors need to know how the market behaves and volatility is the tool or the indicator that 

helps investors. 

The theoretical framework for modeling volatility was traced back to the original ARCH model 

developed by Engle (1991), which captures the variability of time of the variance of returns by 

imposing an autoregressive structure on the conditional second moment of returns. In order to 

address the statistical requirement of a high-order autoregressive structure, a problem that is 

inherent in the formulation of ARCH, Bollerslev (1986) introduced the generalized ARCH 

(GARCH) model. The GARCH model extends Engel’s model by including lagged conditional 

variance terms as extra regressors. Subsequently, many other ARCH-type processes have been 

developed to capture various dynamics which are the topics of this research. 

While the imperative of understanding the risk profiles of emerging capital markets is well 

populated in the literature (Siourounis, 2002), but very limited work in this subject is reported for 

emerging markets, as acknowledged by Kasch-Haroutounian & Price (2001). The present work 

is motivated by the noticeable absence of work on African stock markets, of which the JSE is the 

most well-organized and active off them all. This study, therefore, contributes to the literature by 

providing evidence based of JSE data and specific sectors in the market. 

1.2 Problem Statement. 

With the increasing sophistication of emerging financial markets and complexities of the 

derivative instruments, the need for accurate volatility forecasting and estimation are becoming 

increasingly more important. This was reflected by the numerous studies, articles, books and 

papers written on the subject (Poon, S and Granger, C. 2003; Knight John and Stephen Satchell. 

1998). Volatility impacts investment decisions, security valuation, risk management and even 
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monetary policy decisions. The deep understanding of the results produced by simple historical 

models and different types of GARCH models are needed for in-sample forecasting and out-of-

sample forecasting in the South African market. In this study we examine and compare the 

forecasting accuracy based on the results produced by these models in different time horizon. 

Analysis of the output in these models is examined, studied and interpreted in different time 

horizon for different models with the aim of finding which model has a much predictive power 

than the other. 

1.3 Objective of the study and Research Questions 

The objective of this study is to forecast and compare return volatility using both in-sample and 

out-of-sample tests applied to daily returns of the Johannesburg Stock Exchange All Share index  

and analyzing the forecast performance of different volatility models. In addressing this issue, 

the study was focused on analyzing the three of the most popular used models proposed in the 

finance and economic literature, the historical volatility, different GARCH and implied volatility 

models. The objective is to determine which model best forecast and model JSE volatility returns 

on out-of-sample in short and long term horizon one day, one week and one month ahead 

forecast and the analysis of the models result. Specifically this study is guided by these research 

questions: 

 Do the out-of-sample forecasts produce best accurately volatility forecasts? 

 Which model best forecast and predict JSE volatility in and out-of-sample? 

 How do GARCH (p, q) model and historical models perform in modeling and 

forecasting volatility? 

 Which out-of-sample time horizon produces better estimates? 
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1.4 Significance of the study 

This research contributes to the knowledge of forecasting and modeling volatility in JSE a lot of 

work have been done in the developed markets (Poon, 2005) but little in developing emerging 

markets. It informs all financial market participants on the JSE in South Africa, policy makers, 

portfolio managers, risk management, options pricing specialist and macroeconomics forecasters. 

The study assists the options contracts since volatility is the input when calculating price of 

options. Since most research into volatility forecasting has been done in the developed markets 

but less in emerging market this might help foreign investors who might like to invest in JSE 

market. It gives understanding in the broad understanding of volatility modeling and forecasting 

in emerging market.   

1.5 Limitations of the study 

This study is focused on performance of forecast volatility in the Johannesburg Securities 

Exchange (JSE) using All Share Index returns in the South African domestic market. 

The study is conducted based on the univariate GARCH and variations of these model symmetric 

and asymmetric models. 

1.6 Outline of the study 

 This study is divided into six chapters. Firstly, the paper provided an introduction background. 

Secondly, literature review will be conducted and summarize the findings. This entails the 

review of work that has been done before and its will help to align our study in the right 

direction. Thirdly, the paper captured the research methodology utilized in the analysis of the 

data and information of the study. Fourthly, the presentation of the empirical results and findings 
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provided. Lastly, inferences was drawn from the empirical results obtain with respect to the 

initial objectives of the study. 
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Chapter 2: Literature Review 

2.1 Introduction 

The good way of modeling the stock market volatility is imperative for various purposes. 

Portfolio managers, option traders, risk management and financial policy makers often require an 

adequate statistical characterization of volatility so that they can perform their duties well. Most 

of literature in modeling and forecasting financial volatility makes use of Bollerslev’s (1986) 

GARCH model which became popular after Engle’s (1982) ARCH model which is often found 

in the literature to be sufficient to model volatility(Brooks, 2008). Engle came up with this model 

when he was studying the variance of UK inflation in 1982. GARCH modeling alone with 

normal distribution of error term aren’t found accurately compared to other models that account 

for asymmetries of the data in the conditional variance process. GARCH-GJR and EGARCH 

have been included to account for these asymmetries and other characterization of volatility 

stylized facts. 

This section contains an in-depth review of the both theoretical and empirical literature review 

on volatility modeling and forecasting globally and domestically, relating to stock market 

volatility and selected models of conditional variance, with specific emphasis on GARCH 

models. To gain a comprehensively full understanding of the nature of stock return volatility, it 

is necessary to review various theoretical developments in this field. 

2.2 Empirical Literature 

After the recently national financial crisis (Poon and Granger, 2003) the academics and 

practitioners became more interested in the analysis of financial data especial the uncertainty of 
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the stock market. Therefore, a lot focus in research has been on forecasting and modeling stock 

volatility especial in the developed countries.  

Mandelbrot (1963) and Fama (1965) played a major role in detecting that the uncertainty of 

stock prices as measured by variances that vary with time. Fama (1965) further observed that 

clustering of volatility and leptokurtosis are commonly observable in the financial time series 

data. Furthermore, Black (1976) noted another interesting phenomenon that is also often 

observable in the return series that is called leverage effect, which occurs mostly when stock 

prices are negatively correlated with changes in volatility. Leverage effect is the tendency for 

volatility to rise more following a large price fall than following a price rise of the same 

magnitude a definition by Brooks (2008, 380). 

In order to model these stylized facts and to accurately forecast volatility, the different models 

were estimated consisting of GARCH, EGARCH, GJR-GARCH, and PGARCH models to 

capture all the dynamics of the volatility in the JSE stock exchange, some studies has make use 

of this models but the focus has been on developed countries.   

Ladokhin (2009) in his study selected several methods that are heavily used in practice and 

testing the accuracy of this models using real data (S&P 500 stock index) where each family of 

methods has its advantages and disadvantages, which are describe in details in this study. They 

found that some methods are simpler but yield poor results (e.g. historical average models, 

random walk model) and other methods provide improved results but difficult to implement (e.g. 

Implied Volatility method). Exponentially Weighted and Simple Moving Average are both 

efficient and easy to implement. These results are also consistent with other published in the 

literature (McNei et. al, 2005; Samouilham and Shannon, 2008). The result suggested that 



 
 

8 
 

Moving Average can be used for a quick approximation or reference of the volatility forecast but 

can’t be relied upon because no empirical evidence supports that claim. 

Black (1976) found that the theories that changes in stock return volatility are partly caused by 

the volatility spikes called ‘leverage effect’. From Black (1976) theories, a declined in the market 

value of a firm’s equity, holding other things constant, is through time increase the debt/equity 

ratio (leverage ratio) of the firm and hence increases its inherent riskiness. The robustness of the 

negative relationship between return innovations and future volatility has been proven, and has 

led to a number of statistical models that incorporate leverage effects, such as GJR-GARCH 

model of Glosten, Jagannathan and Runkle (1993). 

The Autoregressive Conditional Heteroscedasticity (ARCH) model was introduced by Engle 

(1982). He defined the ARCH model as the conditional variance of the current period’s error 

term, which was a linear function of the previous period’s squared error terms. Firstly Engle 

studied the variance of UK inflation which revealed that this model was designed to deal with the 

assumption of non-stationarity found in realized financial data returns. These ARCH models 

treat heteroscedasticity in the data as a variance to be model not as homoscedasticity as the past 

models did. After the publication of this method ARCH become popular such that other 

researches became interested in this model and started to propose the extension of this model, the 

first and foremost being using regular is GARCH by Bollerslev (1986).  

The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model was 

introduced by Bollerslev (1986) as stated earlier, who generalized Engle’s ARCH model by 

adding lagged conditional variance. Thus volatility was as additive function of lagged error 

terms. The GARCH model had become a popular way of modeling volatility because of its 

parsimonious characteristic and no need of estimating a lot of coefficient in building this model. 
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Then the GARCH models were introduced in the literature ranges from the simple GARCH 

model to more complex GARCH-type models such as EGARCH, GJR-GARCH, PGARCH, 

GARCH-M, CGARCH, APGARCG, FIGARCH etc. 

The GARCH modeling and forecasting studies have focused on identifying which GARCH 

specification best models and forecasts volatility, opposing the symmetric versus asymmetric 

GARCH models. The GARCH and GRACH-M models captures leptokurtosis and volatility 

clustering and EGARCH, GJR-GARCH, APGARCH, FIGARCH and CGARCH captures 

leptokurtosis, volatility clustering, leverage effects and volatility persistence. 

The Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH) model of 

Nelson (1992) was an example of a more complex GARCH improved model. The EGARCH 

model did not make the assumption that positive and negative news had a symmetric impact on 

volatility like classical GARCH did but instead assumes that it had an asymmetric impact by 

Black (1976). Thus, the volatility became a multiplicative function of lagged innovations which 

can react differently from positive or negative news. The EGARCH model also caters for the 

effect of time, where recent observations carried more weight than older observations. 

The existing literature regarding to the study on GARCH type models can be categorized into 

two, and that they are the investigation on the basic symmetric GARCH models and the GARCH 

models with various volatility specifications. 

The predictability of ARCH (q) model on volatility of equity returns has been studied 

extensively in the literature. Nonetheless, the empirical evidence indicating the good forecast 

performance of ARCH (q) model are irregular. Studies done by (Franses and Van Dijk, 1996; 

Brailsford and Faff, 1996; Figlewski, 1997) showed that the out-of-sample forecast performance 
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of ARCH (q) models and the results produces conflicting conclusion. But the common ground of 

these studies is that the regression of realized volatility produces a quite low statistics of R
2
. 

Since the average R
2
 is smaller than 0.1, it’s suggest that ARCH (q) model has a weak predictive 

power on future volatility. 

The forecasting performance of ARCH models has a variety of restrictions influencing them. The 

one restriction is frequency of data, and it is an issue widely discussed in preceding papers. 

Nelson (1992) examined ARCH models and documented that the ARCH model using high 

frequency data performs well for volatility forecasting, even when the model is severely 

misspecified. However, the out-of-sample forecasting ability of medium-and long-term volatility 

is poor. 

Pagan and Schwert (1990) analyzed an alternative models for conditional stock volatility 

focusing on U.S data from 1834-1925 because they believed that post-1926 has been 

meticulously analyzed by others in the past. The aim of the study was to compare various 

measures of stock volatility and from the results it emerged that the nonparametric procedures 

tended to give a better explanation of the squared returns than any of the parametric model. Both 

Hamilton’s and the GARCH models produced weak explanations of data. The result of the study 

implied that the standard parametric models are not sufficiently extensive on their own. 

However, improving GARCH and EGARCH models with terms suggested by non-parametric 

methods yields significant increase in explanatory power. This fact allowed Pagan and Schwert 

(1990) to merge the two models for richer set of specifications, which was emphasized by the 

results.  

Wilhelmsson (2006) investigated the forecast performance of the basic GARCH (1,1) model by 

estimating S&P 500 index future returns with nine different error distributions, and found that 
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allowing for a leptokurtic error distribution leads to significant improvements in variance 

forecasts compared to using the normal distribution. Additionally, the study also found that 

allowing for skew-ness and time variation in the higher moments of the distribution does not 

further improve forecasts. 

Makhwiting et. al. (2012) examined the forecasting performance of different symmetric and 

asymmetric GARCH model. They modeled volatility and the financial market risk for JSE 

returns. The study makes use of two steps modeling process, which is first they estimated the 

ARMA (0, 1) models for mean returns, secondly fitted various univariate GARCH models for 

conditional variance (GARCH (1, 1), GARCH-M (1, 1), TGARCH (1, 1) and EGARCH (1, 1) 

models). The empirical results indicated the existence of stylized effects of ARCH, GARCH and 

leverage effects in the JSE returns over a give sample. The forecast evaluation indicated the 

model performed best in predicting out-of-sample returns for a period of three months is ARMA 

(0, 1)-GARCH (1, 1). 

Niyitegeka and Tewari (2013) investigated both symmetric and asymmetric GARCH models 

GARCH (1, 1), EGARCH (1, 1) and GJR-GARCH (1, 1) in the study of volatility of JSE returns. 

The study also found the presence of ARCH and GARCH effects in JSE financial returns. But 

contrary to Makhwiting et al. (2013) failed to identify any leverage effects in return behaviour.  

Chuang, Lu and Lee (2007) studied the volatility forecasting performance of the standard 

GARCH models based on a group of distributional assumptions in the context of stock market 

indices and exchange rate returns. They found that the GARCH model combined with the 

logistic distribution, the scaled student’s t distribution and the Risk metrics model are preferable 

both stock markets and foreign exchange markets. However, the complex distribution does not 

always outperform a simpler one.   
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Franses and Van Dijk (1996) examined the predictability of the standard symmetric GARCH 

model as well as the asymmetric Quadratic GARCH and GJR models on weekly stock market 

volatility forecasting, and the study results indicated that the QGARCH model has the best 

forecasting ability on stock returns within the sample period. 

Chong, Ahmad and Abdullah (1999) compared the stationary GARCH, unconstrained GARCH, 

non-negative GARCH, GARCH-M, exponential GARCH and Integrated GARCH models, and 

the study found that EGARCH performs best in describing the often-observed skew-ness in stock 

market indices and out-of-sample one-step-ahead forecasting. 

Evans and McMillan (2007) examined the forecasting performance of nine different competing 

models for daily volatility for stock market returns of 33 economies. The empirical result of this 

study shows that GARCH models allowing for asymmetries and long-memory dynamics provide 

the best forecast performance. 

Liu, H. and Hung J. (2010) on their study they explores the important of distributional 

assumption and the asymmetric specification in improving volatility forecasting performance 

through the superior predictive ability (SPA). This study investigates one-step ahead forecasting 

performance of asymmetry-type and distribution-type GARCH methods for the S&P 100 stock 

index. The results showed that GJR-GARCH generate the most accurate volatility forecasts, 

followed closely by EGARCH when asymmetric specification are taken into account. Secondly 

the analysis result indicate that asymmetric component modeling is much more important than 

specifying the error distribution for improving volatility forecast of financial returns in the 

presence of fat-tails, leptokurtosis, skew-ness and leverage effect. If asymmetric properties are 

neglected the GARCH model with normal distribution is preferable to those models with more 

sophisticated error distribution. 
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Hansen and Lunde (2005) compared 330 ARCH type models in their ability to describe the 

conditional variance. The aim of the study was to find out that there are volatility models that 

beat GARCH (1, 1) model using superior predictive ability and reality check (RC) for data 

snooping. The empirical analysis illustrated the usefulness of SPA test that it is more powerful 

than RC. The core findings of the study is that there are no concrete evidence showing that 

GARCH (1, 1) model is outperformed by other models when the models are evaluated using the 

exchange rate. 

Despite extensive work on volatility forecasting of asset returns, very few had been done 

specifically to South Africa in terms of forecasting the volatility of stock market returns. The 

study was conducted by Samouilhan and Shannon (2008), where they used a small data set of 

682 observations (01/02/2004 - 28/09/2006) of daily data for the TOP40 index of the JSE. The 

authors investigated the comparative ability of three types of volatility forecasts namely different 

autoregressive conditional Heteroscedasticity (ARCH) by Engle (1982), and as generalized 

ARCH by Bollerslev (1986) on one hand, a Safex Interbank Volatility Index (SAVI) for the 

options market, and measures of volatility based purely on historical volatility using a random 

walk and 5-day moving average forecasts. They found that GARCH (2, 2) specification provided 

the best in-sample fit of all the symmetric GARCH models. For their out-of-sample results the 

GARCH (1, 1) specification provided the best forecast of all the symmetric models as compared 

to GARCH (1, 2), (2, 1) and (2, 2) models. 

Emenike  and Aleke  (2012) examined the volatility of Nigerian Stock Exchange in return series 

for evidence of asymmetric effects by estimating GARCH (1, 1), EGARCH (1, 1) and GJR-

GARCH (1, 1) models. The GARCH (1, 1) model shows the evidence of clustering of volatility 

and the persistence of volatility in Nigeria. The study shows the evidence of volatility 
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asymmetric effect from the estimates of the asymmetric models (EGARCH and GJR-GARCH). 

But contrary to the theoretical sign of leverage effect, the result of EGARCH model estimate is 

positive suggesting that positive news increase volatility more than negative news. Similarly, the 

estimated results from the GJR-GARCH model show the existence of a negative coefficient for 

the asymmetric volatility parameter thereby providing support to the EGARCH result of positive 

news producing higher volatility in immediate future than negative news of the same magnitude. 

The overall results from this study provide strong evidence that positive shocks have higher 

effect on volatility than negative shocks of the same magnitude. It also shows volatility 

clustering and high volatility persistence. 

According to Babikir et al. (2012) investigated the empirical relevance of structural breaks in 

forecasting stock return volatility using both in-sample and out-of-sample tests applied to daily 

returns of the JSE All share Index from 02/07/1995 to 25/08/2010. Where the evidence of 

structural breaks were found in the unconditional variance of the stock returns series over the 

period, with high levels of persistence and variability in the parameter estimates of the GARCH 

(1, 1) model across the sub-samples defined by the structural breaks. The results show the 

relevance of structural breaks in JSE, but there are no statistical gains from using competing 

models that explicitly accounts for structural breaks, relative to GARCH (1, 1) model with 

expanding window.  

By using the concept of McLeod and Li (1983), Engle (1982), Brock et.al (1996), Tsay’s (1986), 

Hinich and Patterson (1995) and Hinich (1996), Alagidede (2011) conducted a study on the 

behavior of returns in Africa’s emerging equity markets. This research aimed to provide 

evidence on the predictability of returns in Africa’s emerging markets based on the behavior on 

the first and second moments of return behavior, risk trade off and mean reversion. The study 
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reveals that empirical stylized facts known as volatility clustering, leptokurtosis and leverage 

effect are present in the Africa data. The study also reveals also that risk/reward trade off does 

not always follows a known standard finance postulate that says high risk produce higher returns 

but also higher loses that has been shown in the case for Kenya. The study also shows that as 

these emerging African markets are growing and has low correlation with developed markets it 

can be used as agents for global risk reduction and potential investment avenues for investors 

seeking to diversify their portfolios. But however, there is lacking evidence regarding the 

behavior of returns. However, the results contradict the findings by Appiah-Kusi and Menyah 

(2003) concluded that returns for Kenya, Egypt and Morocco are not predictable. However, the 

results are contrast to Magnusson and Wydick (2002), Appiah-Kusi and Menyah (2003) and 

Smith and Jefferis (2005), they found the evidence that is mixed for weak form efficiency for 

some of the markets. In other different markets, the initial evidence was largely consistent with 

the view that developed stock markets are efficient. 

A feature that is common for GARCH-type models using daily financial data is that of a high 

level of persistence attributed to the shocks, so that the effect of a once off shock to volatility 

persists for many periods into the future. Many GARCH studies involving financial series have 

found that the estimated variance is generated by an approximate unit root process (Engle and 

Bollerslev, 1986; Susmel, 1999). Thus, this has led to the development of integrated GARCH (I-

GARCH) model.  

Alagidede, and Panagiotidis (2009) investigated the behavior of stock returns in Africa’s largest 

markets. This has been done by employing the random walk and smooth transition models 

(STM) for the returns of each of the countries and tested for i.i.d through the uses of these 

following tests McLeod and Li (1983) and Engle (1982) test for (G) ARCH effects, BDS test for 
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randomness, bi-covariance test for third order non-linear dependence and the threshold effects in 

the data. The study reveals that the random walk hypothesis examined has been rejected by all 

battery of test that has been employed in the returns. Using smooth transition and conditional 

volatility models the empirical stylized facts of volatility clustering, leptokurtosis and leverage 

effects were found to be present in the African stock index returns. 

Using the battery of ARCH-type models Mangani (2008) investigated the structure of volatility 

on the JSE. The first order GARCH (1, 1) formulation was found to be statistically preferred 

relative to higher order GARCH specifications for the forty-four securities studied, two of which 

were stock portfolios and the rest were individual stocks. The dummy GARCH specification was 

chosen before the exponential GARCH model to investigate the presence of asymmetric effects 

of shocks on volatility in the sampled series. To test whether volatility was priced on the market 

the GARCM-in-mean process was tested which yielded negative results, the findings suggested 

that volatility did not meet the criterion of a priced factor because only two individual stocks 

showed that volatility was positively priced which is insignificant. Therefore the study finds that 

there was no compelling evidence for the presence of leverage or even asymmetric effects of 

shocks on volatility. Secondly, there was no evidence that the volatility was priced on the 

market.  

Floros (2008) conducted a study where he examined volatility in the Egyptian stock market using 

daily data for Egypt’s CMA general index. Employing family of GARCH models, he found 

strong evidence of volatility clustering and noted the existence of leverage effect in the returns 

and that negative news increase volatility. A study by Samouilhan (2007) found that the evidence 

of large degree of persistence of volatility on equity returns on the JSE for the broad ALSI40 

index and its various sub-sectors. Using a Component ARCH (CARCH) model, he found 
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significant evidence of volatility clustering over both the long and the short run for each series 

and for the broad index. 

Olowo (2009) examined the volatility of Naira/Dollar exchange rate in Nigeria using GARCH 

(1, 1), GJR-GARCH (1, 1), EGARCH (1, 1), APARCH (1, 1), IGARCH (1, 1) and TS-GARCH 

(1, 1) models on a monthly data from January 1970 to December 2007. The study produce TS-

GARCH and APARCH as the best fitting models.  

The conclusion from this body of research is that modeling and forecasting volatility is a 

notoriously difficult task. Poon and Granger (2003) provided some useful insights into 

comparing different studies on this topic in their review about forecasting volatility in financial 

markets.  

2.3 Theoretical framework 

This section provides with some basic model description and a theoretical background on the 

financial econometrics models that have been proposed to model and forecast volatility 

especially those which was used in this study. Following the work of Samouilhan and Shannon 

(2008), Emenike and Aleke (2012), Magnus and Fosa (2006) this study focused on the following 

volatility models: (1) GARCH (1, 1); (2) EGARCH (1, 1); (3) GJR-GARCH (1, 1) and GARCH-

M (1, 1). These models in literature are categorized as historical based volatility models.  Below 

are the explanations of the theory behind these models as follows:-. 

2.3.1 Autoregressive Conditional Heteroscedasticity (ARCH) Model 

A time series and econometrics model relies on the premise of Ordinary Least Squares which 

assumes that the variance of the disturbance error term is constant (homoscedasticity). However, 

many economic and financial time series display period of unusually high volatility followed by 
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periods of relative quietness. In such scenarios the assumption of a constant variance is no longer 

appropriate.  

The fundamental and very crucial model for financial time series with time varying volatility is 

the Autoregressive Conditional Heteroscedastic model of order one, ARCH(1). This model was 

developed by Robert Engle in 1982. It accommodates the dynamics of conditional 

Heteroscedasticity the assumption of varying variance. It has the advantage of simplicity in 

formation and easy estimation (Gourieroux and Jasiak, 2001). 

An ARCH (1) conditional variance model is shown below 

   σ 
2

t = ω0 + α1µ
2

t-1 

A general ARCH model can be described as follows: 

   y t = µt + ε t 

   ε t =  e t σ t 

   e t ~ N (0,1) 

This model consists of time varying dependent variable 𝑦𝑡 which can be described by a 

conditional mean equation µ t and residuals ε t. The specification of the mean equation can take 

any form. 

This model ARCH (q) specification seems to be comparable to the traditional moving average 

estimates of volatility. But Engle (1982) made the major advancement that the unconditional 

variance and weights attached to the innovations can be determined via maximum likelihood 

(ML) estimation, using information contained in the past data (Engle, 1982). Furthermore, lag 

lengths can be chosen using LRTs, residuals diagnostics, and relevant information criteria. 

Information criteria were the one method that was used to find lag length in this study. 
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The number one disadvantage of the ARCH model is that of the restriction of the model for the 

conditional variance to follow a pure AR (Autoregressive) process and henceforth it may require 

more adequately represent the conditional variance process in comparison with other more 

generalized models.  

2.3.2 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 

Model 

After the ARCH model became popular, Bollerslev (1986) introduced the generalization of an 

ARCH model called it GARCH, which generalizes the ARCH model to an autoregressive 

moving average model. The conditional variance of the GARCH model depends on the squared 

residuals and its past values. The generalization allows the model to avoid over fitting. It is the 

most used model today (Brooks, 2008). The GARCH model can be specified as follows: 

  Mean equation: 𝑟𝑡 = µ + 𝜀𝑡                                                                               (2.3.2.1)  

  𝜎𝑡
2 =  𝜔 + ∑ 𝛼𝑖𝜀𝑡−1

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1                                                             (2.3.2.2)  

Where the current conditional variance is parameterized to depend upon q lags of the squared 

error and p lags of conditional variance. The addition of the lagged conditional variance is 

important because the coefficient βj allows for a smooth process, which evolves over a long time 

period. GARCH model also lets volatility depend on lagged conditional variances and squared 

errors that are farther in the past without the need for a large number of coefficients. By 

comparison, ARCH models, which include a limited number of lags in the conditional variance, 

are classified as more short memory models (Elyasiani and Mansur, 1998).  

But in general a GARCH (1, 1) model was  sufficient to capture the volatility clustering in the 

data, and any higher order model estimated in the academic finance literature is not even 
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entertained because there is a consensus that GARCH (1, 1) is sufficient to model all the 

clustering in volatility (Engle, 2004). Intuitively, the GARCH (1, 1) forecast of conditional 

variance at time t is a weighted average of three components; a constant term through which the 

unconditional variance is determined, the previous periods estimates of the conditional variance, 

and the new information obtained during the period t-1 (Engle, 2004:407).  

ARCH effects can be supposed as the appearance of clustering in trading volume on the micro 

level. GARCH effects are due to volatility clustering according to Bollerslev et. al.(1992) which 

resulted from macro level variables such as dividend yield, margin requirement, money supply, 

business cycle and information patterns. Two reasonable explanation for volatility clustering as 

described by Engle et al. (1990): the arrival of news process and market dynamics in response to 

news.  

The EGARCH, GJR-GARCH, PGARCH, GARCH-M models are compared in order to assess 

the impact of allowing for changes in differing types of volatility persistence. The evaluation of 

the performance of the models is based on likelihood ration tests (LRTs) and Ljung-Box Q-tests 

for autocorrelation in the squared standardized residuals for in-sample modeling. The forecast of 

the out-of-sample test performance of the models is measured through the use of the following 

loss functions measures, root mean squared forecast errors (RMSE), mean absolute forecast 

errors (MAE), mean absolute percentage error (MAPE) and Theil inequality coefficient (Theil’s 

U).  

The consequences of Heteroskedasticity are in general problematic, and as it is known that the 

consequences of Heteroskedasticity for OLS estimation are very serious. Even though the 

estimates remain unbiased but they are no longer efficient, thus they are no longer best linear 

unbiased estimators (BLUE) among the class of all linear unbiased estimators. For this reason 
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GARCH, EGARCH, GJK-GARCH models are being used in this study to account for 

autocorrelation, Heteroskedasticity, persistence and volatility clustering. 

This study uses the GARCH framework for modeling and forecasting the stylized facts of 

volatility. The GARCH framework is an improved version of ARCH model that Engle (1982) 

developed, in which volatility is described through a specification for random behavior of returns 

where GARCH model include the lag variance of the previous estimate in the current variance. 

This process addresses the issue of Heteroscedasticity and volatility clustering frequently found 

in financial markets by specifying the conditional variance as a function of the past squared 

errors, allowing volatility to evolve over time. 

Many econometric models operate under the constant error term variance assumption, it has been 

widely recognized that financial time series exhibit significant heteroscedasticity (Engle and Ng, 

1993). Other market participants have dealt with this scenario through the use of simple moving 

average estimates of conditional variance (Engle and Ng, 1993). 

2.3.3 GARCH-in-mean (GARCH-M) 

The returns of a security may be influenced by its volatility. The symmetric GARCH-M, by 

Bollerslev et. al. (1988) is still a symmetric model of volatility, however the different from the 

classical GARCH model is that it’s introduce the conditional term to the mean equation to 

account for the fact that the return of a stock security may depend on its volatility. The GARCH-

M (1, 1) is written as:  

 Mean equation: 𝑟𝑡 =  µ + 𝜆𝜎𝑡
2+𝜀𝑡                                                                                 (2.3.3.1) 

 Variance equation: 𝜎𝑡
2 = 𝜔 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2                                                          (2.3.3.2) 



 
 

22 
 

(𝑟𝑡) represents the return of a security, and µ and 𝜆 (risk premium parameter) are constant 

parameters to be estimated. This model relaxes the assumption of constant average risk premium 

over the sample period. The GARCH-M specification relaxes this assumption by allowing 

volatility feedback effect to become operational (Brooks, 2002). 𝜆, represent the conditional 

volatility term introduced in the GARCH mean equation to account for the fact that return for the 

security may sometimes depends on its volatility. If these parameter is positive and statistically 

significant, implies that the return is positively associated to its volatility and the increase in risk 

is given by an increase in conditional variance leads to an increase in mean return and vice versa. 

The implication of a statistically positive relationship would mean that an investor is 

compensated for assuming greater returns on the JSE equity market.  

Since we are using high frequency data in this study, the models selected is restricted to 

incorporate only constant transition probabilities as opposed to time varying. This restriction is 

necessary for convergence of the maximum likelihood procedure. 

ASYMMETRIC GARCH MODELS 

The major disadvantage of the models explained earlier is the property of not being able to 

capture symmetries of the data. Like GARCH and GARCH-M can only capture two stylized fact 

of financial data Leptokurtosis (fat tails) and volatility clustering. The asymmetric models which 

are explained here captured the asymmetric of the data known as leverage effects. The leverage 

effects have been observed in the financial data in the previous studies (Black, 1976). These 

models include EGARCH, GJR-GARCH.  
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2.3.4 Exponential GARCH (EGARCH) 

The EGARCH was proposed by Nelson (1991). The model has several advantages over the 

symmetric GARCH specification. Firstly no need to artificially impose non-negativity 

constraints. Therefore, conditional variance is always positive since it is expressed as a function 

of logarithm (Omwukwe et al. 2011). Secondly asymmetry is allowed in the formulation of 

EGARCH therefore negative and positive news are not treated as the same like the symmetric 

GARCH model assumes. The conditional variance as it was proposed by Nelson (1991) is 

specified as follows: 

  ln(σ
2

t) = ω + βln(σ
2

t-1) + γ 
𝑢𝑡−1

√𝜎𝑡−1
2

 + α [
|𝑢𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
]                                         (2.3.4.1)     

The coefficient γ signifies the asymmetric effects of the shocks o volatility. These asymmetric 

effects can be tested by the hypothesis that γ=0. If the γ coefficient is zero, this would imply that 

positive and negative shocks of the same magnitude have the same effect on volatility of stock 

returns. If γ ≠ 0 the effect is asymmetric. If the γ coefficient is positive, then positive shocks tend 

to produce higher volatility in the immediate future than negative shocks. The opposite would be 

true if γ were negative.  

2.3.5 Glosten, Jagannathan and Runkle- GARCH (GJR-GARCH) or Threshold 

GARCH (TGARCH): 

The GJR-GARCH this group of models is similar to the GARCH whereby the future variance 

depends on previous lagged variance values, but the different is that it includes a term that takes 

into account asymmetry. This model was named after these three scientists Glosten, Jagannathan 

and Runkle (1993). The model is the same as GARCH model with an additional term added to 

account for asymmetries. The conditional variance is given by: 
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  σ
2

t = α0 + α1 u
2

t-1 + βσ
2
t-1 + γu

2
t-1It-1                                           (2.3.5.1) 

Where It-1 = 1 if ut-1 < 0  

     = 0 otherwise 

This model can help us in detecting the leverage effect, if we see γ > 0 this tell us about the 

leverage effect in the series. There are two types of news: there is squared return and there is a 

variable that is the squared return when returns are negative and zero otherwise. The coefficients 

are now calculated in the long run average α0, the previous forecast α1, symmetric news β, and 

negative news γ. I is an indicator function. In this variance formulation, the positive and negative 

effects on the news on the conditional variance are completely different. The effect of the news 

is asymmetric if γ ≠ 0.  If the γ coefficient is positive, then negative shocks tend to produce 

higher volatility in the immediate future than positive shocks. The opposite might be true if γ 

were negative. β measures clustering in the conditional variance and α1 + β + γ/2 measures 

persistence of shocks on volatility. If the sum of this measure is less than one the shock is not 

expected to last longer but if it is close to one then the volatility can be predicted for some time. 

But if the sum of the coefficients is one then shock is going to affect volatility indefinitely. 

The TGARCH model developed by Rabemananjara (1993) applied the same approach that used 

in GJR-GARCH model. The TGARCH model introduces a threshold effect in the form of a 

dummy variable into the volatility to account for leverage effects. TGARCH (1, 1): 

  𝜎𝑡
2 = 𝜔 + 𝛼1𝜀𝑡−1

2 + 𝛾𝑑𝑡−1𝜀𝑡−1
2 + 𝛽1𝜎𝑡−1

2                                                          (2.3.5.2) 

Where dummy variable 𝑑𝑡−1 = {
1 if εt−1

2 < 0, bad news

0 if εt−1
2 ≥ 0, good news
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γ is the asymmetry component. If the leverage effect is present this means that the coefficient of 

asymmetry is positive and significant. The reasoning behind this is the same as that of EGARCH 

model, where negative news might have a greater impact on volatility than good news of the 

same magnitude. 

2.3.6 PGARCH 

The P-GARCH model was introduced by Bollerslev and Ghysels (1996) as a means of better 

characterizing periodic or season patterns in financial markets volatility. This model is similar to 

the GARCH model but now includes seasonally varying autoregressive coefficients.  

The class of P-GARCH (p, q) processes can be defined as 

  𝜎𝑡
2 =  𝜔𝑠(𝑡) +  ∑ 𝛼𝑖𝑠(𝑡)𝜀𝑡−1

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝑠(𝑡)𝜎𝑡−𝑗

2𝑝
𝑗=1  (2.3.6.1) 

Where s(t) is the stage of the period cycle at time t. When estimating this model, the conditional 

variance, 𝜎𝑡
2, must be positive in order for a plausible fit to be obtained. For a positive variance 

results the conditions may be needed in the following parameters 𝜔𝑠(𝑡), 𝛼𝑖𝑠(𝑡), and 𝛽𝑗𝑠(𝑡) 

(Bollerslev and Ghysels, 1996). These conditions may be formulated on a case-by-case basis 

according to Nelson and Cao (1992) suggested that the condition of restricting the two seasonal 

coefficients to be non-negative, with seasonal intercept strictly positive. 

2.4 Summary and Conclusion 

This section of the chapter presented a review of various empirical and theoretical developments 

relating to forecasting and modeling volatility, with the emphasis on extended GARCH models. 

Since the influential studies of Engle (1982) and Bollerslev (1986), it is common to model the 

conditional variance of financial time series as following a single-regime GARCH process. 
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Throughout the literature reviewed, it is commonly found that GARCH (1, 1) model provide a 

better in-sample fit of data or more accurate forecast than any other models (Engle, 2004). But 

other models haven’t been given much attention as these three popular models GARCH, 

EGARCH and GJR-GARCH are investigated in this study other models and its properties. The 

question that this study tries to answer is this. Is there any other models beside GARCH (1, 1), 

that can model and forecast volatility better, if there is how accurate is it? 

In this regard, chapters 3, 4 and 5 are devoted to investigating whether a variety of GARCH 

models are better suited to modeling the African stock market data used. In chapter 3, the 

acquiring and explanation of data. relevant models are estimated, in sample goodness-of –fit test, 

and out-of-sample forecast are presented. Using likelihood test, liquidity ratio test (LRT) for 

testing diagnostics of the residuals. Chapter 4 presents the methodology used. Chapter 5 presents 

the empirical analysis results of the investigation. Lastly, conclusion in chapter 6 and future 

work. 
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Chapter 3: Data and Econometric Methods 

3.1 Introduction  

Before we proceed with the empirical analysis, it is crucial to present first and motivate the 

various data, models and econometric test used in this chapter. From the literature review in 

Chapter 2, this chapter aims to provide an understanding of the data and econometric methods 

used. As a groundwork analysis, sub-section 3.2 includes a descriptive summary of the data used 

in this study for the different sectorial indices returns, and take note of significant similarities and 

differences between models. 

3.2 Data 

To accurately compare the properties it is appropriate to ensure that the return series is compiled 

according to a standardized method. For this reason, the data used are daily returns on the JSE 

All Share Index (FTSE/JSE) which is about 90% of the market capitalization of the whole JSE, 

Industrial 25 Index, Resource 10 Index and Top 40 Index. All the data series are procured from 

JSE information data source Bloomberg data stream. 

The Bloomberg data set comprises of daily readings for all FTSE/JSE indices. The sample period 

under investigation runs from 01/10/2002 to 30/12/2014 of daily close, which translates into 

3067 actual trading days in total. The choice of daily returns is due to the finding that important 

information regarding volatility is lost at lower frequencies, especially during crisis periods 

(Edwards, 1998). Brooks (2002, p 389-390) stresses the point that for the models that is used in 

this study are more data intensive than simple regression, therefore they work better when the 

data are sampled daily rather than at lower frequency. Ensuring stationarity, the daily closing 

levels are transformed into daily continuous returns, defined in the standard way as the natural 
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logarithm of ratio of consecutive daily closing levels. The unit root test was used to test the null 

hypothesis of a root is stationary. The null hypothesis was rejected after transforming the daily 

prices to continuously returns. 

Daily returns Rt are calculated as the first difference of the natural log of the index Pt, multiplied 

by 100, such that: 

𝑅𝑡 = 100 ∗ ln (
𝑃𝑡

𝑃𝑡−1
⁄ ) 

Where 𝑅𝑡 denotes the continuously compounded percentage return at time t, 𝑃𝑡 the price of an 

asset at time t. 

The descriptive statistics for the log returns are shown in Table3.1. The mean returns across the 

board are close to zero. All the indices have slightly higher similar kurtosis value showing some 

fatness in the tail in the distribution (Gujarati and Porter, 2009). A normal distribution has a 

kurtosis of three. A kurtosis in all indices is greater than three which means that the indices 

results are peaked around their mean value (leptokurtosis). The standard deviation, which is the 

measure of the average volatility of the indices in 12 years 2 months, shows that the Resource 

Index has higher volatility of 1.8379 than other indices. Negative skew-ness is present in all 

series except from Resource 20 index. In addition based on Jarque-Bera statistic and the 

probability it is concluded that the normality assumption in the time series examined is rejected, 

supporting the non-normal distribution of the index returns that are being examined in this study. 

The large values for Jarque-Bera test statistic ranges from 1066.82 for Industrial 25 to 2341.644 

for Resource 20 suggest the underlying non-normality in the return series. 



 
 

29 
 

The line graphs for the closing prices and log return data for each index is shown in the Figure 1. 

The closing prices of all indices show an overall exponential increase in the value of index 

between 2008 and 2014 while Resource 20 Index has been indecisive ever since financial global 

crisis. Since the event of the crisis indices Top 40, Industrial 25 and JSE All Share have seen a 

steady recovery.  

The return graphs for all chosen indices appear to fluctuate around zero (Figure 2). Volatility 

pooling is evident in all the data with periods of large movements grouped together and small 

movements tending to also group together which is the same as volatility clustering. 

Table 3.1: Descriptive Statistics for JSE Indices(Log returns) 

 JSE All Share Resource 20 Industrial 25 Top 40 

Mean 0.0549 0.0246 0.0764 0.053 

Median 0.0837 0.0189 0.1265 0.097 

Maximum 6.8339 11.4998 7.1729 7.707 

Minimum -7.5807 -11.8154 -6.794 -7.959 

Std. Dev. 1.2343 1.8379 1.158 1.352 

Skewness -0.1431 0.0335 -0.908 -0.081 

kurtosis 6.6759 7.2801 5.884 6.529 

JB 1737.202*** 2341.644*** 1066.82*** 1594.692*** 

Observations 3067 3067 3067 3067 

*** Denotes statistical significance at 1% level; JB is the Jarque-Bera test for normality;  

3.3 Volatility Models 

There are various different types of volatility models. However, only a limited number of those 

models are found to be useful for modeling financial data time series. The most popular used 
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ones are non-linear financial models known as ARCH or GARCH models and extension of these 

models, which are used to model and forecast volatility in this study. We are going to explain 

these models below. 

The significant positions that volatility estimates and forecasts take in finance for example, in 

portfolio formation construction, risk management, and option pricing require the best available 

model of volatility to be used almost all the times. 

Figure 1: Close prices of JSE Indices 
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Figure2: Log returns 
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series rt is weakly stationary if the expected value of return µ (constant) and covariance is γl, 

which only depends on l.  

3.3.1.2 Autocorrelation  

To examine the linear dependence between present 𝑟𝑡 and previous 𝑟𝑡−1 returns we focus on 

correlation, if we have weakly stationary time series 𝑟𝑡 the correlation coefficient between 𝑟𝑡 and 

𝑟𝑡−1 is called the lagged-1 autocorrelation of 𝑟𝑡 and is denoted by ρ 

ρ =  
cov(rt, rt−1)

√Var(rt)Var(rt−1)
 

Where, 𝑐𝑜𝑣(𝑟𝑡, 𝑟𝑡−1) is covariance and 𝑣𝑎𝑟(𝑟𝑡) is the variance. For a weakly stationary time 

series 𝑣𝑎𝑟(𝑟𝑡) = 𝑣𝑎𝑟(𝑟𝑡−1). Autocorrelation takes the values between (-1, 1). Thus −1 ≤ 𝜌 ≥ 1. 

3.3.2 ARMA Models   

To determine the mean process for the returns, an iterative approach was used to minimize the 

Akaike Information Criteria (AIC). This is the model selection tool that has been proposed in the 

time series literature for selecting the order of the model among various possible choices for 

ARMA models. The ARMA specification for each of the returns is shown.   

In the time series modeling it is imperative to identify the model that best fits the data from a set 

of models. There are other different kinds of Information Criteria that can be used which can 

produce a different specification for the mean process. The Schwarz Bayesian Information 

Criterion (SBIC) generally produces a specification that is small compared to Akaike as it 

impose a stiffer penalty terms. The residuals are extracted and used in a series of tests to better 
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understand the characteristics of the residuals and to help model volatility as accurately as 

possible. If the number of estimated parameter in the model is k, then the AIC is defined by 

AIC = ln(ᾱ2) +
2k

T
 

Where ᾱ2, the residual variance and T is the sample size. 

But before we do that we used Augmented Dickey-Fuller (ADF) test and Phillips-Perron to test 

for stationarity of the time series if there is a unit root in the series. ADF test shows that all the 

indices close prices are not stationary because the null hypothesis of ADF test was rejected in 

favor of the alternative, but on continuously log returns the null hypothesis was rejected showing 

the stationarity of the time series data. And the Phillips-Perron tests produce the same inference 

about the stationarity of the series but highly significant than ADF test. The ARMA specification 

of each index is given in the table below.  

Table 3.2: ARMA Specification for each JSE Index 

Index ARMA (p, q) 

JSE All share (8, 8) 

JSE Top 40 (9, 6) 

JSE Resource 20 (7, 4) 

JSE Industrial 25 (9, 9) 

 

3.3.2.1 Statistical Tests 

From this test we determined volatility effects in a set of data that appeared in the residuals. In 

that way it is important to determine if there are indeed ARCH effects in the residuals. Once this 
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has been determined the distribution of the residuals need to be determined in order to ensure 

that the volatility models that are estimated are as accurate as possible. The tests that were 

performed on the residuals are as follows: 1 A Heteroscedasticity test (Engle’s ARCH Test). 2

 A normality test (Jarque-Bera Test). 

3.3.2.2 ARCH Test 

Engle’s ARCH test involves a regression on the squared residuals and the null hypothesis that 

says all the coefficients are equal to zero. 

The test that we implement is the usual Box-Ljung Q statistic test for auto-correlations in the 

series (McLeod and Li, 1983). The second test that can detect the ARCH effect in the time series 

returns is the Lagrange Multiplier (LM) test of Engle (1983). The Ljung-Box statistic, test for the 

null hypothesis that ‘all m autocorrelation coefficients are zero’ which occurs when ARCH 

effects are present. Under the Engle’s LM test, the test is for autocorrelation in the squared 

residuals. The joint null hypothesis of LM test is that ‘all q lags of the squared residuals have 

coefficient values that are not significant different from zero’, which is the scenario when no 

ARCH effects present (Brooks, 2008). 

The results of the ARCH tests are given in the Table 3. Its shows that residuals contain ARCH 

effects, therefore the null hypothesis in the ARCH tests in all indices can be confidently rejected. 

We rejected the null hypothesis of linearity at the 1% level. All the p-values are significantly 

zero indicating strong departures from the i.i.d condition. The result of these tests is below in this 

table. Therefore, this confirms that the series has ARCH effects. The test was conducted with 5 

lags in the residuals. 
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Table 3.3: Heteroscedasticity Test ARCH 

 ALSHI RESORCE 20 INDUSTRIAL 25 TOP 40 

F-statistic 151.7789(0.000) 149.7132(0.000) 102.0435(0.0000) 149.4170(0.0000) 

LM 609.1217(0.000) 602.4627(0.000) 438.0792(0.0000) 601.5049(0.0000) 

Table 3.4: Breusch-Godfrey Serial Correlation LM Test 

 

ALSH RESOURCE 20 INDUSTRIAL 25 TOP 40 

F-statistic 4.42812 (0.0005) 6.310757(0.0000) 3.178225(0.0073) 4.717191(0.0003) 

LM 22.02470(0.0005) 31.29306(0.0000) 15.840004(0.0073) 23.45149(0.0003) 

3.3.2.3 Normality Test 

The Jarque-Bera test is used for testing normality in the time series data. This is the goodness-of-

fit to test whether the residuals have the skew-ness and kurtosis that matches a normal 

distribution. From descriptive statistic in Table 1, all the indices have high Jarque-Bera (JB) 

values and low p-values. Hence, the null hypothesis that says the residuals are normally 

distributed is rejected to four significant values. Table 3 provides the result of the test for 

normality test in residuals. The Jarque-Bera statistics is calculated as 

𝐽𝐵 =  
𝑇

6
(𝑆2 +

1

4
(𝐾 − 3)2) 

Where S is the skew-ness, K is the sample kurtosis and T is the sample size. Under the normality 

assumption S and K-3 are asymptotically distributed as normal with zero mean and variances 
6

𝑇
 

and
24

𝑇
, respectively. The decision rule is that, we reject the null hypothesis at α% significance 
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level if 𝐽𝐵 > 𝜒2
1-

𝛼

2
, where 1 −

𝛼

2
 is the critical value of the chi-square distribution with 2 degree 

of freedom (Tsay, 2012). 

Table 3.5: ARCH tests results 

Index Name F-statistic TR
2
 

JSE All Share 90.295*** 698.588*** 

JSE Industrial 25 56.798*** 480.199*** 

JSE Resource 20 115.795*** 841.505*** 

JSE Top 40 91.691*** 706.832*** 

***, indicates significance at 1% level, TR
2
 is a JB test statistics.  
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Chapter 4: Methodology 

This section of the chapter outlines the methodology which was used to address the research 

questions that this study is based trying to answer. The first subsection explains the methods used 

for estimating the in-sample parameters of the various models using Eviews 7 software. The 

following subsection describes the forecasting approach that was followed in the study and the 

technique used to evaluate the GARCH model volatility forecasting. 

4.1 In-sample estimation 

4.1.1  Estimation of GARCH models 

In the absence of homoscedasticity, Ordinary Least Squares (OLS) estimation is no longer 

appropriate to estimate the parameters of the model. The estimation will no longer be efficient. 

The estimate will violate the BLUE condition. So to estimate the GARCH model we use the 

Maximum Likelihood method for parameter estimation. This method simply chooses a set of 

estimated parameters that is most likely to generate the data observed, using an iterative 

computer algorithm (Marquardt algorithm), this is the built-in algorithm from the Eviews 

software. The conditional variance equations for the GARCH models was estimated and their 

mean equation have been specified in Chapter 2. The illustration would focus on GARCH (1, 1) 

model in outlining the Maximum Likelihood procedure, as the method is the same for all other 

various GARCH extensions models.  

4.1.2  Diagnostic checks 

After GARCH models have been estimated, we performed diagnostic tests on the residuals of 

each model estimated to find out if the model has been correctly specified. These diagnostic tests 
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check if there are any remaining non-linearity structures in the residuals. The number one 

commonly used principle behind these diagnostic tests is that once the model has been generated 

the non-linear structure has been removed from data and the remaining structure is from random 

noise of the unknown linear data generating process (Alagidede, 2011). In this study we 

examined the residual for non-linearity using two different tests; the Ljung-Box-Q and ARCH-

LM test on residuals. 

These tests have been already used in the study to check the presence of autocorrelation and the 

absence of homoscedasticity (heteroscedasticity) for the series data. We performed the same test 

on the standardized residuals and square residual of each GARCH model estimated (Magnus and 

Fosa, 2006).  

4.2 Forecasting 

We forecast 20 day a-head volatility. The 20 day a-head volatility was found by dynamic 

forecasts using Eviews. The in-sample data contains the first 3047 daily observations. The 

models are estimated over the in-sample data. The estimated parameters were used to forecast 

the 20 day a-head volatility forecasts of these companies. 

4.3 Forecast evaluation statistics 

The performance of these forecasting models are evaluated based on the statistical loss functions. 

The most commonly used loss functions in the literature which was used in this study are Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE) and Theil’s U-statistic (Brailsford and Faff, 1996; Brooks, 2008). 
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𝑅𝑀𝑆𝐸 = √
1
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2 )/𝜎𝑖
2)

⁄  

Where T represents the number of total observations both in-sample and out-of-sample and T1 is 

the first out-of-sample forecast observation. The observation that the model is estimated for start 

from 1 to T1-1 observations and T1 to T are used for the out-of-sample forecasting. 𝜎𝑖
2and 

�̃�𝑖
2denotes the actual and the estimated conditional variance at time t, respectively. �̃�𝑏𝑖

2  is found 

from a benchmark model. 

RMSE and MAE measures how close is the forecast from the actual data, thus the forecast which 

has the smallest RMSE and MAE is probably the most accurate forecast (Brooks, 2008). 

RMSE is calculated based on the quadratic loss function (Brooks, 2008). It is advantageous in 

the sense that it is most sensitive to large errors of the four criterions because of the square of the 

errors. The most advantageous thing about it is that large estimate errors could lead to serious 

problems. But RMSE can lead to a tailback if the larger errors cannot lead to serious problems. 

MAE measures the average absolute forecast error (Brooks, 2008). The advantage of these loss 

functions is that it penalizes large errors less than the RMSE because of non-squaring errors. 
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RMSE and MAE are very simple loss function, and by that they are inconsistence to scalar 

transformation and symmetric which implies that they are not realistic in some cases (Brooks, 

2008). 

MAPE tells us about the ability to accounts for variability in the actual data from the forecasted 

output (Brooks, 2008). It measures the percentage error, ranges from [0, 100] percent. Therefore, 

the forecast with a MAPE closest to 100 is probably the most accurate. The advantage of MAPE 

is that it can be used to compare the performance of the estimate models and the random walk 

model. 

The Theil’s U-statistic compares the performance forecast of the model to the performance of a 

benchmark model. If the U-statistic = 1 this implies that the model under consideration has the 

same accuracy or inaccuracy as the benchmark model. The advantage of this error function is 

that comparing the Theil’s U-statistic is constant to scalar transformation but symmetric. 
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Chapter 5: Empirical Results 

5.1 Introduction  

In this chapter, the volatility models such as GARCH (1, 1), EGARCH (1, 1), GJR-GARCH (1, 

1) and GARCH-M (1, 1) are compared, with the aim of identifying the most appropriate 

characterization of the conditional variance process for JSE African markets on the selected 

indices. These models are evaluated based on the economic implications of parameter estimates, 

likelihood ratio tests (LRTs), residual diagnostics, and forecast errors. As noted in the literature 

review GARCH (1, 1) model sufficiently models the volatility clustering in the financial data for 

stylized facts but cannot accommodate other facts like asymmetry which is being covered by 

other extension GARCH models explained before. The order of models is 1 for all models 

estimated.  These calculated estimates are obtained by assuming a student t-distribution to 

account for fat tails. 

5.2 Error distribution and leverage effects 

All models are estimated using Student’s t errors distribution to allow for fatter tails in the log 

returns shown from the Table 1. As illustrated in Table 5.1 to 5.5. The LRT are used to test the 

null of Student’s t distributions in error against the alternative of normal error distribution in all 

indices. In each case we fail to reject null at 1% level of significant. Therefore, the study focuses 

on using the Student’s t errors distribution. 
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Table 5.1: Parameter estimates for JSE All Share Index 

 GARCH EGARCH GJR-GARCH GARCH-M PGARCH(1, 1) 

µ 0.091***(5.372) 0.055***(3.321)  0.0268(0.481) 0.056***(3.29) 

σ 0.017 0.017   0.017 

δ    0.071 (1.213)  

γ  -0.095***  

(-9.445) 

0.131*** (8.645)   

ω 0.0145*** (3.243) -0.091***  

(-7.579) 

0.018*** (4.96) 0.015*** 

(3.249) 

0.015*** 

(4.5079) 

α  0.116*** (7.684)    

α1 0.0825*** (7.958)  7.78E-05  

(0.009) 

0.082*** 

(7.951) 

0.05*** (2.923) 

β 0.908*** (80.682) 0.986*** (332.234) 0.926*** 

(100.47) 

0.908*** 

(80.504) 

0.934*** 

(109.922) 

Durbin 

Watson 

1.946 1.948 1.948 1.942 1.948 

log-likelihood -4489.52 -4454.26 -4454.87 -4488.77 -4451.743 

LBQ[12] 9.747[0.638] 10.512[0.571] 10[0.616] 9.35[0.672] 9.96[0.619] 

LBQ
2
[12] 12.305[0.422] 16.193[0.183] 16.684[0.16 2] 12.12[0.432] 16.82[0.157] 

ARCH[12] 11.763[0.465] 15.633[0.207] 16.358[0.175] 11.63[0.476] 16.37[0.175] 

T-dist 13.76 [4.317] 18.632[3.502] 17.622[3.659] 13.82[4.299] 18.25[3.588] 

α + β 0.991 1.102 0.926 0.99 0.984 

***, **,* indicates significance at 1%, 5% and 10% respectively. LBQ is the Ljung-Box statistic, 

Student-t Test statistic are reported in () while p-values in []. 

 



 
 

43 
 

Table 5.2 Parameter estimates for Resource 20 Index 

 GARCH EGARCH GJR-GARCH GARCH-M 

µ 0.042 (1.587) 0.009(0.356) 0.0119(0.445) -0.146(-1.3195) 

σ 0.027 0.026 0.027 0.111 

δ    0.129(1.76) 

γ  -0.055***(-6.51) 0.0773***(6.509)  

ω 0.038*** (3.123) -0.063***(-6.39) 0.032***(3.666) 0.037***(3.12) 

α  0.092***(6.930)   

α1 0.059***(6.667)  0.007 (0.9604) 0.059***(6.736) 

β 0.929***(86.79) 0.991***(372.07) 0.944***(113.99) 0.929***(87.62) 

Durbin Watson 1.905 1.9054 1.9055 1.902 

log-likelihood -5789.302 -5768.859 -5766.758 -5787.862 

LBQ[12] 16.722[0.16] 15.826[0.199] 16.23[0.180] 16.51[0.169] 

LBQ
2
[12] 3.89[0.985] 6.799[0.871] 6.934[0.86] 3.756[0.987] 

ARCH[12] 3.947[0.985] 6.879[0.87] 7.0999[0.851] 3.843[0.986] 

T-distribution 12.218[4.563] 15.284[3.728] 14.826[3.93] 12.266[4.55] 

α+β 0.988 1.083 0.951 0.988 

***, **,* indicates significance at 1%, 5% and 10% respectively. LBQ is the Ljung-Box statistic, 

Student-t Test statistic are reported in () while p-values in []. 

Table 5.3: Parameter estimates for Industrial 25 

 GARCH EGARCH  GJR-GARCH GARCH-M 

µ 0.1202***(7.297) 0.093***(5.665) 0.094***(5.669) 0.132(2.245) 

σ 0.0165 0.016 0.017 0.059 

δ    -0.014(-0.221) 

γ  -0.091***(-7.46) 0.112***(6.234)  

ω 0.0234***(3.821) -0.106***(-7.44) 0.024***(4.582) 0.0235***(3.818) 
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α  0.133***(7.34)   

α1 0.091***(7.868)  0.016(1.391) 0.091***(7.866) 

β 0.891***(64.42) 0.978***(220.8) 0.905***(72.12) 0.891***(64.38) 

Durbin Watson 1.988 1.991 1.991 1.989 

log-likelihood -4381.793 -4363.712 -4360.692 -4381.771 

LBQ[12] 15.465[0.217] 16.543[0.168] 15.813[0.2] 15.569[0.212] 

LBQ
2
[12] 8.895[0.712] 10.777[0.548] 9.029[0.7] 8.8439[0.716] 

ARCH[12] 8.939[0.7081] 10.957[0.5326] 9.134[0.691] 8.879[0.7132] 

T-distribution 11.339[5.443] 12.775[4.615] 12.773[4.768] 11.304[5.441] 

α+β 0.982 1.111 0.921 0.982 

***, **,* indicates significance at 1%, 5% and 10% respectively. LBQ is the Ljung-Box statistic, 

Student-t Test statistic are reported in () while p-values in []. 

Table 5.4: Parameter estimates for Top 40 

 GARCH EGARCH GJR-GARCH GARCH-M 

µ 0.089***(4.803) 0.049***(2.733) 0.052**(2.81) 0.017(0.277) 

σ 0.019 0.018 0.017 0.062 

δ    0.072(1.239) 

γ  -0.099***(-9.69) 0.127***(8.447)  

ω 0.017***(3.207) -0.085***(-7.21) 0.017***(4.261) 0.017***(3.219) 

α  0.112***(7.47)   

α1 0.082***(7.857)  -0.0029(-0.334) 0.081***(7.852) 

β 0.9096***(80.59) 0.987***(339 0.928***(102.7) 0.909***(80.326) 

Durbin Watson 1.973 1.974 1.974 1.969 

log-likelihood -4779.082 -4741.318 -4742.719 -4778.312 

LBQ[12] 9.642[0.647] 11.209[0.511] 10.327[0.587] 9.121[0.693] 

LBQ
2
[12] 12.536[0.404] 16.932[0.152] 17.790[0.122] 12.426[0.412] 
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ARCH[12] 11.551[0.4824] 16.052[0.189] 17.412[0.1347] 11.426[0.4928] 

T-distribution 13.662[4.294] 18.762[3.386] 17.49[3.604] 13.749[4.269] 

α+β 0.9916 1.099  0.99 

***, **,* indicates significance at 1%, 5% and 10% respectively. LBQ is the Ljung-Box statistic, 

Student-t Test statistic are reported in () while p-values in []. 

Table 5.5: Parameter estimates for PGARCH (1, 1) 

 JSE RESOURCE 20 INDUSTRIAL 25 TOP 40 

µ 0.056***(3.29) 0.011***(0.395) 0.092***(5.493) 0.049***(2.632) 

σ 0.017 0.027 0.017 0.019 

ω 0.015***(4.508) 0.025***(3.209) 0.025***(4.7128) 0.017***(4.503) 

α1 0.091***(2.923) 0.042***(3.99) 0.065***(4.626) 0.049***(0.759) 

β 0.934***(109.92) 0.947***(116.31) 0.913***(78.9337) 0.936***(110.96) 

Durbin Watson 1.948 1.905 1.991 1.974 

log-likelihood -4451.743 -5766.219 -4358.753 -4738.472 

LBQ[12] 9.963[0.619] 15.953[0.193] 16.181[0.183] 10.528[0.57] 

LBQ
2
[12] 16.818[0.157] 6.745[0.874] 9.6024[0.651] 17.440[0.134] 

ARCH[12] 16.374[0.175] 6.894[0.865] 9.78[0.635] 16.728[0.16] 

T-distribution 18.254[3.588] 15.116[3.811] 13.009[4.557] 18.429[3.449] 

α+β 1.025 0.989 0.978 0.985 

***, **,* indicates significance at 1%, 5% and 10% respectively. LBQ is the Ljung-Box statistic, 

Student-t Test statistic are reported in () while p-values in []. 

5.2.1 GARCH parameter estimates and their economic meaning 

The estimates of GARCH, EGARCH, GJR-GARCH, GARCH-M and PGARCH models are 

presented in Table 5.1 to Table 5.5 for all indices and indices for sectors assuming student t-

distribution. These coefficients estimates for JSE All Share, Resource 20, Industrial 25, and Top 
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40 indices are obtained using the maximum likelihood function over a sample period. The values 

in the parentheses are Student-t statistics. The numbers in square brackets are p values, log-

likelihood represent the maximized log likelihood value. The values in LBQ [12], LBQ
2 

[12] are 

Box-Ljung Q statistic calculated on standardized and squared standardized residuals of order 12 

respectively. Durbin-Watson is the test statistic for autocorrelation.  

These three constants of mean coefficient ω, ARCH term α1 and GARCH term β for these 

models are highly statistical significant at 1% level. But the ARCH term for GJR-GARCH is 

insignificant from zero for JSE All Share index. This indicates that for these models, previous 

news about volatility has an explanatory power on current volatility because of the lagged 

conditional variance (GARCH term) and ARCH term have an impact on conditional variance. 

These results are consistence with the conclusion on the behavior of JSE returns by Makhwiting 

et.al, (2012) and Samouulhan & Shannon (2008). 

The estimates of the coefficient of α1 are statistically significant in GARCH (1, 1) at 1% level for 

all indices. They are all positive and statistically significance from zero for all models estimated 

except in GJR-GARCH (1, 1) they are all positive and insignificance except for Top 40 index 

which is negative. However, the superiority of GJR-GARCH (1, 1) model is that it allows 

asymmetric response to past positive or negative returns. The parameter estimate β measures the 

persistence of volatility shocks is positive and highly statistically significance. The asymmetric 

coefficient γ is negative and statistically significance at 1% level for EGARCH (1, 1) but 

negative for GJR-GARCH (1, 1) but significant. Therefore, the residual have asymmetric 

influence in the JSE indices, that the positive sign indicate that negative residuals increase 

volatility more than residual of the same magnitude. 
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The pattern of high persistence in the JSE data is observed. Refereeing to the coefficient 

estimates of GARCH (1, 1) (Table 5). The degree of persistence is measured by the sum of 

ARCH term (α1) and GARCH term (β1) for all model are close to unity except for EGARCH 

model,  indicating that there is a high degree of persistence in the shocks to volatility and long 

memory in the conditional variance. This means that the shocks in the volatility - took time to 

decay. The EGARCH model has a sum more than unity which implies that there is a very long 

and explosive persistence in volatility suggesting an integrated (IGARCH) process in modeling 

volatility. 

For all indices, the sum of these coefficients is relatively high, with the lowest of 0.982 for 

Industrial 25 index and the highest is 0.9916 for Top 40 which clearly shows the persistence of 

volatility. The entire coefficients are statistically significant for GARCH (1, 1) model at 1% 

since all the p-values are zero to 4 significant values for each GARCH estimate coefficients. This 

tells us that GARCH (1, 1) successfully remove heteroscedasticity in the data. And the 

corresponding standard deviation σ of the errors is small which indicates the good fit of a model. 

The coefficients on both the lagged squared residual and lagged conditional variance terms in the 

conditional variance equation are highly statistically significant. Also, as is typical of GARCH 

model estimates for financial asset returns data, the sum of the coefficients on the lagged squared 

error and lagged conditional variance is very close to unity approximately 0.917309 for Resource 

20 Index. This implies that shocks to the conditional variance were highly persistent. If the sum 

of these coefficients is large this implies that a large positive or a large negative return will lead 

future forecast of the variance to be high for an extended period. This is seen by considering the 

equations for forecasting future values of conditional variance in the next sub-section.  
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The most basic and popular model of conditional variance presented in this study is GARCH (1, 

1) model for all indices chosen was estimated from the period of 01 October to 2002 to 10 

December 2014 leaving 20 observations for out-of-sample forecast evaluation . This model 

yields the statistically significant on the lagged conditional variance at 1% level for all indices. 

The model characterizes the conditional variance as alternative between two constant, associated 

with lagged squared residual and lagged conditional variance. 

The GJR-GARCH (1, 1) estimation for ALSH show that the series has leverage effect (γ > 0) 

0.122649 which is highly significant signaling that positive news provide more positive returns 

then negative news of the same magnitude.  

The GARCH-M models help us to understand the risk premium which is denoted by δ in the 

specification of conditional variance. The magnitude of this risk premium is important as the 

sign of it in the model. If the sign of δ is positive and statistical significant, this means that then 

the increased risk given by an increase in the conditional variance provides an increased in mean 

return. This tells investors that they are being compensated for a higher risk taken. 

The GARCH-M interpretation for All Share the risk premium “δ” parameter is positive and 

insignificant showing no feedback from the conditional variance to the conditional mean. In All 

Share, Resource 20, Top 40 the risk premium parameter is positive and insignificant but 

Industrial 25 is negative but still insignificant theory tell us that there is no feedback from the 

conditional variance to the conditional mean. The insignificant of the risk premium suggest that 

investors in the JSE are not compensated for assuming greater risk. 

The study applies two asymmetric models EGARCH (1, 1) and GJR-GARCH (1, 1) and the 

seasonal PGARCH (1, 1) model to investigate the existence of leverage effects in the returns and 
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seasonality in the JSE Stock market. The model estimated first is EGARCH (1, 1) which has the 

advantage of not imposing artificially negative restriction on its parameter while GJR-GARCH 

requires the satisfaction of positive condition (Nelson, 1991). All the estimates are highly 

statistical significant including the asymmetry coefficient (γ). The asymmetric coefficient is 

negative and statistical significant, this tells us that in the period studied the negative shocks or 

news on all indices estimated has a higher impact on volatility than the positive shocks with the 

same magnitude. Therefore, the EGARCH model indicates the presence of leverage effects in 

JSE markets. 

Another alternative asymmetric model in the returns is the GJR-GARCH (1, 1). From Table 5.1-

5.4, the estimated result of the model shows that the GARCH term, asymmetric term and 

constant term are statistically significant but ARCH term is insignificant which is in line with 

previous studies. These results show the presence of leverage effects on the data. The 

asymmetric term is positive implying that the negative shocks (bad news) have a larger effect on 

the conditional variance than positive shocks (good news) of the same magnitude. 

ARCH test from residuals of the estimated model GARCH (1, 1) of JALSH Index is rejected 

meaning the GARCH model successful model all the specification of the series of volatility 

clustering in the data, F-statistic of 1.117566 with p value of 0.3487 which is highly 

insignificant. ARCH test for Resource 20 with F-statistic 1.005598(0.4127) was also rejected the 

null hypothesis that say series has ARCH effects on it; therefore the model was successful to 

model the volatility in the series. For Industrial 25 F-statistics is 0.871129 with p value of 0.4996 

implying no ARCH effects in the residuals in the model estimated. For Top 40 index F-statistic 

is 1.418887 with p value of 0.2141 implying no effect remaining in the residuals. Therefore, after 

fitting the GARCH model the test for residuals and squared residuals indicated no ARCH effect 
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left in the series. The model was able to remove all Heteroscedasticity in the residuals and serial 

correlation. 

Table 5.6: Model selection for the estimated models assuming t-student distribution 

JSE ALSH GARCH (1, 1) EGARCH (1, 1)* GJR-GARCH 

(1, 1) 

GARCH-M (1,1) PGARCH (1, 1) 

AIC 2.9414 2.919 2.9194 2.9416 2.918 

SBIC 2.9513 2.932 2.9312 2.9534 2.9318 

HQIC 2.945 2.923 2.9237 2.9459 2.9230 

Resource 20  

AIC 3.7921 3.7794 3.77798 3.7918 3.7783 

SBIC 3.8019 3.7912 3.7898 3.8036 3.7921 

HQIC 3.7956 3.7836 3.7822 3.7961 3.7832 

Industrial 25  

AIC 2.8709 2.8598 2.8578 2.8716 2.8572 

SBIC 2.8808 2.8716 2.8896 2.8834 2.871 

HQIC 2.8745 2.8640 2.8620 2.8759 2.8621 

Top 40  

AIC 3.1309 3.1069 3.1078 3.1311 3.10596 

SBIC 3.1408 3.1187 3.1196 3.1429 3.1198 

HQIC 3.1345 3.1111 3.1121 3.1354 3.1109 

* chosen model 

The log-likelihood values of the models suggest that the for JSE All Share index and all other 

indices GARCH (1, 1) model performs best in modeling volatility, while AIC,SBIC and HQIC 

suggest that EGARCH (1, 1) for ALSH and To40 indices. Resources 20 Index the results on data 

suggest that RJR-GARCH (1, 1) is the best model and so is Industrial 25 data suggested 

PGARCH (1, 1). This tells us that modeling volatility is not an easy task and that one model can 
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model JSE All share index does not necessarily mean that other indices in the JSE can be 

modeled with the same model this is in line with the studies of Poon and Granger (2003).  

5.3 Diagnostics 

After the specification of the GARCH model, it is important to investigate its adequacy. To 

examine the relationship between the residuals obtained from the fitted model, the conditional 

standard deviations and the observed returns are studied. Residual diagnostic check results for 

GARCH (1, 1) on JSE All share index are in the table 5.7. 

Table 5.7: Box-Ljung Q-statistic test for squared standardized residuals, Engle’s ARCH test and 

Jarque-Bera test for normality  

Statistic value p-value 

LBQ
2
[12] 12.305 0.422 

ARCH(12) 11.763 0.465 

Jarque-Bera 74.037 0.0000 

The standardized residuals and the standardized squared residuals of the GARCH, EGARCH, 

GJR-GARCH and GARCH model in Table 5.1-5.5. The large value of Ljung-Box statistics of 12 

lags on each of the models finds that there is no evidence of serial correlations in the residuals.  

The ARCH LM test statistics reject the null hypothesis of ARCH effects in favor of no ARCH 

effects, therefore finds no evidence of conditional heteroscedasticity in the data. This tells us that 

the volatility models fitted better fits the data and successfully modeled any non-linear 

dependence in the series. For a properly specified model, the standardized residuals should form 

a sequence of independent and identical distributed (iid) random variables. If this model is 

correctly specified the residuals should have no serial correlation, conditional heteroscedasticity 
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or any type of non-linear dependence which is the result of this test tells us that the 

heteroscedasticity has been removed.  

5.4 Forecast valuation: GARCH out-of-sample 

Forecasting upcoming volatility is the most important aspect in the pricing of derivative 

securities. In the option pricing formula Black-Scholes volatility has to be estimated empirically 

and errors in calculating volatility may result in mispricing options. In order to test the 

forecasting performance of each model for a particular index, this study makes use of loss 

functions like MAE, MSE, MAPE and Theil inequality (Theil U) coefficient measures. Model 

with a smallest statistic is considered to be the best in forecasting these Indices. Tables 5.8-5.9 

contain MAE, MSE, MAPE and U-statistic estimates for each index at one month (20 days) time 

horizon.  

For all GARCH models the RMSE and MAE were low and MAPE for almost all indices is 

above 100. This shows that GARCH (1, 1) is still the best model generally to model stylized 

facts in the JSE stock market. Low RMSE and MAE statistics loss function tells us that forecast 

error were small in that model. 

Industrial 25 index models have MAPE of less than 100 which suggest that EGARCH, GJR-

GARCH and PGARCH models out-performed the benchmark. The Theil U-statistic was below 1 

for all models, which means all models outperformed the benchmark model. 

For JSE All share index. Using MAE measure, the GARCH (1, 1) provides the most accurate 

forecasts in 20 day horizon which is consistence with other findings in the literature. But MSE 

suggest that PGARCH (1, 1) is more accurate in 20 days’ time horizon. Interesting thing to note 

here at a 1 month horizon all the models predict the same forecast. 
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MAPE and Theil-U statistics produce conflicting results in almost all models, however as we 

noted in the methodology chapter MAPE criterion cannot be relied upon if the series can take on 

absolute values less than one, which is always the case in forecasting volatility models.  

For JSE Resource 20 index, EGARCH (1, 1) provides the most accurate forecast based on 

RMSE, MAE and Theil U-statistic. For JSE Industrial 25 GARCH (1, 1) forecast more 

accurately based on RMSE, MAPE and MAE but based on Theil U-statistic PGARCH forecast 

better. 

Table 5.8: Error statistics forecasting daily volatility 

JSE All Share index RMSE MAPE  MAE Theil’s U 

GARCH 1.2338 117.7703 0.9968 0.9374 

EGARCH 1.4906 110.8013 0.9871 0.9607 

GJR-GARCH 1.4903 115.5247 0.9881 0.9581 

GARCH-M 1.4867 121.7089 1.0022 0.9249 

PGARCH 1.4906 110.9166 0.9872 0.9603 

JSE Resources 20  RMSE MAPE MAE Theil’s U 

GARCH 2.0448 100.9436 1.6095 0.9788 

EGARCH 2.046 100.2072 1.6065 0.9952 

GJR-GARCH 2.04596 100.2644 1.6068 0.9939 

GARCH-M 2.0442 102.6270 1.6166 0.9448 

PGARCH 2.046 100.2337 1.6066 0.9946 

JSE Industrial 25  RMSE MAPE MAE Theil’s U 

GARCH 1.2828 127.6172 0.8820  0.9147 

EGARCH 1.5950 94.3166 0.9797 0.9397 

GJR-GARCH 1.5949 94.9147 0.9798 0.9386 

GARCH-M 1.5933 104.9831 0.9846 0.9256 
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PGARCH 1.5950 94.104 0.9796 0.94 

Top 40 RMSE MAPE MAE Theil’s U 

GARCH 1.6717 113.0347 1.1084 0.9455  

EGARCH 1.6744 107.2447 1.0976 0.9687 

GJR-GARCH 1.6742 107.6654 1.0984 0.9669 

GARCH-M 1.6704 117.9578 1.1164 0.93195 

PGARCH 1.6745 107.1519 1.0974 0.9691 
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Chapter 6: Summary and Conclusions 

In conclusion, the primary goal of this study was to examine and describe the stylized facts that 

appear more often in the financial data series (volatility clustering, leverage effects and 

leptokurtosis) and how to model these stylized facts on JSE stock market. And forecasting ability 

of GARCH model based against the extension of other GARCH models. The in-sample study 

period was from 01 October 2002 to 10 October 2014 and out-of-sample was done 20 days 

ahead. The purpose of the study was to determine which model best models the JSE ALSH 

volatility, which produce accuracy forecast as well and compare this finding with different 

GARCH models. The research also aimed to pin point one model that can be used in modeling 

and forecasting volatility on JSE stock exchange. 

In the study a variety of univariate GARCH models were estimated, including GARCH (1, 1), 

EGARCH (1, 1), GJR-GARCH (1, 1), GARCH-M (1, 1) and PGARCH (1, 1) models. The 

estimated models reveal that the JSE stock market returns are characterized by volatility 

clustering, leptokurtosis and leverage effects. The estimated parameters also indicated that 

through EGARCH model the returns are highly persistent suggesting the integrated GARCH 

model. The results showed that the JSE All Share Index and all other indices studied here can be 

best modeled by GARCH (1, 1) based on log-likelihood function but EGARCH through AIC, 

SBIC and HQIC for JSE. But modeling out-of sample JSE All share Index data GARCH (1, 1) 

proved to be more accurately followed by EGARCH and GJR-GARCH. These findings of this 

study were generally in line with the conclusion made by other researchers about the 

characteristics of JSE returns (Makhwiting et. al., 2012; Niyitegeka and Tewari, 2013; 

Samoulhan and Shannon, 2008).  
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Forecasting the performance of different GARCH model was evaluated. Forecasting on these 

indices provides different models with different forecasting evaluation procedures. Forecasting 

proved to be a difficult task to handle especial when you have 20 estimated models to forecast. 

For Industrial 25 the forecasting model that proved to be best from the rest was GARCH (1, 1) 

based on RMSE, MAPE and MAE but based on Theil U statistic suggest EGARCH (1, 1). 

After modeling volatility on the JSE index, based on log-likelihood function GARCH (1, 1) 

shows superiority amongst other models for JSE All Share index. But based on AIC, SBIC and 

HQIC EGARCH (1, 1) proved to model better than GARCH, GJR-GARCH, etc. models for 

ALSH and Top 40 indices. While Resources 20 Index data suggest that RJR-GARCH (1, 1) is 

the best model and Industrial 25 data suggest PGARCH (1, 1). 

From Chapter 5 on forecasting evaluation the loss function measure were used. The data for JSE 

All share index suggested GARCH (1, 1) for forecasting volatility. For JSE Resource 20 index, 

EGARCH (1, 1) provides the most accurate forecast based on RMSE, MAE and Theil U-

statistic. For JSE Industrial 25 GARCH (1, 1) forecast more accurately based on RMSE, MAPE 

and MAE but based on Theil U-statistic PGARCH forecast better. 

For future research we can model volatility using multivariate GARCH models to assess the 

interrelation of volatility with other emerging stock markets like Nigeria, Botswana, Ghana, etc. 

Using multivariate models like Markov switching GARCH model, CCC-GARCH, BEKK-

GARCH and GO-GARCH models with different distributions on the errors to study further the 

dynamics of the correlation between different financial markets.  
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APPENDIX A: Akaike Information Criteria 

      Rjalsh 

AIC 

      

 p/q 0 1 2 3 4 5 6 7 8 9 10 

 0 3.2634 3.2591 3.2596 3.2561 3.2556 3.2551 3.2551 3.2555 3.2561 3.2567 3.2574 

 1 3.2649 3.2600 3.256 3.2546 3.2553 3.2557 3.2558 3.2564 3.2569 3.2575 3.2582 

 2 3.2602 3.256 3.2548 3.2553 3.2560 3.2489 3.2549 3.2548 3.2577 3.2583 3.2589 

 3 3.2572 3.2547 3.2550 3.2558 3.2550 3.2489 3.2547 3.2553 3.2560 3.2555 3.2506 

 4 3.2555 3.2550 3.2554 3.2547 3.2545 3.2551 3.2557 3.2463 3.2559 3.2484 3.2476 

ARMA 5 3.2552 3.2554 3.2561 3.2524 3.2540 3.2546 3.2480 3.2477 3.2483 3.2489 3.2489 

 6 3.2551 3.2558 3.2492 3.2491 3.2493 3.2484 3.2490 3.2496 3.2502 3.2460 3.2465 

 7 3.2557 3.2545 3.2544 3.2550 3.2484 3.2492 3.2459 3.2476 3.2467 3.2485 3.2474 

 8 3.2548 3.2552 3.2550 3.2555 3.2560 3.2486 3.2442 3.2451 3.2423* 3.2455 3.245 

 9 3.2558 3.2559 3.2558 3.2485 3.2489 3.2489 3.2445 3.2472 3.2459 3.2463 3.244 

 10 3.2551 3.2555 3.2562 3.2485 3.2461 3.2475 3.2451 3.2453 3.2456 3.2446 3.2426 

 

      Rresi20 

AIC 

      

 p/q 0 1 2 3 4 5 6 7 8 9 10 

 0 4.059 4.0538 4.0544 4.0480 4.0486 4.0479 4.0472 4.0466 4.0463 4.0470 4.0476 

 1 4.0588 4.0548 4.0509 4.0485 4.0484 4.0483 4.0464 4.0468 4.0472 4.0479 4.0485 

 2 4.0548 4.0506 4.0501 4.0485 4.0489 4.0487 4.0464 4.0466 4.0473 4.0443 4.0458 

 3 4.0494 4.0494 4.0491 4.0470 4.0457 4.0459 4.0466 4.0470 4.0476 4.0482 4.0454 

 4 4.0502 4.0504 4.0497 4.0460 4.0457 4.0462 4.0472 4.0480 4.0481 4.0487 4.0430 

ARMA 5 4.0487 4.0487 4.0494 4.0456 4.0471 4.0429 4.0426 4.0432 4.0439 4.0445 4.0451 

 6 4.0485 4.0473 4.0465 4.0468 4.0474 4.0478 4.0433 4.0439 4.0442 4.0453 4.0413 

 7 4.0485 4.0474 4.0465 4.0477 4.0476 4.0437 4.0443 4.0425 4.0438 4.041* 4.0448 
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 8 4.0471 4.0471 4.0473 4.0480 4.0486 4.0474 4.0446 4.0425 4.0398 4.0444 4.0407 

 9 4.0466 4.0472 4.0477 4.0484 4.0432 4.0467 4.0473 4.0480 4.04059 4.0422 4.0411 

 10 4.0476 4.0482 4.0487 4.0469 4.0467 4.0473 4.0458 4.0486 4.0423 4.0419 4.0429 

 

      Rindi25 

AIC 

      

 p/q 0 1 2 3 4 5 6 7 8 9 10 

 0 3.1311 3.1317 3.1302 3.1305 3.1293 3.1292 3.1297 3.1302 3.130 3.1304 3.1309 

 1 3.1307 3.1305 3.1298 3.1291 3.1287 3.1285 3.1290 3.1292 3.1295 3.1299 3.1290 

 2 3.12899 3.1275 3.1280 3.1286 3.1287 3.1291 3.1239 3.1268 3.1273 3.1276 3.1267 

 3 3.1297 3.1278 3.1258 3.1246 3.1259 3.1265 3.1201 3.1273 3.1275 3.1280 3.1270 

 4 3.1277 3.1275 3.1193 3.1287 3.1196 3.1196 3.1209 3.1279 3.1284 3.1288 3.1262 

ARMA 5 3.1278 3.1281 3.1201 3.1199 3.1205 3.1162 3.1161 3.1186 3.1192 3.1296 3.1264 

 6 3.1284 3.12899 3.1206 3.1205 3.1167 3.1164 3.1166 3.1193 3.1162 3.1199 3.1174 

 7 3.1291 3.12908 3.1273 3.1216 3.1288 3.1168 3.1179 3.1142 3.1145 3.1171 3.1176 

 8 3.1293 3.1281 3.1291 3.1219 3.1168 3.1181 3.1200 3.1158 3.1162 3.1167 3.1189 

 9 3.1282 3.1287 3.1293 3.1274 3.12097 3.1238 3.1212 3.1202 3.1203 3.1112* 3.1129 

 10 3.12899 3.1283 3.1258 3.1264 3.1236 3.1177 3.1167 3.1219 3.1173 3.1130 3.1138 

 

      Rtop40 

AIC 

      

 p/q 0 1 2 3 4 5 6 7 8 9 10 

 0 3.4421 3.4426 3.4429 3.4388 3.4382 3.4374 3.4374 3.4378 3.4384 3.4391 3.4397 

 1 3.4429 3.4435 3.4384 3.437 3.4377 3.4380 3.4381 3.4389 3.4388 3.4401 3.4405 

 2 3.4436 3.4384 3.4374 3.4379 3.4379 3.4317 3.4391 3.4396 3.4312 3.4377 3.4322 

 3 3.4401 3.4374 3.4380 3.4383 3.4383 3.4363 3.4370 3.4374 3.4381 3.4382 3.4329 
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 4 3.4399 3.4380 3.4387 3.4372 3.4370 3.4372 3.4368 3.4308 3.436 3.439 3.4304 

ARMA 5 3.4377 3.4379 3.4385 3.4375 3.4379 3.4294 3.4301 3.4299 3.4304 3.4305 3.4306 

 6 3.4379 3.4383 3.4386 3.4380 3.4386 3.4304 3.4275 3.4316 3.4313 3.4283 3.4346 

 7 3.4383 3.4389 3.4322 3.4374 3.4325 3.4315 3.4321 3.4309 3.4306 3.4286 3.4318 

 8 3.4389 3.4378 3.4378 3.4384 3.4320 3.4322 3.4294 3.4285 3.4294 3.4299 3.4270 

 9 3.4381 3.4384 3.4381 3.4311 3.4356 3.4310 3.4261* 3.4267 3.4274 3.4278 3.4275 

 10 3.4388 3.4389 3.4390 3.4313 3.4297 3.4315 3.4269 3.4262 3.4273 3.4279 3.4288 
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Conditional Variance Graphs 

Figures 1-4 presents the graphs of conditional variance for ALSH, Resource 20, Industrial 25, 

and Top 40 indices. The conditional heteroscedasticity is clearly visible from these graphs. We 

note the spike in the condition variance around late 2008 and beginning 2009 in all indices 

modeled. This spikes shows the period of much turbulence in the markets from the major 

financial crisis that took place on that period. 

Figure 3: Conditional Variance of GARCH model ALSH 

 

Figure 4: Conditional Variance of GARCH model Resource 20 Index 
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Figure 5: Conditional Variance of GARCH model Industrial 25 

 

Figure 6: Conditional Variance model of Top 40 Index 
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