
Having found the transformation laws of the curvature and fie ld  
strength tensors we may define the ir covariant derivatives:

V.iC • V..e* V .\b \ • V.Vb*. <3-M)

•  V . e  * ( : - « )

I t  Immediately follows they both obey the BianoH id m titU * :

Fab e;c  * Fbc w;s * Fca »;b “ 0 (3.86)

V;c * C ;. ‘ Cib * 0 (3-S7)
Finally, we observe that the fie ld  strength tenser Is the more 
fundamental since the curvature In any representation may be 
found from I t  once the generators of the representation are known.
In particu lar, the curvature In the adjoint representation Is

F. b \  ■ " J V n  <3-»>

3.6 TheComplete Internal System

Me now have the id en tities  In a fu lly  covariant form and we may 
use them to ellucldate the nature of the theory. The usefulness of 
th is  approach stems from the fact tha t we do not have to know the 
detailed structure of the lagranglan in order to make general 
statements about the theory I ts e lf .  In fact we are In a position 
where we can compare d ifferen t Lagranglans and the particu lar theories 
to  which they give r is e . This Is especially Important In the gauge 
theory of gravity which we shall deal with In la te r  chapters.

The Identity (3.48) stems from the global Invariance of the theory 
and for th is  reason we will call I t  the global im evim u* id m H t* . 
When the assumption of local Invariance Is made there arise , a fu rther



two Id en tities . Of these (3.43) Is an Immediate consequence of 
allowing the derivatives of the group parameters Into the trans
formation laws. This Is , of course, d irectly  attribu tab le to the 
assumption of local invariance and hence we shall call (3.43) the 
leoal inoarianet id e n tity . Lastly, the Identity (3.42) expresses 
a sysnetry due essen tially  to the commutation of the partia l deri
vatives of the parameters. As we have seen. In the process of 
writing the global Identity  In covariant form, (3.42) Is d irec tly  
responsible for the structure of the fie ld  strength tensor In the 
global iden tity . Me shall therefore call (3.42) the etruotuxm 
id en tity .

Collecting these together we have:

The global Identity:

V. ♦ V  V . * %  1“ ,  c / .  Fle-  .  0. (3.59)

The local Identity:

*,* V. * ‘  • '  0 (3.50)

«nd, the structure Identity:

1* \  * ’ “ k '  0 • ( l . d )

To these we must eppend the equetlens of motion:

" *A " 0 (* .« )*

* 0 '  (1.M )6

lo th  of the cencemltents sssocleted with the f ie ld  derlvstlyes ere 
tensors so we msy define th e ir coverlent d erlv e ti.es :



- V v
*•«. V -A A  •

Htnct, using (3.25) and (3.39) the equations of motion may 
be written In covariant form:

* s  - it * o 
a;» a

.  rf* m o (3.66)
k;a k

The three Iden tities together with the equations of motion con* 
s t l tu te  our complete system.

3.7 The Current and I ts  Conservation
/

I t  is  customary to define the current as tha t which Is coupled to  
the potential In the lagrenglan, I .e .

j*  .  j l l *  .  i*  . m m
k ‘V

H. know, hew m r, th a t I*. 1 . net .  tensor so m  will define Inetw d• • .
A  * A

as the current of the system. From the local Identity I t  follows 
Immediately tha t

A  •  * .1 TkV

Wa must emphasise tha t th is  current cannot yet be a ttribu ted  s e ti ty  
to the matter since the Ugranglan Is a t l l l  extremel 
we have not specifically  excluded couplings between ; : 'A'.’

':$y



Of the matter f ie ld  and the potentials. For th is  reason the con* 
comltant *  e may contain contributions from the po ten tia ls. We 
shall take th is  up again when we discuss minimal coupling. For the 
moment we must regard merely as the to ta l gauge covariant 
current of the system.

By the equation of motion (3.65) we see th a t the current behaves 
like a source;

1% .  ■ J\  •

Furthermore, using the equation of motion (3.64) together with 
the global Identity  we find:

A,. - - n-. s". C
which shews th a t th is  current Is not conserved without e ither a 
special choice of Lagrangian or some constraint being placed on the 
fie ld s  of the system. Another way to view the r .h .s .  of (3.70)
Is  to  introduce the adjoint curvature (3.58);

A,. • • i 'A ".A
and the conservation law now takes the form of an orthogonality 
condition between the concomitant and the adjoint curvature. 
I f  these two are orthogonal then the current will be conserved.

3.8 Minimal Coupling

The problem of derivative couplings In the theory may easily  be 
avoided by observing that the Iden tities and the equations of 
motion are a ll linear In the Lagrangian so that i t  may be w ritten 
as a sum of simpler parts each containing the derivative of only 
one f ie ld . The exact contents of these parts may be arrived a t  In 
a way we shall discuss next.



At w  heve le tn  the concomitants associated with f ie ld  derivatives 
are tensors and so may vanish In a covariant manner. Me In terpret 
th is  ^o mean that the corresponding f ie ld  derivatives may be omitted 
from the Lagranglan without destroying the symmetry (which Is not 
true  of the fie lds by themselves).

(a) The Matter Lagranglan

Me omit the derivatives of the potential from the Lagranglan 
so that

•  0 (3.72)

and the f ie ld  content of the Lagranglan reduces to:

(3,7$)

Me shall ca ll th is  the metter Lagranglan as Is Indicated by the 
subscript m. In view of (3.72) the Iden tities which the matter 
Lagranglan must sa tis fy  are (the overscript m refers to  ):

n. v. * » V V. * % • o
V Tk V e -  *

3 \ - i \  .

Me are also now in a position to Identify the m tt* r

K  • K  -  V  v .  * ■ .

A short calculation shows tha t the Lagranglan



i s t i s f l e i  the Iden tities provided tha t Lb (* a :* a#) 1i  globally 
Invariant and the ordinary derivative Is replaced'by the covariant one

(b) The Gauge Field lagranglan

Since + * Is a tensor we may omit the matter f ie ld  derivatives 
so th a t I t  vanishes. Equation (3.24)* then shows tha t \  also 
becomes a tensor and hence we may omit the matter f ie ld  altogether 
and so Iso late the purely gauge part of the Lagrangian. The existence 
of such a Lagrangian shows tha t the gauge f ie ld s  form a covariant 
dynamic system by themselves. Note tha t I f ,  In a sim ilar way, we 
had omitted both the gauge potential and I ts  derivative In the 
construction of the matter Lagrangian the local Identity (3.41) 
would demand tha t the matter be charge!ess -  the tr iv ia l case.

The Lagrangian Is

L .  Lg( A . »a ) (3.78)

and tr , Iden tities I t  sa tis f ie s  are:

t  K  s " .  V  -  °

.  ft

• e

where

(3.79)* shows that the symmetry forces the 4**^ and the adjoint 
curvature to  be orthogonal while (3.79)* shows tha t the gauge fie ld s  
do not carry a covariant charge.



(c) Ttw Total Ligrtngian

Taking advantage of the lin ea rity  of the Identltlea we have the 
to ta l Ugranglan

«• w in call a Ugranglan constructed In th is  way minimalty 
coupled e W# note that the derivatives of the various fie ld s have 
been Isolated In d ifferen t terms of the Ugranglan.

The only fie ld  which the two parts of the Ugranglan have In common 
Is the po ten tia l. Me will therefore drop the cumbersome overscripts 
except on the concomitants associated with the po ten tia l.

and I t  follows from (3.79)** tha t the covariant current Is carried 
solely by the matter

m + L (3.61)8

We have

(3.62)

k

e
(3.63)

The equations of motion read

(3 .« > s 

(3.W )b• - JCk

(3.74)* and (3.84)* show that the current Is covarlantly 
conserved (which Is consistent with (3.70) by (3.79)*)s



(3.85)

Note tha t I f  we had used the non-covariant defin ition of the 
current

then the local Iden tities (3.79)* and (3.74)* would give

and we find a non-covariant current contribution by the potentials. 
For th is  reason the potentials may be thought of as carrying charge, 
a lb e it non-covariant, In th is  general theory. This Is unlike the 
ease In electrodynamics In which the group is  abelian so that I ts  
structure constants vanish and Its  potentials are automatically 
uncharged. If  we use the equation of motion (3.67) we get

and, by the antisymmetry of 1*sk, we find tha t the non-covariant 
current Is s t r ic t ly  conserved

(3.86)

Tk V  + lCan V m  V  <3-87>

(3.88)

(3.89)

This means, of course, that In any particular gauge the charge will 
be conserved but I ts  non-covariant nature causes the amount to vary 
from one gauge to another.



3.9 A Particular Lagranqian

We already know that the Lagranglan

will M tlify  the matte. Invariance Ik n tlt le s  (3.74)*'* . We
have now to rind a Lagranglan to sa tisfy  the gauge f ie ld  Iden tities
(3.79)1' b*c . Clearly, there Is no way to 'Integrate* these 
uniquely since If L sa tis f ie s  them then so will any function of 
L.

The simplest case Is for an abelian group In which the structure 
constants vanish (the fie lds also lose th e ir group Indices k^),n e tc .)  
In th is  case the adjoint curvature vanishes Identically  and (3.79)*
Is sa tisfied . (3.79)* reduces to

Note that t*  Is now a tensor (by (3.39)). (3.79)*, the structure 
Identity , s k  a  that the derivatives should occur In the combi
nation

and (3.90) can be sa tisfied  by omitting the potentials themselves 
altogether. Thus L may be taken to depend only on . The 
simplest Lorentz scalar Lagranglan we can construct Is

where C Is an arb itrary  constant. We will take C » I .  

I t  Is natural to take the fie ld  strength tensor

1* * o (3.90)

(3.99)

(3.93)



** th# S tnerallistlon  of (3.91). If  the group t i  *w1-#imp1e 
then we way use the Kllllng-Cartan metric (1.12)

and take

L, ■» s *  F.b" rJ  1“
•  1 V  F,\  • ( 3 .« )

By d irec t calculation we find

1l*bk * F*bk (3.96)

and

■ • cp \ F" . A . P (3.96)

9y d tfln ltlo n  of r s6k the itructu re  Identity  (3 .79)' 1i u t l t f l e d .  
Substitution shows tha t the local Identity (3.79)b Is also sa tisfied  
Finally,

■ F«dk F .,"  (Cr t Cn»p .  C f j

by the symmetry of and the symmetry of

F=d‘  F. f"

In k and n. If  we now use (1.12), the Jacobi Identity and the 
antisymmetry of the structure constants In th e ir  lower Indices, the 
term In parentheses vanishes Identically. Hence (3.79)* Is a lto  
sa tis fied . Me have In fac t shown that the fie ld  strength Is ortho
gonal to the adjoint curvature.



The equations of motion In th is case are:

where the current Is

and

3\  ■ V v. * *
j \ , b  -  °

Written out In fu ll the equ. » of motion are

■ v  V. * * * Fba c  m n  
m k n  a

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

which show how the fie ld s  source each other. Note that the la s t 
term of (3.102) Is the non-covariant potential current which 
Is s t i l l  present even In the absence of matter showing that the 
potentials are se lf-  sourced.

Finally, these equations must be suplemented by the Bianchl Identity:

V , .  '  C i .  ♦ p=.k ;b * 0 • <1.103)

3.10 The Generalized Lorents Condition

We note that tne gauge potentials are meuiUt* since Lg does 
not contain a mass term. In fa c t, the addition of a mass term 
of the form



would destroy the gauge symmetry of the system because I t  is  not 
gauge Invariant. The masslessness of the potentials has the following 
fundamental significance. I t  follows from the general theory of 
Lorentz representations tha t the spin one representation of a mass!ess 
fie ld  Is reducible to a vector and a scalar (see, for example,
Roman (1960), Ch.l) To eliminate th is  unwanted scalar component 
an additional condition must be Imposed on the f ie ld  which takes 
the form of a generalization of the Lorentz condition:

S»Aak .  0 (3.104)

and which cannot be deduced from the Lagrenglan. We call (3.104) 
the g*n*rali*«d LormU condition . (3.104) Is clearly  not gauge 
covariant and i t s  Imposition severely re s tr ic ts  the possible gauge 
transformations which may be performed on the system, although 
not eliminating such transformations en tire ly . Contracting 
(3.104) with the generators we arrive a t an equivalent condition 
on the gauge connections:

as  A A - 0 (3.105)e #

This can also hold In the transfomed system If the transformation 
matrices are restric ted  by the condition:

A ® a * ( D %  D "1d  )  -  3 a (DA D~1C ) •  0  (3.106)B 9 6 B

which rises  from the transformation law of the connections. Note 
tha t global transformations automatically sa tisfy  th is  condition. 
Restricting ourselves to an infinitesim al transformation and 
using the structure relation  we find tha t the Infinitesimal para
meters obey the linear wave equation:

»a 8a«* ♦ Aak Ck*n (»***) " '  (3.107)

In other words I f  we specify the parameters on some hypersurface 
then (3.107) shows how they must be propagated off th is  surface 
to the other points of the manifold In order that the transformed



*awg# potentials will also sa tisfy  the Lorentz condition.

From a formal point of view the Imposition of the Lorentz condition 
Is no hlnderance since I t  may always be Imposed as a final formality 
once we have succeeded in constructing a local theory out of a 
global one .
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APPENDIX 3A

The construction of th t Invariance Identities 
of «n Internal Group

To f i r s t  order In the parameters we have

D * .  •  ♦ « k  Tk * B ♦ 0 ( 2 )

- *\. V. * °w
from which we find tha t the only non-zero quantities are the 
following:

C°\>0 •  (■>■“ . ) .  •  *A.

»d ‘ 1M
r r ■ T,k #

!S V d

*•*7
»e-1A. .d

0

,.b
■ »<*d. *% * *c. ,dbJ V. •

Using these the transformations (3 .l6 )e,b ,c ,d  give:

(3A.1)

(3A.2)

(3A.3)

(3A.«»/

& ‘ l

■ V. V,

• v .< . (» .S )

(» .« )



1

74

v8 «
A C T * a m,b k c A A T C a e ,b  ‘k a (3A.6)

%
«bd V. * '

■,b. V.

,bd1TkA. V. -

WV% * 4Vbb)TkA. •

(3A.7)

(3A.8)

(3A.9)

(3A.10)

The Iden tities follow easily  on d ifferen tia ting  both sides of (3.17) 
with respect to the parameters and the ir derivatives and then 
setting  a ll these to zero.

i



APPENDIX 3B

Th# Transformation Laws of the Concomitants

We d lffe ren tle te  both tides of (3.17) with respect to * * »«d
note that both and ^ A depend on * * to geti s

iL i l l  ♦ -iL - 812s. ■ i l . (3B.i)
a ? "  * a ? ■„ a* A a * A»*

From the transformations (3.18)a,b we get

$11. •  if • ilk  .  i f  (3B.2)
a ^ a  a a^ a A,a

so tha t (3B.1) Is

^  f  -F. . .  •  * . • <” -3>

D ifferentiate both sides of (3.17) with respect to ^ *e

JL. ilk  • Jk- (3B.4)
a i *  a* %  a * \,D ,» #»

•nd use (3.18)fc:

l i l f c  .  «• f  (38.6)
• * \  b *»■

so tha t (3B.4) becomes

V » \  ■ V  • <#.«)



We can Invert (3B.3) and (38.6) by Invoking the Inverse trans
formation (or by substituting (38.6) Into (38.3)) to  get fin a lly :

\  ■ D"l\  % * D' UA.b V  01.7)

V  • O '" . ■ (» .8 )

The transformation laws for and *sbA" follow In exactly the
same way.
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APPENDIX 3C
Tht Ttnsorlal Concomitants

W# see from the transformation laws tha t *A and “ a r t  
not tensors. To construct equivalent tensors we use the trans
formation laws of the connections to eliminate the d ifferentiated  
transformation matrices which occur In (3.24)1 ,c :

°v. • °\ V. • »°. V. •
Also D"lAe dc, .  t Am gives

d"1a. , .  * ->-le.  •

Substituting th is  Into (3.24)* and collecting barred and unbarred 
quantities we find that

V  V.
transforms as a tensor. Similarly, when the process Is repeated 
on equation (3.24)c we find that

"V * <• Va ♦ v. <•
transforms as a tensor.



CHAPTER 4 The Physical and Geometrical Properties 
of the Gauge Potentials

4.1 Introduction

The gauge potentials have been Introduced as Lorentz vectors 
and as such they are subject to the action of The Poincare Group. 
We expect therefore tha t they should carry energy-momentum and 
angular momentum. In th is  chapter we make these properties 
exp lic it by calculating the canonical tensors In the manner of 
Chapter 2

Although I t  l ie s  outside the scope of th is  work, we give a b rief 
elementary treatment of the geometrical interpretation of the 
theory. I t  is  based on the law of parallel transport derived 
from the covariant derivative and serves to shed some lig h t on 
the nature of the gauge fie ld s ;p articu larly  the curvature and 
the Bianchi Identity.

4.2 The Action of the Poincare Group

The global Polncarf Group acts simultaneously with a local Internal 
group so that the matter fie ld s transform according to the d irec t 
product of the two. These representations therefore carry both 
Internal Indices * , # , . . .  and Lorentz Indices » , e , . . .  
and are symmetric under the Interchange of the two

* .  * * (4.1)



The Lagranglen Is

L ■ 10* **:*** :Ak:A* h) . (*'*),a  a a >0

Since we are Interested In the energy-momentum and angular momentum 
of the fie ld s we will only consider the action of the global 
Poincare Group on these f ie ld s . This Is given by

jAtx . Da ^ aB (4.3)*
B

F ‘ %  ■ A-lb,  D-g **«b (4.3)6

A,k .  A"lb„ V  <4.3)C

\ \c  ■ A"lb. A"ld. V.d (4-3>d
In which the parameters eab , | e are constants.

We recall the equations of motion

V i. - ■ 0 (M)
-  <  •  0  •  ( *  » )

4.3 Energy and Momentum

By the same arguments as given In Chapter 2 translational Invariance 
demands tha t the Lagranglen sa tis f ie s  the Identity:

v  - *»*“. - V * “« 
- A  V.= - A  V,b« ■ 0 •

This Identity is  not manifestly Invariant under local Internal trans
formations and we f i r s t  bring I t  Into th is form. Use (3.25) and 
(3.39) to eliminate + and T*k , then use the local Internal Iden
t i ty  (3.43) to eliminate the n j 1 so Introduced. The term containing
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My be written:

by definition of the cover len t derivative of and the
Internal global Identity (3.59). Collecting terms the Identity 
emerges as:

now manifestly covariant.

In order to get a conservation law we Introduce the commutator 
of two covariant derivatives, the Ricci Identity:

*“« - ♦"a ■ Fa=k V. * • (4-8
Note that the Poincare Index does not contribute to the covariant 
derivative oecause the group is  acting globally. We also need the 
Bianchi Identity:

I f  we now use (4.8) on the second la s t  term of (4 .7), (4.9) on 
the la s t term and the Internal local Identity (3.60), (4.7) 
becomes:

The equations of motion (4.4) and (4.6) now permit th is  to be 
written as

t,a ■ 0 (4.11)
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where

(4.12)

which we will cell the to ta l canonical tntrgy-mmcntm tensor of 
the system. Note tha t since t*  Is a se t of Internal group scalars 
I t  Is , In fa c t, s t r ic t ly  conserved:

The above holds true for the general Lagranglan (4.2) but I f  
we assume the minimally coupled Lagranglan

then we may get a detailed view of the Interchange of energy and 
momentum between the f ie ld s . The Lagranglan# r  and l are 
separately transla tionally  Invariant,hence the Identity (4,7) 
breaks Into two parts:

(a) Matter

The Invariance Identity Is

(4.14)

and, using the equation of motion,we find

(4.16)

where

T*= « V\ - V *“« <4'18>
Is the gauge oovariant canonical energy-momentm teneor of matter.



(b) GauQ*

The Invariance Identity Is

«■„. -  1 A  F.bk ;= ’  0 ( * '" )

together with which the equation of motion gives

h . .  ■  - A ' * k  < 4 - 1 8 >

where

c g c

Is the oanonioal tnirgy'inomentm tensor of the gauge f ie ld .

Equation (4.15) shows tha t the energy-momentum of matter Is not 
conserved but Is scourced by the generalised Lorents foroe vector

l c « Ftck « .2 0 )

where J*k Is the covariant matter current given by (3.68). On 
the other hand the energy-momentum of the gauge f ie ld  Is not con
served either since (4,18) show, tha t the force exerts a 'back- 
reaction* on the gauge f ie ld . The to ta l energy-momentum

.  I .
* e '  C  '  ? c (« •» )

Is s t i l l  conserved.

Finally, I f  we take the special case of

l ,  •  i F.bk f * \  <«•«)

then

K  • * V  A  •*= - A  V  <*•«>
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which Is symmetric
g g
T*c « Tca . (4.27)

g-,
We m V  see In the next section tha t T must always be symm
e tr ic  even If  a more general Lagranglan than (4.22) Is used.

4.4 Angular Momentum

Returning to the general Lagranglan (4 .2), I ts  global Lorentz 
Invariance leads to the Iden ;y:

*a v ,  *‘6 ♦ V  (Vb - sd.b. **%>
- A  V .  V  T*k <Sd.\ V.= ‘ V e  \k.b) • 0

By a calculation sim ilar to tha t of the la s t section we may bring 
th is  Into manifestly covariant form:

’V d . v * ’ ♦ w , * 1! .

- V  V .  * ”b - V e  V  • 0 • (* » )

The equation of motion (4,4) allows th is  to be written as

<v v, * *B);. - v .v  * “b * v  ■ ° (4-3o>
which becomes, by definition of the to ta l energy-momentum and the 
Lorentz generator,

tV sd . V eX  - K 'd .  - v  •  0 • (4 -31>

I t  follows tha t the to ta l oanonioal angular momentum of the system

<1. • • KV1. - vV (4.32)
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1$ s tr ic t ly  conserved:

■ 0 • (4.33)

If we specialize to the minimally coupled Lagranglan

L ■ l  ♦ L„
■ 8

then the Identity  (4.29) breaks Into two p arts . We have also 
by (4.32) and (4.21)

< ! .  '  «*„. * (4.34)

where

“*d. ■ V  sd.%  * AS - ‘ ( " A  - * A )  (4.3$)

and

^  ■ - ;oA -  xA j , 4 ' 3

which are the angular momentum tensors of the matter and gauge 
fie ld s respectively. Note tha t the gauge tensor does not contain 
an In trinsic  spin term. This Implies tha t the In trinsic  spin of 
the gauge potentials have no dynamical ro le . In fa c t, I t  Is not 
possible to give a gauge covariant definition of the In trin sic  
spin of the gauge potentials. This Is , however, a somewhat In
volved topic which must rely  on the quantum theory for a proper 
treatment. (See Jauch and Rohrllch (19S5) for a discussion of the 
electrodynamic case.)

We have again two sets of conservation laws:
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(a) Matter

The Invariance Identity Is

Using the equation of motion (4.4) th is  becomes

(4.38)

If  we take the covariant divergence of the matter angular momentum 
(4.35) and use (4.38) together with the conservation of matter 
energy-momentum (4.18) and the defin ition of the Lorentz force 
(4.20)»we find the conservation equation of the angular momentum 
of matter:

Me see that I t  Is not conserved but Is scourced by a 'torque* 
generated by the interaction. From (4.38) we see that th is  Is also 
responsible for the antisymmetric part of the energy•momenturn tensor.

The invariance Identity Is simply

which, by definition of the energy-momentum of the gauge fie ld  (4.18), 
may be written

(4.39)

(b) Gauge

(4.41)

The generator Is antisymmetric In b , c hence the gauge energy- 
momentum tensor must be symmetric In order for the theory to be 
globally Lorentz Invariant.



Taking the divergence of (4.36) and using (4.18) we find

* V .  - - i(x. fd - -d f.) <4,
showing that the angular momentum responds to a 'back-torque' In 
such a way that the to ta l angular momentum remains conserved.

The above discussion shows clearly tha t the gauge and matter fie lds 
exchange energy, momentum and angular momentum with each other. This 
I s ,  of course, what we would expect In a fu lly  Interacting theory.
The system so far has contained only one matter fie ld  whose se lf-  
In terac tien  is  mediated by the gauge potentials. In general we 
encounter systems in which many dlferent matter fie ld s are present.
A subset of these may be representations of the same group, fo r 
example they may be e lec tric a lly  charged, and hence subject to In ter
actions with the same gauge f ie ld . These matter fie lds then Interact 
Indirectly  with each other by way of the gauge fie lds and so |r e  coup
led togther.

In general we see that the gauging of a group leads d irec tly  to 
the existence of a force and we are lead to conclude that the forces 
of Nature have a t the root of th e ir existence the fac t tha t the 
material fie ld s which ex ist are representations of certain  groups.
I t  Is presumably the task of the Experimentalist to find out which 
groups these are but we may also ask the very fundamental question 
as to why there appears to be. In Nature, more than one kind of 
force and many kinds of material f ie ld s . The answer to th is  lie s  In 
the domain of some Grand Unified Theory yet to be discovered which 
possibly depends only on a single group of which the groups currently 
found In Nature are non-trlvial 'p a r ts '.  I t  Is known, however, 
tha t i t  Is not possible to unite an Internal group and the Lorentz 
Group In any way other than the fa ir ly  tr iv ia l d irec t product of the 
two as we have done in th is  chapter (see O'Ralfeartalgh (1965)).



4.5 Th» Geometric Interpretation
W« conclude th is  chapter with an elementary discussion on the 
geometrical Interpretation of the Internal theory. We have 
formulated th is  theory In an abstract way and by using the 
covariant derivative so introduced to define the not. %n of 
parallel transport we can provide a d irec t geometrical In ter
pretation.

4.5.1 Parallel Transport

The covenant derivative of the matter fie ld  Is defined as

If  the fie ld  Is such tha t I ts  covariant derivative vanishes 
in some region of the manifold then we say they the f ie ld  Is 
oovariantly oormtant In tha t region. On the other hand, given 
the values of the components * A a t  some point P and a curve C 
running from P to another point Q, we may parallel traneport 
* A from P to Q by holding the components covarlantly constant 
along C. More precisely, the values of the transported components 
a t  Q on the given cv»ve C are given by the solution to the 
d iffe ren tia l equation

Integrated along c with the In itia l values prescribed a t  P also 
on C. In Integral form we w rite th is  as

I t  Is c lear th a t, In general, the transported components will 
depend on both the In itia l values and the curve and hence I t  Is 
not possible to use the transport law to 'spread' the fie ld  out 
from the In itia l point over a f in ite  region of the manifold In a 
unique way.

(4.44)
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4.5.2 The Curvature Tensor
The In tegrab lllty  condition for equation (4.44) Is

* % b  ■ •

However, using (4.44) we find that

< * - * % . • - F» . * e t4-4*)
and we conclude tha t such a field  cannot ex ist In a region unless 
the curvature (fie ld  strength) vanishes In tha t region.

A lternatively, by noting th a t the gauge transformation law of the 
potentials Is Inhomogeneous,

V. ■ B\  V. D'le. - D\.. D"lc. <4-47>
we may enquire whether or not we can perform a transformation In
which the transformed potentials vanish In some region. The group 
transformation matrices must then sa tisfy

• i 4 - * )

The In tegrab lllty  condition for th is  equation again depends on the 
curvature

" V . b  - “Y b .  • p. b \  ° \  • <4-4»>

Hence I f  the configuration of gauge potentials Is such tha t the 
curvature tensor vanishes then we may simply transform these 
potentials away In which case the covariant derivatives reduce to 
ordinary derivatives. Of course, once the potentials have been 
transformed away, the system Is restric ted  to global transformations 
only since local transformations will re-introduce them.



4.5.3 The Ricci and BlancM Identities
I f  we expand the transport law (4.45) to second order and 
transport the fie ld  components around a closed square of side 

, 6xb then we find that the change in these components

Is

a* A .  } A .  * A .  FabAB V  6xb (4.50)

from which we conclude m at the curvature provides a measure of 
the amount of 'd is to rtio n ' per unit area Introduced by the gauge 
f ie ld s . This Is essen tially  the content of the Ricci Identity.

In the same way we may transport ♦ A around the edges of a 
closed rectangular parallelepiped of sides 5^x* , 6 xb . »3xc 
•in such a way that each edge Is traversed exactly twice, once in
each d irection, as shown:

*0 4f»A)

♦ (A *B <Mrf"*A)

♦ CA»0 »D *r »A >11

c

The opposed traversals of each edge ensures tha t a ll contributions 
cancel In-pairs and the net resu lt of th is  transport Is aero.



Explicitly th is  Is (Feynman (1976))

<V.;= * Fb=\;. * « / ' 0
and since the ax 's and the * " are a ll Independent we conclude 
tha t

V.ic * V.; * F=.Vb - ,0 t4-“)
which Is the Blanchl Identity . This simple argument shows that 
the Blanchl Identity Imposes a fundamental geometric constraint 
which the curvature must sa tisfy . I t  Is apparent that the Identity 
represents a conservation condition and hence I ts  use In the 
construction of conservation laws Is c la rified .

We have given the most rudimentary treatment of the geometrical 
aspects of gauge theory but there exists In the lite ra tu re  very 
sophisticated formalisms designed to exploit these aspects to the 
fu l l .  The most Important of these are the Calculus of Forms 
(see, for example, von Westenholtz (1978)) and Fibre Bundle Theory 
(Troutman (1980)). Once again the reader Is referred to an 
extensive lite ra tu re .



PART III : Gravity as a Gauge Theory



CHAPTER 5 The Gauge Fields of the Poincare
Group

i . l  Introduction

In the previous chapters we have limited the theory to being 
globally Invariant under the action of the Polncarf Group. We 
will now relax th is  res tric tio n  and show how gravity may be 
treated as a gauge theory In a manner conceptually sim ilar to 
the Internal theory we have discussed so fa r .

The Poincare Group is  the semi-direct product of two groups: 
the Translation and the Lorentz, a fac t which complicates I ts  
Implementation as a gauge group. Throughout the following we 
will find a remarkable symmetry between the objects associated 
with these two groups and, because of th is  duplication, there 
Is greater freedom of choice In the Lagranglan. This I s ,  however, 
the subject matter of la te r  chapters.

The present chapter serves to introduce the fie lds with which 
we shall concern ourselves and the way In which the Polncarf 
Group Is to be Implemented. The Translation G^oup, in particu lar, 
d iffe rs somewhat In I ts  action from the Lorentz Group. For th is  
reason we will a t f i r s t  discuss the gauging of translations sepa
rately  from tha t of Lorentz transformations. We will find that 
th e ir gauging resu lts In general co-ordinate transformations
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and that th e ir  potentials correspond to fie ld s of orthonormal 
vectors called t*t*ad». Within th is  scheme the tetrads are 
unique only up to a Lorentz transformation on an 'In te rn a l'
Index and may be used to define representations of the Lorentz 
Group. We are then In a position to Implement the fu ll Poincare 
Group which we do In Chapter 6.

Since we are dealing with general co-ordinate transformations 
we formulate the theory on a four-dimensional manifold on 
which Is defined a non-singular, symmetric metric and an affine 
connection. We also suppose that the manifold has non-zero 
torsion curvature and I t  Is a primary task of the theory 
to  re la te  these quantities to the gauge fie ld s  of the Group.

5.2 IM  M B  W H lW

The theory Is formulated on a four-dimensional d ifferentiab le 
manifold which we will refer to as the Sties Manifold.

We will assign to I t  the co-ordinates

xM « v » 0,1,2,3

where the local co-ordinate Indices will be denoted by Greek le tte rs  
other than « , * , ? ,  6 , * which are reserved for Lorentz 
representations.

We may define tensors locally on the manlWd by th e lr thaedformatlon 
properties under general co-ordinate transformations. For example, 
under the co-ordinate transformation:

x* + P  " %*( x* ) , (6.1)

a second rank tensor transforms as



and a scalar as
?  . s (5.3)

Me assume that the transformation (5 .1 )  Is such th a t the Jaoobian

j  .  d .tf  — ) <M>I J
Is f in ite  and non-zero.

The manifold carries a non-singular, symmetric metWo :

«VV(X) * *vu (5,5)

det (ĝ ) . 0 (5.6)
and I ts  Inverse defined by

gvv . (5 .7 )

Me will use th is  metric to ra ise  and lower the manifold Indices.
As yet I t  has no particu lar signature but th is  will be determined 
la te r  on.

Me shall also suppose th a t the manifold Is affinely  connected In 
tha t I t  carries the manifold oomoetioni

which may be used to define covariant derivatives of Base tensors, 
for example,

Tu i t 4* ♦ r v Tx - r x Tv * (5*8) 
vJr v,p p x v p v x

To ensure tha t th is Is a ten torial quantity thu connection must 
transform as:
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where we have used the notation:

/  .  B -
w ax" <

and

Note tha t

< v i H
i t

From the covariant derivative of the metric.

*uv»p *iiv,p y *Xv p̂ V *tiX '

we deduce by an Index permutation:

r °  •  { 0 I»P V ip V* tp°v]

(5.9)

(5.10)

(5.11)

(5.12)

($.13)

(5 .H )

f p V  » 1 ^  CfWV.P + SUP,V “ 'vp,p)

Is the C h tU to ffrt symbol and Is not a tensor.

(5.15)

Is the m tr io ity  symbol which Is a tensor and

Is the oontow lm  defined In terms of

' x.'' '

- - •4 “ -

-v:;;



the toraion

(5.18)
both of which are te n to ria l. We will not Immediately demand that 
the connection be metric, I .e .  that g vanishes but we shall 
Impose th is  condition la te r  on.

F inally , the cornutator of two covariant derivatives gives the 
Ricci Identity;

Is the m anifold curvature. Together with the torsion I t  obeys 
the F irs t and Second Blanchl Iden tities :

iv . •  T“ iPv ■ % p\ tX * V „  T "., (S.19)

where

Sv X *np e * h  p *nw a * ®p y RrtX o " 0 (5,21)

(5,22)

both of which may be proved from the defin itions.



5.3 Translational Invariance

5.3.1 Central Co-ordinate Transformations as Local Gauge

TMllllsa,!

Consider a transformation of co-ordinates:

xv * P

then, a t  any point P of the manifold, we may define the four 
quantities

| W(P) « P (P ) - xv(P) (6-23)

and the co-ordinate transformation may be viewed as the generalized 
translation

PCP) •  x»*(P) ♦ | V(P) • (S.t4)

The | v thus serve as parameters which keep track of the change 
in the numerical values of the co-ordinates in going from one 
co-ordinate system to another. Since the transformations are arb i
tra ry  but d iffe ren tiab le , the 1“ will vary from point to  point 
on the manifold In a d ifferen tiab le  manner and we may define the 
AU ptaem m t f U ld  t»i(xv) and I ts  derivatives.

We have immediately, from (5.24) that

K* .  + | v (8.2S)
V V »v

and the corresponding Jjj may be found by a series expansion in | v#v

We may express the co-ordinate transformation as a gauge transformation 
with the parameters | y sim ilar to that of the usual group trans
formations by observing that



heitci, fom *ny t we may write

P  ■ xv ♦ l v
■

•  Cl ♦ t v»v ) x v

■ “ PC * \  ) xV

So th a t these transformations may be viewed as gauge transformations 
with generators »v and parameters l v. Note that these are not 
infinitesim al transformations,

5.3.2 The Action

Introduce a scalar fie ld  w(xv) on the manifold. I t  transforms as 

and I ts  derivative as

xi
%  •  <  # . v  •

Define the action:

I •  |  y ) d4x

where the Lagranglan £ mist transform as a scalar density: 

f  ■ j £

to ensure that the action i t s e l f  Is an Invariant scalar.

(5*21)

(5.27)

(5.28)

(5.28)



Initesd of working with f  d irec tly  we will aitune the t I t  way 
be factorized Into the product of a suitable scalar density •  
(which we shall specify la te r)  and a purely scalar Lagranglan L , 
I .e .

whose transformations are

(5.30)

and

T&  ) • L (f:f ) 
#v IV

• ■ J  e .

(5.31)

(5.32)

5.3.3 General Co-ordinate  Invariance rIn troduction

|y  not Including the co-ordinates exp lic itly  In the Lagranglan 
we have ensured that the theory Is invariant under those trans
formations for which I Is constant (as In Chapter 2).

When the S- are not constants, the Jjj In the transformation 
of the derivative Introduces t w Into the transformations (see 
(5.27)). The r .h .s .  of (5.31) Is Independent of a ll parameter1c 
quantities so d ifferen tia ting  both sides * th respect to  and 
setting  a ll parametric quantities to zero we get:

(6.33)

where the concomitants are defined to be

♦  . and #  a L k
N

(1.34-35)

•v

-c

■4



From (5.26) ?  Is Independent of | v ,p while (5.27) gives

where we have used (5.12) end (5.25) to get

t i f l  *  -  ' \  •
o

The Identity (5.33) therefore reduces to

♦ ' ♦ . v  ‘  0

o r, since the derivative of f  Is not zero everywhere

#P - 0 (5,37)

This may be sa tisfied  by simply omitting the derivatives of f  
from the Lagrangian. Once again, as In the Internal theory, th is  
Is the tr iv ia l solution to the problem.

As before. I f  we want more interesting solutions we must replace 
the derivatives by covariant equivalents by Introducing a se t of 
vector fie ld s as gauge potentials. We are dealing with a four-
parameter group and so we need four vector fie ld s which we take as
the contrvarlant vectors

*/(% ) •  ■ 0 ,1,2,3

and we define the t*an*lat%onal oovariant dmrCvattv* as



Being contreverlent vectors the potential* transform as

(5.39)

and the ^ transform as a se t of four Base scalars and not as 
the components of a single vector.

We must, of course, Incorporate these potentials Into a new 
Lagranglan

If  we new d iffe ren tia te  the transformation law of th is  Lagranglan 
with respect to we get the Identity

and the appearance of the extra term avoids the conclusion (5.37).

We therefore have a viable theory In which the e ^  are a pre
scribed set of vector fie lds whose transformations are su ffic ien t 
to ensure that the theory as a whole Is gauge covariant. We may 
next include the derivatives of these potentials In the Lagranglan 
to develop a dynamic theory but i t  Is far from being complete 
and w ill la te r  emerge as a special case of a more general theory. 
Before continuing we will discuss some properties of these potentials.

(•) Orthononwllty

(8.40)

(8.41)

where

(8.42)

If  m  ttk* the d,t.m 1n«nt e f both lid o , of (S.39) wo got



det(esu) -  det(K^) d*t(e^) (5.43)
then, since

the property that

det(eev) i  0 (5.44)

H  gauge covariant. The efficacy of as a gauge potential
lie s  purely In I ts  transformation law (5.39) so tha t we may 
re s tr ic t  the 80 that (5.44) is  always sa tis f ied . This
being sc we may define th e ir  Inverses •* by

w #

Also, the transformation law (5.39) Is scale invariant and we may 
normalize the potentials;

V "\ ■ »\ (s.#;
The inverses must then transform as covariant vectors:

^ co n c lu d e  therefore th a t, a t  each point of the Base manifold, the
% tones an orthonormal se t of four four-vectors which we will 
ca ll a u tra d .

Finally , from (5.47) we find

(5.47)

(5.4#)

Indicating that detc#^) transforms as a scalar density. We can 
therefore take



for the purpose of constructing a Lagranglan density In (8.30),

(b) The Metric

Introduce the numerical Minkowski matrix:

<»*b) - rt^,} ■ diM C-l.l.M ) (*•»)

and fix  the manifold metric by taking

*,v * • \ * bv - r t  ■ »w <8-,1)

which Is c learly  a second rank Base tensor. Also

*"v •  V  V  i* 1 (« •# )

then, line* e*b ■ **c <*•**)

m  heve

ly ( M l )

svv svp -  . C M )

I  ■ <letrgvv)

•  det(esu) det(ebv) detOt^)

.  - e 2 f  0 (6.SB)

so tha t gvv Is non-singular and symmetric as Is required of the
manifold m etric. Note that the particu lar form of the Minkowski 
matrix Is extremely Important since th is  Imparts a Lorentzlan
structure to the manifold. In fact i t  Is only once th is  form has



been Imposed that we may refer to the manifold as
Based on th is  form the metric Is not posltlve-o f in ite  but we
may Introduce the following (covariant) conventions;

A Base vector Au Is said to be 

8pao*-lik§

T im -W u

n u ll

r I f  Svv Av Av IS

> 0

< 0

* 0

Me see Immediately tha t •  9 Is tim e-like while
are a ll space-like.

(S.IB)

Finally , since

(1.87)

w  * 1 "  u,e I*6 »nd t  to ro ll*  *nd lower th e ir respoctlv* 
Indite*.

(c) Tetred C o trd lm te i

The definition of the metric (1,51) is  reminiscent of a co-ordinate 
transformation and we explore th is  by attempting to define a new se t 
of Base co-ordinates ye a •  0 ,1 ,2 ,3  by

»*“ ‘  '  W00 (8.81)

and taking the origin a t the point P having the co-ordinates 
In the original system If  such a system could be found then



and the metric In the new system would be

i*b. < < r  . »*b
everywhere. In other words we could transform the manifold 
to be Minkowskian everywhere.

How«ver, the In tegrab lllty  condition fo» (5.58) Is

and I t  would b# much too re s tr ic tiv e  to Impose such a condition 
on the potentials. On the other hand, I f  we re s tr ic t  the trans
formation (5.58) to a small enough neighbourhood of a point of 
the manifold then we may use the te trad  a t tha t point to define 
a looat ao-ordinat* §y§tm  In which we can express the Base 
tensors as 'lo c a l ' tensors

Xe (x )  .  • / ( * )  Av(x) O’ *6 0 )

The 'local* metric a t each point being esb . Clearly, I f  (5.69) 
is not sa tisfied  then we cannot patch together these local systsma 
into a single co-ordinate system which covers the en tire  manifold.

I t is  also clear from (5.60) that these 'local* quantities 
are defined in a covariant way In tha t th e ir  components are reduced 
to sets of Base scalars Invariant under general co-ordinate trans
formations.



5.4 Local Lortntz Transformation* and R«or«fn ta t  ions

Returning now to the general theory, we need to be able to define 
arb itrary  Lorentz representations on the Manifold. In particu lar, 
we need to define splnorial representations since many elementary 
partic les are found to be best described In th is  way. I t  Is not 
surprising th a t the theory readily admits such representations since 
we have based I ts  geometrical structure on the Minkowski matrix.

Consider an 'Internal* transformation of the te trad  components 
which does not affect the Base co-ordinates and leaves the metric 
unchanged:

.  Ab.  . •  (s.ei)
V *  V

such that

•  •* . b t . , .  ( $ .« )y *  v  * ab  ”  y  e  v  'a b

The transformation matrix must therefore sa tisfy

•  AN <  V  <*•«>

which Is a necessary and su ffic ien t condition th a t the matrix Aefc 
be the self-representation of the Lorentz Group. What th is  means, 
of course, Is that the te trads as we have Introduced them are unique 
only up to a Lorentz transformation. I t  Is th is  non-uniqueness, 
however .which provides the opportunity to  gauge the Lorentz Group.

From (5.61) I t  follows tha t the Latin Indices are Lorentz Indices 
and the local quantities defined by (5.60) are Lorentz vectors whose 
components are Individually Base scalars.

On the other hand, Base tensors derived from local Lorentz tensors



a r t  Invariant under these Lorentz transformations even I f  d ifferen t 
transformations are applied a t d ifferen t points of the manifold. 
This is  true* in particu lar, when the / \ ^  depend on parameters 
which are d iffe ren tia l functions of position:

•*y . (5.65)

Wote that we must re s tr ic t  the transformations to be proper 
(Chapter 1) to ensure that

# ' ■ det(Abe) e

" * . (8.66)

Me now have a tetrad  a t  each point of the Base manifold with 
defin ite  lorentz transformation properties. We can therefore 
Include matter fie ld s In the form of arb itrary  Lorentz representations 
hy assigning to  the te trad  a t each point P a se t of numbers 
# * which are Base scalars under transformations of the manl- 
fold co-ordinates but which transform Into each other under appro
pria te  Lorentz transformations when the tetrad a t P Is transformed 
according *o (5.65)

" DeB( tc,lci>)) * BcP) . (8.67)

Me will call the * * Icoal tpin-tmwon and demand that they be 
d ifferentiab le functions of the manifold co-ordinates.

Under a combined co-ordinate and local Lorentz transformation we.have 
altogether

P  ■ xv ♦

V * s  A*lb. V

(*.*»)■

(S.W)b



Awiig the representations of the Lorentz Group there occur both 
tensor and splnor representations (Chapter 1). The former corres
ponds to local tensors and we may define Base equivalents for them 
by ‘projection1 using (5.64). For the local spinors no such 
Base equivalent can be defined ( we may define Base equivalents for 
contracted pairs of spinors but not for Individual ones). For th is  
reason we will consider the local representation spln-tensors to 
be fundamental and the Base tensors to be derived. We remark that 
physically observable quantities are a ll Lorentz tensors and there
fore have Base equivalents.

5.5 The Gauge Fields of the Poincare Group

Since the Base tensors are a ll Invariant under local Lorentz 
transformations we have. In a sense. Introduced these trans
formations as 'In te rn a l1 transformations quite separately from 
general co-ordinate transformations. This I s , however, misleading 
since the tetrad components carry both types of Index and are there
fore susceptible to both transformations. We expect tha t the two 
will mix in some Inseparable way as Is Indicated by the Foincar# 
Group composition law.

We observe from (5.68) tha t a ll quantities except the fie ld  
derivatives are tensors:

n  ■ d% c  - <  d% .v * • (« • " )

and we need to define covariant equivalents.. To do th is  we Introduce



a ta t  of oom totion* which are elm aiits of the LI# t W m
spanned by generators of the representation to  which * * belongs 
and, a t the same time, Base manifold vectors:

wt > >  '

We define the Poinoari oovarim t derivative:

* % * • . “ V e * ‘ } • (6>70)

* °  carries Indices corresponding to two d ifferent representations 
o f 'th e  Lcrentz Group and we demand th a t I t  transforms as a tensor 
In the d irec t product of these two

r . ■ a- W *  • "•71)
Usln, (S .70) rod (5.68)c,d th i l  Is

b%.v v  * v  v T - vlb. d% v  v.> *'
» D% V  .  A-lb.  o ' ,  . / )  -  0 . (*.72)

Since the matter f ie ld  and I ts  derivative are Independent we get

V  ■ C A",b. V
as we expect for the te trad , and

" A  "•1‘ ,  - » • ” >

for the connection. Note that under pure -ordinate transformations

■ •% > ° Y v  * 0

the connection transforms as a se t of Base vectors.



Me m y si so ip ec lillze  (5.73) to the vector repreeemtetlon of 
the Lorentz Group:

Vb ‘ <  <  Vd A'14b - A*., A"1Cb> • (S.74)

5.6 Connections. Curvatures and Tonlons

We hive, f in a lly , a ll the fie ld s we will require and we conclude 
th is  chapter by relating  the Base connection to the gauge fie ld s .

By using the transformation laws of the connections, (5.73) and 
(6.9), we may define a covariant derivative of 'mixed' tensors; 
for example, suppose we have a tensor transforming as:

y  # d“ T*. (5.78)
w m B x

and I ts  ordinary derivative as:

T v ,  -  <  c y ,  . (s -7e)

Now,

and , using (5.9) and (5.73) In the forms:

»%.„ • V, - < =% V, “■7,)
C • < V. - < < rv>. (6i”)

as well as (5.77)% we my eliminate the derivatives of the trans
formation matrices occurlng in (8.76) to find tha t the quantity:
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1° . « 1°W»P M#P r  o T° ♦ W 0 T®
0 V a p 8 v

(6.80)
transforms as a tensor. As Is Indicated we will define th is  to be 
the covariant derivative.

He have also the Lorwitu oovartant derivative

'y *y (5.81)

As a particu lar Instance of the derivative (5.80) we have that 
of the te trad :

ea * e*y;p y»p r / u  •%  * " , 'b  < (5.82)

So fa r  the manifold connection Is s t i l l  arb itrary  but we can f ix  I t  
by making I t  such that the tetrad Is covarlantly constant:

ViP (5.83)

Then, inverting (5.82) we have

p  v (5.84)

This has the Immediate Interpretation tha t r  x is  the Base 
manifold equivalent of the local quantity * V

(5.85)

found by transforming from local co-ordinates to manifold co-ordinates 
In the manner of § 5.3.3. Equation (5.83) has the further consequence 
th a t, by definition of the metric.

*UVJp * 0

so that the connection r  is a metric ocmeotion.



We next evaluate the commutator* of various covariant derivative*
to Introduce the curvatures. The Lorentz derivative give*

a * - d ,a •  g 0 * 6 ♦ v 0 * 61 (5.87)
i r o  Jot  to  8 t o  J c

where

V , • V,., - V,., - t"A V, - Vr O  (S-“ >
1* the gaug* ourvaturt and

VT% * " . ‘ d '" I  * < 4  * *% ,. '  '% ,«  <5-M)

1* the gauge terexon. For the manifold covariant derivative 
we recall

< w  -  * V  *X ‘ *.%  *“ ;« t 5-” 1

where

• r vv x .»  - r p \ . v  - trvv„ rt\  - r*, rvex) C M )

1* the manifold curvature, and

s a .  r*  - r 0 (S.»2)v p  v p p V

Is the manifold torsion. I f  we substitu te (5.84) Into (5.81) 
and (5.92) we get

C  • • / * / ,  C .M )

Vx ■ «c x V Vc <8-M )

where now G e has been specialised to the vector representation.
vp

We observe that I f  we had not Imposed the condition (5.83) then 
(5.93) and (5.94) would have contained additional terms stemming > 
from the arb itrariness of r  and the gauge curvature would effectively  
have been decoupled from the manifold curvature. Because of (5.93)



Mi next evaluate the commutators of various covariant derivatives
to Introduce the curvatures. The Lorentz derivative gives

tit« - -  G 0 * 6 ♦ v c (5.87)
i r o  iOT TO s  T 0  ; c

where

V , ' V,.. - Ve., - V, -«.% V,] («•“ )
Is the ôwgre ourvatur* and

V e  * •de * V d  A  * »% ., ’ •% .,  (5-«>

Is the gaug* tw n ion . For the manifold covariant derivative 
we recall

A",v» - A“;.v- *v/x *X ♦ Vv <«•”)
where

R« “x • r / x .p  - r p*XtV - t C ,  r ° x - r , “,  r / xi ($ .« )

Is the manifold curvature, and

Vp ■ c  - rp°v (1.18)
Is the manifold torsion. If we substitu te (5.84) Into (5.81) 
and (5.82) we get

V, ■ V V, (S.«)

"v/x • A V =v.*e (»•»*)
where now 6 ^  c has been specialised to the vector representation.
He observe that I f  we had not Imposed the condition (8.83) then
(5.83) and (5.84) would have contained additional terms stemming v 
from the arb itrariness of r  and the gauge curvature would effectively
have been decoupled from the manifold curvature. Because of (6.83)



and (6.94) w# shall drop the d istinction  between the gauge 
curvature and torsion and the manifold curvature and torsion 
denoting them by r and S . Their ten torial nature follows 
d irec tly  from th e ir  defin itions.

The Lorentz connection was Introduced as an element of the Lie 
Algebra hence we may expand I t  In terms of the generators and In

I t  follows th a t R * 1$ also an element of the Lie Algebra:

I t  follows tha t the fie ld  strength tensor Is actually the curvature 
In the vector representation. Once I t  Is known the curvature in any 
other representation may be found from (5.97).

Similarly, the connection In the vector representation Is

SO doing introduce the Lovmtz potentials ( x ) :

(5.98)

where mb ■ -  w ba (6.96)w

By using the structure relation

w  B

r « ■ r ab s  *
yv s uv ab 0

(6.97)

where ba (5.98)

i s  the gauge fie ld  strength tensor given by

(6.99)

(6.100)

since we know the generator of the vector representation exp lic itly .



Hence we also know the transformation law of the potential 
exp lic itly  (unlike the situation In the Internal theory where 
the potential transformation was known only as an expansion In the 
parameters)

■ < <  "vCd A b - A\.v *b> . )
The torsion Is

V ,  * V  •* , ♦ •% ,„  - «• -  v)] (5.102)

and the Blanchl Iden tities are:

RuXt b jO *  RXpS b ; v  ♦ RpM*b }X

♦ Vx V  * Sx\ V b * *p0u V  • 0 (I)

o * * ■ 0 a e *
V  X;p X p ; y  Sp u iX

* *M°X SP% - V p  V .  '  «,%  »X%

+ Ruxep ♦ Rx p \  ♦ V x  -  0 • <2>

Finally a remark on the In tegrab lllty  of the gauge fie ld s . For the 
te trad  th is  Is (5.89) which we write In the form

Vv - % 'b  *bv * "v‘b *bU • 0 <*-193>

and for the Lorentz potential I t  Is

V b  • 0 (8-104)

Thus I f  the curvature vanishes then we transfona the u rfle ld  away 
but both the curvature and the torsion must vanish I f  we i r e  to be 
able to integrate the tetrad f ie ld .



CHAPTER 6 Gravity

6 J  Iflf.aStMSltffP

In the la s t chapter we Introduced a ll  the fie lds and th e ir  trans
formations which we will require to construct a theory of gravity 
based on the Poincare Group. In th is  chapter we proceed to the 
construction which Is again based on the Invariance Iden tities 
sa tisfied  by the functional derivatives of the Lagranglan and the 
equations of notion.

After deriving the Iden tities and writing them In covariant form 
we use the equations of motion to deduce the conservation laws 
associated with the general Lagranglan. We find a pair of covariant 
tensors which behave as sources In the fie ld  equations but which 
are not conserved In the general case without further assumptions.

We next define a minimally coupled Lagranglan whose structure is  
determined by the id e n titie s . In th is  Lagranglan the f ie ld  derivatives 
are separated Into d ifferen t terms and hence the contributions made 
by the individual fie lds may be distinguished. I t  Is In th is  form 
th a t the standard theories of gravity are expressed and we Investigate 
a number of particu lar cases In Chapter 7.



6 .2  The Invariance Identities
The f ie ld  content of the General Lagranglan Is

and i t  transform s as

under the f ie ld  transform ations

Ve • D“ («*b) * 8 8

? °»w
J v (D®,* 8)
V S »V

A-l% )% ‘ b ‘  J i  <A*c n 'd  A‘ l<b * A‘c.x

V b -  •  j :  <J 1 <  A' “  -  A‘«.x A‘ l V > .v

where the parameters are twice dlferentlab le functions of the maul* 
fold co-ordinates. We deduce the Iden tities by dlferentlatlng  both 
sides of (6.2) with respect to the perameters and th e ir  derivatives 
In turn and setting a ll these quantities to zero. In the trans
formations (6.3) the parameters occur together with th e ir  f i r s t  
and second derivatives and so we expect six se ts of Iden tities 
which are (Appendix 6A):



laasliiifflii

s io m i:

- V •‘x.w • V  "%W
• tf.b H*b.u - rf6.b n‘b.pu ■ 0 (s-4)a

W sal:

V * °x * V*‘» * rf.b n‘b

* V’ f\,x • <.„>
♦ » ' » < % *  - - 0 <M >b

S truc t.re :

♦ i , "  ■ o (6 .4 ):

Lortntt;

61ob«1:

* V. *' • V V, * %
♦ V Vd •d„ * Vd •“».»
» rf,d (ahe<., %" ‘ rf'cd C.bCd.f %1» ■ 0 <«'4)d

Local:

*,x V. * VX Vd •dw
- rf.b * rfXcd C.bcd.f %" ■ 0 <M>*



Structure:

° XT»b ♦ ° T>.b ■ 0 • <«•«>'

The concomltents are defined by:

1:, X • 7 T  : * .XB * “T  (*.*)"
, e  x x.»

° i b *  | ^ i b = o X 0 »  * ^  ( « - 5 ) '

We can find the transformation laws of these quantities by d if f 
erentiating both sides of (6.2) with respect to the fie ld s them
selves and Inverting the resu lts (Appendix 66). We get:

%  •  * .  ♦ V  (‘ -‘ i*

V ■ < O'1', %’ (6.«)6
V  -  <  <A-U b V  * A-leb>x I CCX) (6.6)*

V V *  *X A* 1Cb  * CPX ( « . « ) *

n \ b • 6“ (A-lc ,  A-14b 0 %d . (A-*c,  A-,db) O ”u } (6.6)*

B“\b ' < A “PH,f C,(cd. b) . (6.6)'

Note that the concomitants associated with the fie ld  derivatives are 
gauge tensors while the others are not. As In the case of the Internal
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thtory we can construct equivalent tensors for these (Appendix 6C):

W . V  (*■’ >'

n.° • V - %Cd V. V (6.7)b

lU .b ■ (6.7)C

**3 The Iden tities In Covariant Form

As they stand the Iden tities are not In a manifestly covariant form
and I t  Is our next task to bring them Into th is  form.

(6.4)c ,f  are already covariant and (6.4)* is  easily  made so by 
using (6.7)*:

: \b • V  V ,  * 6 ♦ V x Vd «V («■•)
ly  using (6 .4 )*  end (6 .7 )b to  . l l n l n e t .  0 Tib  and X f
from (6.4) we sim ultaneously Introduce the covarian t d e riv a tiv e  o f  
* • th* to rs io n  and the cu rvature. (6.4)** In covarian t form Is
th e re fo re :

n.T*VVTC  * «VT»b - o . (6.1)
We next use (6.7)e,bfC to Introduce X , ♦  , n into the global 
lorentx Identity (6.4)*. This Introduces three additional terms, 
one for each f ie ld , which contain contracted generators. We then 
use the structure relation  (1.41) and the Jacobi Identity to coam- 
ute these and In doing so break these terms Into two parts; one part 
of each contributing to the Introduction of the covariant derivative 
of the matter f ie ld , the curvature and the torsion, and the other 
p arts , having a common factor «  ,being collected together. The 
resu lt Is:
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*„ Ve *6 * V slb% * J#. n/
* 1 *e"P V d  s „ \  * ‘ « u%d c.bCd. ,  V f

* % c.b*f=d { 1 Jf * V Ve * 6* V" V h  •"„>' 0 («-10)
In which the non-tensorlal term vanishes because of the Identity (6.8). 
In obtaining (6.10) we also had to make use of the structure 
Iden tities (6.4)c * to Introduce the curvature and torsion. These 
and the local Iden tities are therefore necessary to the local covariance 
of the global Identity . This Is to be expected, as we pointed 
out in the Internal theory, since the local Identities embody the 
assumption of local invariance. A sim ilar situation exists when the 
global translational identity  (6.4)* is  written In a locally co
variant form.

Using (6.7)*,b,c we Introduce I  , ♦  , n Into (6.4)* and then 
eliminate z  by using (6 .8); next subtract (6.10)(without the 
non-tensorlal term) contracted with w to complete the covariant 
derivative of * and also subtract (6.9) contracted with r  .
Finally we collect terms to find the covariant derivatives of the 
curvature and the torsion and the term e*x,y (the only one 
containing n  ) which vanishes on account of the m etrlclty ass
umption (5.83). We are le f t  with

s .  -  -  v *

-  t  V  s„ \ „ ,  - V ; .  ■ 0 < « • " )

where we have used the fact that L Is a scalar to replace I ts  ord
inary derivative by I ts  covariant derivative. I t  Is Interesting to 
note that the covariance of th is  Identity can only be established 
by using a ll  the other Iden tities Including the global lorentx
identity .

For ease of reference we co llect a l l  the Iden tities together:



-  -  l ° Xe. b  V b ; V '  0

* .  0  (6 .12)C

♦. V ,  *' ♦ V  V ,  Va %
* I V *.bed S,4V * *«“"cd C.b‘4. f  *BP“  •  0 <‘ - « ) d

V V,*' * *=X9 Vd A -  °

° XPrt * nPX.b ■ 0 • (* 1 2 )'

Free these we cen clearly  see the sim ilarity  between the roles 
played by the torsion and curvature; we may even go so fa r  as to 
In terpret the torsion as the curvature associated with the trans
la tion  group.

6.4 The Equations of Motion 

The action Is

I •  |  .  L d4x (*.13)

which gives r ise  to the equations of motion;



a r *{Sbl ] .  i i f t l  ■ o 
* a* a* a

(6.14)*

a r M s t i L ]  .  i l t i l  ■ o 
v » •% ., »•%

_ (6.14)6

•u 1 I S e1  1 '  ■ 0 '
P»V P

(«.14)c

Introducing the concomitants and using the fact that

a# * # esP (S*15)

»t*p
In (6.14)** , we may write the equations of motion In the form:

\ ( «  % ") - ° (6.16)*

•„ (•  * / “) - •  V  - •  V L •  0 (6.16)b

- .  n  •  o • (6 .16)'

Mt may tlso  write these In * manifestly coverlent form Since e 
Is e scaler density I ts  covariant derivative Is



and so, using (6.7)* to Introduce #a , (6.18) becomes

( • O j y  * * a  e 0  * (6 *19)

We have also 

t .

■ c O . u  * •  r u6v V  - • %\ V  . («•«»
By the structure Identity  (6.12)c we may write

i Vv V  • (6.2D
Then, using (6,7)* to Introduce I l f  , (6.20) and (6.21), the
equation of motion (6.16)* becomes

(• *aPV) ;v - 1 • SyPv V 11 " e V  L ♦ e V  * (6.22)

Finally, since n pvab is  an adjoint tensor I ts  covariant deri
vative Is

C . n PV ; u  * * r yPv « V̂

- * n  °"cd • (« •» )

Using the structure Identity (6.12)* as well as (6.7)* the 
equation of motion (6.16)* Is

( • “ " V i u  - 1 e SvPvn  ^ e b  " e $ P ab • (6.24)

The equations of motion In covariant form are then (6.19), (6*22) 
and (6.24).
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6.5 The Stress Tensors and the ir Conservation

I t  Is customary to define a gravitational s tress  tensor by

t  v i •  e e_w L ♦ e *  *» .
a*"

(6.25)

9 :

■ M

Me know, however, tha t *AV Is not a tensor so we will call t ev 
the ncn-oovarimt atreae danaity. We will define Instead

Tbw s •  eav L ♦ e ^ (6.26)

which Is a tensor and which we will call the to ta l oovarim t atroaa 
tanaor danaity, We see tha t I t  Is a source on the r .h .s .  of the 
te trad  f ie ld  equation which Is now

(. V).,, - 1. «v» Vv * V • (6.27)

Similarly the non-oovarimt apin-atraaa danaity Is defined as

•w.b • • • o * *

which, again, Is not a tensor. Define Instead

(6.28)

8‘mb e e l mb (6.29)

a t the to ta l aooariant apin-atraaa tanaor danaity. The fie ld  
equation (6.24) Is then

e n ' V , .  - ) . s »  n VU ■ rmb'jy ’ *u v ** mb " * mb *

The local Iden tities (6.12)**'* give exp lic it expressions for

(6.30

A. .

' *wfRi
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V ■ • V tL V - V * !x
- V  s xb„ - n “° .c  R„x“ >

and

ab

(6.31)

• <*° V ,  *6 * V s Vd *V • (6.32)

Because these stresses are sources I t  Is necessary to find th e ir  
conservation laws. We could derive these d irec tly  from (6.31) 
and (6.32) in which case we would have to use the global 
Id en titie s , the Blancht Iden tities and the equations of motion. 
Instead we will use the equations of motion d irec tly ; th is  Is much 
shorter and produces the same resu lts which stems from the fact that 
the equations of motion and the Iden tities are not a ll en tirely  
independent.

•I

For the sp in-stress we have, on taking the divergence of both 
sides of (6.30),

• V p  ‘  e o ' V , , , ,  * ‘ (* V v nVV i.  •

By the Lorentz structure Identity (6.12)* we may write

abjyp 1 (O PUabjyp -  " " .b ip w )

.  R 9 n  -  1 R _c d  O pv
UP T ab ‘ "up "cd ab ef

.  i s v n »"... («.*)
1 u P ab;v

where we have used the Ricci Identity on O Pvep* 4^*° *wve

°?u * *,w •V .
which becomes, on using the defin ition of r  given by (5.84),
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•  ■ - S v •  (6.35)
»u v v

and hence

Then, expanding out the la s t term of (6.33), using (6.34), (6.36) 
and the second Blanchl Identity , we fine

*°.b;o ■ i n  “°ca • <e -37>

By an almost Identical calculation we find the conservation law 
of the stress tensor. Taking the divergence of both sides of 
(6.27):

T . , .  " - “ . s / A X  • (e ' 3a>

The translational structure Identity (6.12)c allows us to write

> PU _ B P *  VV 1 f t  6 *  PU
a jwp up v a * up a *b

* » C ,  V u, v . <6 -” >

where we have again used the Ricci Identity . (6.36),(6.38) and 
the second Blanchl Identity now gives

v„ •»V° V. •
The sim ilarity  between these conservation laws Is strik ing and 
they should be compared with that of the Internal case (3.70). I t 
Is clear that neither stress will be cover1antly conserved 
without e ither a special choice of Lagranglan or some further 
restric tio n  being placed on the gauge f ie ld s . As In the Internal 
case we may In terpret the conservation conditions as orthogonality 
conditions. We shall take th is  up In the next chapter when we 
consider some special cases
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6.6 Minimal Coupling
So far we have been dealing with the most general system which allows 
for coupling between derivatives and makes I t  Impossible to distinguish 
the contributions made by the Idlvldual fie ld s to the stress tensors. 
For example, I f  there Is a coupling between the derivative of the 
matter fie ld  and that of one of the potentials then th is  potential 
would make a contribution to the concomitant 6^0 which would 
affec t both the stress and the sp ln-stress of matter. We therefore, 
as 1n the Internal case, separate the general Lagranglan Into a sum 
of simpler ones each containing the derivatives of one fie ld  only.

We again observe that the concomitants associated with the fie ld  
derivatives are tensors and Interpret th is  to mean tha t the corre
sponding derivatives may be omitted from the Lagranglan without 
destroying the symmetry. In th is  way we can Iso late the derivatives 
Into separate terms and then use the lin earity  of the Iden tities 
and the equations of motion to construct the complete Lagrangten 
as th e ir sum.

a) The Matter Laoranolan

We omit the derivatives of both the potentials from the Lagranglan 
whose contents reduce to

(6.41)

I t  follows tha t

(6.42)

and hence

(6.43)*

(6.43)*
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a n  both tensors by (6.7)b ,c . We will call lm the matter 
Lagrcmgian and I t  must sa tisfy  the Iden tities :

V u  - *0 ^ u  - v  -  ° (6-44>a

V -  - V  * ;x V  « .« « )6

♦„ V 6 *6 * V V s * I  * Vd •  0 (6.44)C

ab V  V s (*.+*)'

We will omit the overscript m except where absolutely necessary.

b) The Gauge Field Lagranglans

We know tha t *eP Is a tensor and hence we may omit the derivative 
of the matter fie ld  from the general Lagranglan so tha t *aP vanishes 
Identically . The transformation equation (6.6)* then shows that 
*e also becomes tensorial and therefore we may omit the matter fie ld  
from the Lagranglan en tire ly . Wi a n  then le f t  with a purely gauge 
Lagranglan containing only the gauge fie lds and th e ir derivatives.
The existence of such a Lagranglan shows that the gauge fie ld s by 
themselves form a closed dynamic system. The fie ld  content of th is  
Lagranglan Is

L * L ( e : S# : w : Sw ) . (6.46)0 0

However, we can further divide the Lagranglan by omitting derivatives 
which avoids the possib ility  of having, for example, the curvature 
coupled d irec tly  to the torsion.
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1) The Curvature Lagranglan

*aae Is a tensor and so we omit the derivatives of the tetrad 
and take

l u -  Lu ( •  : w ; d w ) (6.46)

then

Xg“° .  0 (6.47)

and

V  - V  (6.48)*

l ° .b  - - « Cd (6.46,6

Me will call Ly the aurvatur* Lagrecngim and I t  must sa tisfy  
the Id en tities :

Lui„ - 1 « l6.b »x,,b iv -  0 <«•«)*

•  -  V  °  “ T. b  Rv x‘ b

"c“ s.b Cd *d„ * ‘ 0  "°=d c.bCd. f  * 0 (« •« > '

t p. b ■ o (6 .4*)'

° \ b ♦ n 6>. b ■ o • («•♦»)•



The Torsion Lagranglan 

H y , we omit the derivatives of the Lorentz potential « ;

Le * L# ( •  : w : a« ) (6.50)

\ q
ab

(6.51)

V . V x

ab ab

,11 Le the toraicn Letgnmgietn and I t  must sa tisfy :

(6*52)*

(6.52)'

Xo ,  a
• iv -  I V  *P x;„ -

UT ♦ I . TV • 0

ab

(6.53)*

(6.53)6

(6.53)*

(6 .53)'

(6.53)*

In a ll of the above we have omitted a ll overscripts which are not 
absolutely necessary.



c) The Cowplttt Lagranglan

Since the Iden tities (6.12) are linear In the Lagranglan m 
can take the complete minimally coupled Lagvanqian as

L •  ♦ L#  ♦  l w

which will sa tisfy  the Iden tities (6.12) provided tha t the 
Individual Lagranglanssatisfy th e ir  respective Iden tities .

Me have also

iep ■ nep ♦ nap ♦ nan p ■ n p ♦ n p ♦ n p

from which I t  follows that

V • V  * V * V
where, by the Iden tities (6.44)b, (t.«»)b end (6.53)b,

V * * V <L. ' /  - V  * tl>
Is the matter etreee teneor deneity,

V  ■ •  v  <l .  - v  »xb„>

Is the tetrad  etreee teneor deneity and

V  • • V <L. */ - nU'rt,*ux‘6>
Is the Lorente etreee teneor deneity*

In the same way we have

•  5 *  * $ , . e  ‘  $ ' . b

(6.54)

(6.15)

(6.57)

(6.58)

(6.55) 

(6.60)

(6.61)



hence

(6,61)

where, by the Iden tities (6.44)d , (6.49)d end (6.54)* ,

Is the LormtM §pin-etr*9* density which vanishes Identically ,

•e
•  gb corresponds to  what we previously called (Chap. 4) the 
in trin sic  spin of f i t t e r .  6y analogy, we see tha t the te trad  
also has a covariant spin while the Lorenti potential does not. 
Fomally, the existence of a covariant te trad  spin Is doe to  the 
fac t that the te tred  Is a gauge tensor unlike any of the other 
gauge potentials wf have encountered. This has other consequences 
also In that In the Internal theory, for example, when we specialised 
to the minimally coupled lagranglan the Iden tities demanded tha t t 
the Inhomogeneous form which Is responsible for the non-conservation 
of the current vanished (3.79)*. Here the tensorlal nature of 
the te trad  leads t#  additional terms appearing In the equivalent 
Iden tities (6.49)® and (6.63)d and hence the corresponding 
stresses are not automatically conserved when the Lagranglan is  
minimally coupled.

(6.63)

Is the matter epkretrsee density ,

(6.64)

Is the te trad  efi^ retress density and

The vanishing of the Lorentz sp ln-stress Implies tha t the Lorents 
potential has no covariant In trin sic  spin which corresponds, In the 
Internal theory, to the gauge potentials having no covariant charge.



6.7 Dttllltd Conservation

The stress tensors are s t i l l  rnypled by the fie ld  equations 
since these equations are sourced by the to tal stresses.

V ip • V (• V;» - V C Y C : ,  • (e-“)

From (6.58) we have 

m
01 ip

Using the global Identity (6.44)* , the matter equation of motion 
(6.19), equation (6,17) and the Ricci Identity to commute the 
covariant derivatives of the matter f ie ld  we arrive a t

V«. • v  c  ♦ ;".b v*b • (t,67)
In a sim ilar way, except for the use of the f i r s t  Blanchl Identity , 
(6.60) gives

?x6;0 ' V sx\ * \x,b <6-“>
where Is the to ta l sp ln -stress. Because of (6.65) we can 
w rite th is  as:

V„ • V Vu - \x,b • <•••>
Finally , hy a sim ilar calculation proceeding from (6.59), or by 
the d irec t use of (6.40), we have

v 10 ■ i v ru,\e\ - * V)sxe. ♦ K
We see tha t the couplings, through which energy and momentum are 
exchanged between the f ie ld s , occur In essen tially  two ways: a 
stress-torslon  coupling and a spln-curvature coupling both of which 
have the form of the generalized Lorentz force we found In the 
Internal theory (Chap. 4). Note th a t, as Is shown by the signs,



Author  Janse van Rensburg R W  
Name of thesis Classical Gauge Theory  1981 
 
 

PUBLISHER: 
University of the Witwatersrand, Johannesburg 

©2013 
 

LEGAL NOTICES: 
 

Copyright Notice: All materials on the Un i ve r s i t y  o f  the  Wi twa te r s rand ,  Johannesbu rg  L ib ra ry  website 
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise 
published in any format, without the prior written permission of the copyright owner. 

 

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you 
may download material (one machine readable copy and one print copy per page) for your personal and/or 
educational non-commercial use only. 

 

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any 
and all liability for any errors in or omissions from the information on the Library website.  

 




