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Having found the transformation laws of the curvature and field
strength tensors we may define their covariant derfivatives:

A A A -} -] A
Fabsic ™ Fabmyec® A oFabs = Acn Fapo (3.54)

k k n_.k n i 7
Fsb H * Fab R * Ab Cn n Fab (3.58) ' o

It immediately follows they both obey the Bianohi Identities:

A A A .
Fab sic * Foe s;a * Feamp = O (3.56) P -
k k X

F F

ab ;c * be ;a * Fca H ) 0 (3.57)

Finally, we observe that the field strength tensor is the more
fundamental since the curvature in any representation may be
found from it once the generators of the representation are kncwn.
In particular, the curvature in the adjoint representation is

n k.=
Fnb n o Fab ck n (3.58)

3.6 The Complete Internal System i

We now have the identities in a fully covariant form and we may

use them to ellucidate the nature of the theory. The usefulness of

this approach stems from the fact that we do not have to know the -
detadled structure of the Lagrangisn in order to make general ;
statements about the theory itself. In fact we are in a position e
where we can compare different Lagrangians and the particular theories Q
to which they give rise. This is especially important in the gauge :
theory of gravity which we shall deal with in later chapters. E ;‘

The identity (3.48) stems from the global invariance of the theory
and for this reason we will call 1t the global tmvariance identity.
When the assumption of local invariance is made there arise: a further

R AR AR i R N

i A s R e




two identities. Of these (3.43) 1s an immediate consequence of
allowing the derivatives of the group parameters into the trans-
formation laws. This is, of course, directly attributable to the
assumption of local invariance and hence we shall call (3.43) the
looal invariance identity. Lastly, the identity (3.42) expresses
3 symmetry due essentially to the commutation of the partial deri-
vatives of the parameters. As we have seen, in the process of
writing the global {dentity in covariant form, (3.42) 1s directly
responsible for the structure of the field strength tensor in the
global identity. We shall therefore call (3.42) the structure
tdentity.

Collecting these together we have:
The global identity:
A", B & A s ] n »
l'l“'l'k. Voo 'A Tie ";a tz 1““(:1‘-?“ = 0.(3.59)
The local identity:
A [ ]
LA T eV -l‘lk-o (3.60)
and, the structure fdentity:

fck + ‘f‘k = 0 . (30")

To these we must append the equations of motion:

W o-9 o0 (s.62)"
’P‘k.a - @k = 0. (3.62)°

Both of the concomitants assoctated with the field derivatives are
tensors 50 we may duﬁgu their covariant derivatives:




a k.® [ |

'?b A A Tea (3.63)
n.n

'P.k;c * 'P‘k,c - A G Tb‘n .

(3.63)°
Hence, using (3.25) and (3.39)

the equations of motion may
be written in covariant form:

"

Al

(3.64)
™

k;a

(3.65)
The three identities together with the equations of motion con-
stitute our complete system

S

3.7 its

/’

It is customary to define the current as that which 1s coupled to
the potential in the Lagrangian, i.e.

]
T I
a

We know, however, that T

13 not & tensor 5o we will define instesd
8
oo

e the current of the systen. From the local identity it follows
{mmediately that

a LA
X 0‘ Tk » v .

11.00)
We must emphasise that this current cannot yet be umm »My




of the matter fie1d and the potentials. For this resson the cone
comitant ¥ * may contain contributions from the potentials. We
shall take tms up again when we discuss minimal coupling. For the

moment we must regard "‘k merely as the total gauge covariant

current of the system.

By the equation of motion (3.65) we see that the current behaves

1ike a source:

s

k;a

Furthermore, using the equation of motion (3.64) together with

the global identity we find:

J‘

H

-.‘1‘6

knac

which shows that this current is not conserved without either .

specfal choice of Lagrangian or some constraint being placed on the
#1e1ds of the system. Another way to view the r.h.s. of (3.70)
s to introduce the adjoint curvature (3.58):

J.k;t

and the conservation law now takes the form of an orthogonality
condition between the concomitant
If these two are orthogonal then the currcnt will be conserved.

3.8 Minimel Coupling

The prodblem of derivative couplings in the theory may easily be

. ¢i1‘°

ck

and the adjoint curvature.

avoided by observing that the fdentities and the equations of

motion are a1l linear in the Lagrangian so that it may be written
as & sum of simpler parts each containing the derivative of only
one field. The exact contents of these parts may be arrind at in

a way we shall discuss next.




As we have seen the concomitants associated with field derivatives
are tensors and so may vanish in a covariant manner. We interpret
this to mean that the corresponding field derivatives may be omitted
from the Lagrangian without destroying the symmetry (which is not
true of the fields by themselves).

(a) The Matter Lagrangian

We omit the derivatives of the potential from the Lagrangian
80 that

f‘k = 0 : (3.72)
and the field content of the Lagrangian reduces to:
Low LV, 00,A)- RER O

We shall call this the matter Lagrangfan as is indicated by the

subscript m. In view of (3.72) the identities which the mtter
Lagrangian must satisfy are (the overscript m refers to L )

M TA ¢% o ¢824 48 o o (3.74)
A ko v A ks v 8 A

" o )

LA S (3.74)
where .

) " |

n'k . f‘k \ (3.78)
We are also now 1n a position to identify the matter oxrrent

b -

Fypa M e vty (3.76)
A ihort calculation shows that the Lagrangian

L' = LW AwA) (3.7




utuﬁu the identities provided that 1L w W ‘) is globally
{nvariant and the ordinary derivative is nphccd by the covarfant one.

(b) The Gauge Field Lagrangian

Since ¥ * 135 a tensor we may omit the matter field derivatives
so that 1t vanishes. Equation (3.24)" then shows that ¥ also
becomes a tensor and hence we may omit the matter field altogether
and so isolate the purely gauge part of the Lagrangian. The existence
of such a Lagrangian shows that the gauge fields form a covariant
dynamic system by themselves. Note that if, in a similar way, we
had omitted both the gauge potential and its derivative in the
construction of the matter Lagrangian the local identity (3.41)
would demand that the matter be chargeless - the trivial case.

The Lagrangian s
L =L (A M) (3.73)

and tt: identities it satisfies are:

i'?“n ¢ Fpet = O (3.79)*
x * 0 )
n * n® ’
where
N A L (3.90)

(3.79)* shows that the symmetry forces tho "“n and the adjoint
curvature to be orthogonal while (3. 79) shows that the gauge fields
do not carry a covariant charge.

& ol SR e g Bk (e 4l £ i A RN % o




(c) The Total Lagrangian

Taking advantage of the 1inearity of the identities we have the
total Lagrangtan

Loe b e y (3.81)

We will call a Lagrangian constructed in this way minimally
ooupled . We note that the derivatives of the various fields have
been isolated in different terms of the Lagrangian,

The only field which the two parts of the Lagrangian have in common
is the potential, We will therefore drop the cumbersome overscripts
except on the concomitants associated with the potential,

We have
L i (3.82)

and 1t follows from (3.79)> that the covarfant current fs carried
solely by the matter

)
J‘k '“'k

B A ol (3.83)

The equations of motion read

AR (s.04)"
e =% (3.04)°

(3.74)‘ and (3.04)' show that the current is covariantly ,
conserved (which 13 consistent with (3.70) by (3.79)'):

LR el g N . P ol §
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J‘ s« 0 (3005)

Note that 1f we had used the non-covariant definition of the
current

RLIE S SIS Y (3.86)

then the Tocal identities (3.79)° and (3.74)® would give

j‘k * ‘1. TkAl vt o 1c‘n cknl Ac. (3.87)
and we find a non-covariant current contribution by the potentials.
For this reason the potentials may be thought of as carrying charge,
a1beit non-covariant, in this general theory. This is unlike the
case in electrodynamics in which the group 1is abelian so that its
structure constants vanish and its potentials are automatically
uncharged. If we use the equation of motion (3.67) we get

1b'k.‘ . jbk (3.88)

and, by the antisymmetry of 1b‘k’ we find that the non-covariant
current 13 strictly conserved

Py =0 - (3.89)
This means, of course, that in any particular gauge the charge will

be conserved but its non-covariant nature causes the amount to vary
from one gauge to another.




3.9 A Particular Lagrangian

We already know that the Lagrangian

A, A
L = L.(W ¥ “)

will satisfy the metier {nvariance i. .atities (3. 74)"b . Ve

have naw to 7ind a Lagrangian to satisfy the gauge field {dentities
(3.79)8405¢ Clearly, there is no way to 'integrate’ these

uniquely sinco if L satisfies them then so will any function of
L.

The simplest case is for an abelian group in which the structure
constants vanish (the fields also lose their group indices k,m,n etc.)
In this case the adjoint curvature vanishes identically and (3 79)*
is satisfied. (3. 79) reduces to

* . 0. . (3.”)

Note that T*  1s now a tensor (by (3.39)). (3.79)°, the structure
identity, sh- ;3 that the derivatives should occur in the combi-.
nation

F s A - A (30")

and (3.90) can be satisfied by omitting the potentials themselves
dltogether. Thus L_ may be taken to depend only on Foc * The
simplest Lorent: SCI’IP Lagrangian we can construct {is

ac
Ly = CF F (3.92)
where C {s an arbitrary constant. We will take C = ¢,
It is natural to take the field strength tensor

Ak Lk am,n (3.93)
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as the generalization of (3.91). If the group is semi-simple
then we may use the Killing-Cartan metric (1.12)

P n
le Cl n cp k
and take
] k _ac _bd
bg = 1Cy Fyp Feqg 7 7
- it . | (3.94)
8y direct calculation we find
1'bk . s‘bk (3.95)
and
n a P
fk = - cp k F‘ a A. . (30”)

By definition of P_* ‘the structure fdentity (3.79)° 1s satisfied.
Substitution shows that the local identity (3.79)" 1s also satisfied.
Finally,

b n n
f.con.f

- ”cc”bd k

n n a
'cd Fc! (G-kcn P * Gnn ck p)

by the symmetry of Guk and the symmetry of

*

ac”bdp k

n
A cd Fof

fn kand n. If we now use (1.12), the Jacobf {dentity and the
antisymmetry of the structure constants {n their lower indices, the
term 1n parentheses vanishes identically. Mence (3.79)' 1s also
satisfied. We have 1n fact shown that the field strength is ortho-
gonal to the adjoint curvature.

SRR T 1 e ot e A




The equations of motion in this case are:

and

Written out in full the equ. s of motion are

s | k
‘PA g . n‘ * ﬁ. Tk A A‘
ba b.aA s ba m n
P k,a * q; Tk » v + F m ck n Aa

which show how the fields source each nther.
term of (3.102) 4s the non-covariant potential current which

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

Note that the last

1s sti1l present even in the absence of matter showing that the

potentials are self- sourced.

Finally, these equations must be suplemented by the Bianchi Identity:

k k k
F‘b " Fbc . * Fea ;b 0. (3.103) :
3.10  The Generalized Lorentz Condition
We note that tne gauge potentials are masslese since I-. does

not contain a mass term,
of the form

In fact,

Mkn A‘k Abn "tb

the addition of a mass temm




n

would destroy the gauge symmetry of the system because it is not

gauge invariant. The masslessness of the potentials has the following
furdamenta) significance. It follows from the general theory of
Lorentz representations that the spin one representation of a massless
field 1s reducible to a vector and a scalar (see, for example,

Roman (1960), Ch.1) Vo eliminate this unwanted scalar component

an additional condition must be imposed on the field which takes

the form of a generalization of the Lorentz condition:

#ak a0 (3.104)

and which cannot be deduced from the Lagrangian. We call (3.104)
the gemeralised Lorents condition. (3.104) 1s clearly not gauge
covariant and its imposition severely restricts the possible gauge
transformations which may be performed on the system, although
not eliminating such transformations entirely. Contracting
(3.104) with the generators we arrive at an equivalent condition
on the gauge connections:

*aAr =00 (3.105)

This can also hold in the transformed system {f the transformation
matrices are restricted by the condition:

-1 -1
AS *c* 07" - a‘(u‘c.. p™%) = 0 (3.106)

which rises from the transformation law of the connections. Note
that global transformations automatically satisfy this condition.
Restricting ourselves to an infinitesimal transformation and

using the structure relation we find that the infinitesimal para-
meters obey the 1inear wave equation:

2, m kK .m 8 |
PR S S %™ « (3.107)

In other words 1f we specify the parameters on some hypersurface
then (3.107) shows how they must be propagated off this surface
to the other points of the manifold in order that the transformed




gauge potentials will also satisfy the Lorentz condition. e

From a fomal point of view the imposition of the Lorentz condition f -
is no hinderance since 1t may always be imposed as a final formality L
once we have succeeded in constructing a local theory out of a A
global one . '
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APPENDIX 3A

The construction of the Invariance Identities
of an Internal Group

To first order in the parameters we have
o*, « 8% ek -rk‘. + 0(2)

A k TA

»,8 8 k® + 002

from which we find that the only non-zero quantities are the
following:

A =1A - 8A

'y, = 0", .
ao“.| . -la;r“.' R
- . " »
d¢ o d ¢ o
as.a] 30" 4 b . A
r . ;:r—ﬂ-— - & d Tk »
0 ' 0 b °
‘D‘. dc - ‘(ad 6@ . 8¢ sd ' T A
e s b a b ke °

b " o

Using these the transformations (3.15)"“""

ﬁ; . Tk“n W'S QL;L‘ * T;- W.,.
° o

give:

de d¢

- A

0A TA AS A q¢
GGE ke an a¢ k»

13

(3A.1)

(3n.2)

(3A.3)

(3‘0*1

(3A.8)

(3A.6)
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i
3‘:- b e A A c :
2 .F . A s,b ke - A e,b T s (3A.6)
0
b-’“d“ - 8% 1% y°®
;:F': dTxe (3A.7)
bj ©
Y Ve
.. b A
W |, T e Tk (%)
,b' ©
Y ¥e
as ,d b A c A ¢
e * FalTiats - Ae ka? (3A.9)
N ) °
d sc ¢ gb A
- B T . (3A.10)
o
The identities follow easily on differentiating both sides of (3.17)

with respect to the parameters and their derivatives and then
setting all these to zero.

f
i
i
i
;
|
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We differentiate both sides of (3.17) with respect to ¢
note that both ¥ A and VA depend on y* to get

From the transformations (3.18)"” we get

s0 that

and use

s0 that

L 92 , of ¥l | 2

What vt Wt

L

v

(38.1) is

LA

2F 290 | b
J‘:b 1) ‘:,
(3.18)°:
Wb . g8 o
W ':. b
(38.4) becomes
w_' o®, - v

we

3%

ay A

The Transformation Laws of the Concomitants

. W.‘ D.A.t -

Differentiate both sides of (3.17) with respect to ¢ “.
»

1] ‘:.
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and

(38.1)

(38.2)

(38.3)

(38.4)

(38.8)

(38.6)




76

We can invert (3B.3) and (3B.6) by invoking the inverse trans-
formation (or by substituting (38.6) into (3B.3)) to get finally:

-1 -1
9 =0 .A‘I'- + D .A,b %b (38.7)

AR R (38.8)

DESE

The transformation laws for @," and 4" follow in exactly the
same way.

~aas St sk i [ L

T O
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APPENDIX 3C

The Tensorial Concomitants

We see from the transformation laws that ¥, and @° are

not tensors. To construct equivalent tensors we use the trans-
formation laws of the connections to eliminate the differentiated
transformation matrices which occur in (3.24)%¢;

A A -1 Q A
D ", " DchAw -~ Dy I; e’
-1A e A
Al so D e D g 3 . gives
-1A -1a .10 ¢
D - D™ DT, D 5,8 .

Substituting this into (3.24)% and collecting barred and unbarred
quantities we find that
b ]
l&. ' ‘; = q‘ Ab A

transforms as a tensor. Similarly, when the process is repeated
on equation (3.24)° we find that

ngAl 2 v‘l N Abc. fbcl . Ab.c "bg‘

transforms as a tensor,
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CHAPTER 4 The Physical and Geometrical Properties
of the Gauge Potentials

4.1 Introduction

The gauge potentials have been introduced as Lorentz vectors

and as such they are subject to the action of The Poincaré Group.
We expect therefore that they should carry energy-momentum and
angular momentum. In this chapter we make these properties
explicit by calculating the canonical tensors in the manner of
Chapter 2

Although it 1ies outside the scope of this work, we give a brief
elementary treatment of the geometrical interpretation of the
theory. It {s based on the law of parallel transpurt derived
from the covariant derivative and serves to shed some 1ight on
the nature of the gauge fields;particularly the curvature and
the Bianchi ldentity. :

4,2 The Action of the Poincard Group

The global Poincaré Group acts simultaneously with a local internal
group so that the matter fields transform according to the direct
product of the two. These representations therefore carry both
internal indices a , » , ... and Lorent2 indices a , 8, ...
and are symmetric under the interchange of the two

v .y (4.1)
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The Lagrangian is

= Aﬂ. ‘Q s k' k 4.2
Los Lol (4.2)
Since we are interested in the energy-momentum and angular momentum
of the fields we will only consider the action of the global
Poincare Group on these fields. This is given by

T . D“B v A8 (4.3)&
W“:‘ - A-lb‘ DuB v Afb (4.3)b
r.k . A-lb. Abk (4.3)°
r‘k,c - A-lb‘ A-ld‘= A’bk,d (‘.3)4

{n which the parameters ¢2P 4" are constants,

We recall the equations of motion

Ao‘il ) nm =0 (""
b
1" kb - n‘k s . (‘.5)

4.3 Ene and

By the same arguments as given in Chapter 2 translational invariance
demands that the Lagrangian satisfies the identity:

- Aa & ., Aa
‘ﬁL "AG v »C ‘I'Aa v ,ac
k b k
- fk A‘ .c - f k A‘ 'bc - o [ (‘.‘)

This identity 1s not manifestly invariant under local internal trans-
formations and we first bring it into this form, Use (3.28) and
(3.39) to eliminate ¥ and T8, + then use the local internal 1den-
tity (3.43) to eliminate the n.* 30 introduced. The term containing




1’bk may be written:

-3 1abk p K

ab ,c

b k - A sa a
"koab;c M Taay *Y

A 3G A.
Aag R @ AG TI.W;I}C

by definition of the covariant derivative of p“bk and the
internal global identity (3.59). Collecting terms the {dentity
emerges as:

AQ 4, Aa b k
Lo = Mo v e - 0 0 e - 1m0 D)

now manifestly covariant,

In order to get a conservation law we introduce the commutator
of two covarfant derivatives, the Ricci ldentity:

Aa A, Koa ,ma .
Vi TV ies T e Tka V. (4.8)
Mote that the Poincare index does not contribute to the covariant
derivative oecause the group is acting globally, Ve 8130 need the
Bianchi Identity:

p K k K .0

ab ¢ ° Foe ia * Fea ib (4.9)

If we now use (4.8) on the second last term of (4.7), (4.9) on
the last term and the internal local {dentity (3.60), (4.7)
becomes:

Ao 8 , Ao b k k
L5¢ ° nAa v ie \I'“ v iea 1’ X Fcb Y . n‘k P.c . (4.10)

The equations of motion (4.4) and (4.5) now permit this to be
written as

p s ke g

t. s 0 . (4.“)

]
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where

s a a b k
Y M w‘;:-'r‘kvcb \ (4.12)

which we will call the cotal canonical energy-momentum temsor of
the system. Note that since t‘c is a set of internal group scalars
it s, in fact, strictly conserved:

| S (4.13)

The above holds true for the general Lagrangian (4.2) but if
we assume the minimally coupled Lagrangian

then we may get & detailed view of the interchange of energy and
momentum between the fields. The Lagrangians and 1 are
separately translationally invariant,hence the identity 14.7)
breaks into two parts:

()  Matter
The invariance identity is
, AQ a AG
"l;c - nmw:c N ’aa v ;e © 0 (4.14)

and, using the equation of motion,we find

n a k
T.c.a “ % Fae (4.15)
where |
T s Lt -e 8 g (4.16)
e ¥ lgb, -V TV ;e *

s the gauge oovariant canonioal energy-momenmtum temeor of matter.




(b) (iauge
The invariance identity is

b . k
Lese - p T Py e = 0 (4.17)

together with which the eguation of motion gives

8

LN R o Pt (4.18)
where

g

r‘c 'L a“c - 'r”‘k th_ck (4.19)

is the ocanoniocal energy-momentum tensor of the gauge field.

Equation (4.15) snows that the energy-momentum of matter is not
conserved but is scourced by the generalised Lorents force vector

k (4.20)

a
fc ' J k F;c
where J‘k is the covariant matter current given by (3.68). On
the other hand the energy-momentum of the gauge field is not con-
served either since (4,18) show. that the force exerts & ‘'back-
reaction' on the gauge field. The total energy-momentum

8
N A (4.21)

is still conserved.

Finally, 1f we take the special case of

k .ab

Lo d Pyt P (4.22)

then

8
T.c .} dek Fdhk FLI Fb.k Fbck (4.26)




P e T o

which is symmetric
['4 g
™ « T1°° (4.27)

4
We wil! see in the next section that T'C must always be symm-
etric even if a more general Lagrangian than (4.22) 1s used.

4.4 _A_rgul ar Momentum

Returning to the general Lagrangian (4.2), its global Lorentz
invariance leads to the iden ‘y:

A ; 8 Y S b . a
".c sdoag B Aa {Sqe 8 ¥ ,a S4e a ¥ ?b)

b k b k
- "‘ksdtakb ) T“k{sdcl"b,c’sdo

By a calculation similar to that of the last section we may bring
this into manifestly covariant form:

b k
¢ Au bt =0 (4.28)

Q A8 s a A8
ngasdtaw "'\l"“ sdisw;l

b

Aa c b k
- ¥ aw;b""ksdocpnb =0, (429

s
AQ sdo

The equation of motion (4.4) allows this to bc written as

e B b a '3
“'Aa sd.cs v* );l - sdc l(‘q'au v M;'b .« k Fcbk) = 0 (4.30)

which becomes, by definition of the total energy-momentum and the
Lorentz generator,

(‘l'“' sd.ﬂswﬂ)" - Rty - ty) = 0, (4.31)

It follows that the total oanonioal angular momentum of the system

"R VR dxgt®, - x et (4.32)

‘3“
de aa ‘de g
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is strictly conserved:

u‘dm =0 - (4.33)

If we specialize to the minimally coupled Lagrangian

L-L-*L‘

then the identity (4.29) breaks into two parts. We have also
by (4.32) and (4.21)

n 4

"‘do * M'do * M‘dc (4.34)

where

m

3‘“ - ¥ 05 v o, - x.;‘d) (4.35)

and
8 U 8 4.3
H‘d. s a '_.(xdT“ - x“l"d) ( 6)

which are the angular momentum tensors of the matter and gauge
fields respectively. Note that the gauge tensor does not contain
an intrinsic spin term. This implies that the intrinsic spin of
the gauge potentials have no dynamical role. In fact, it 1s not
possible to give a gauge covariant definition of the intrinsic
spin of the gauge potentials. This is, however, a somewhat in-
volved topic which must rely on the quantum theory for a proper
treatment. (See Jauch and Rohrlich (1955) for a discussion of the
electrodynamic case.)

We have again two sets of conservation laws:

W R il
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(a) Matter
The {nvariance identity is
a AB a a A8 b Aa
TaaSeg ¥ * Wy Sieg¥ ia " Wy Saea¥ gy 0 (437)

Using the equation of motion (4.4) this becomes

' n
N'm‘ sdoas *‘B);a - sdeba T‘b = 0. (4.38)

If we take the covariant divergence of the matter angular momentum
(4.35) and use (4.38) together with the conservation of matter
energy-momentum (4.18) and the definition of the Lorentz force
(4.20)ywe find the conservation equation of the angular momentum
of matter:

n‘dm - jx, €, - x, £) . (4.39)

We see that it 1s not conserved but is scourced by a 'torque’
generated by the interaction. From (4.38) we see that this 1s also
responsible for the antisymmetric part of the energy-momentum tensor.,

(b)  Gauge

The invariance identity is simply

¢ b k

which, by definition of the energy-momentum of the gauge field (4.19),
my be written

s. ®1 .o . (4.41)

The generator is antisymmetric in b , c hence the gauge energy-
momentum tensor must be symmetric in order for the theory to be
globally Lorentz invariant.

SR m,\‘:»,;n ey u,%,jﬂ;ﬁ&aj%mﬂw; #;




Taking the divergence of (4.36) and using (4.18) we find

4.42
M‘de,c .- ch £ - X3 £) ( )

showing that the angular momentum responds to a 'back-torque' in
such a way that the total angular momentum remains conserved.

The above discussion shows clearly that the gauge and matter fields
exchange energy, momentum and angular momentum with each other. This
is, of course, what we would expect in a fully.interacting theory.
The system so far has contained only one matter field whose self-
interaction is mediated by the gauge potentials. In general we
encounter systems in which many diferent matter fields are present.

A subset of these may be representations of the same group, for
example they may be electrically charged, and hence subject to inter-
actions with the same gauge field. These matter fields then interact
indirectly with each other by way of the gauge fields and so g4re coup-
led togther.

In general we see that the gauging of a group leads directly to
the existence of a force and we are lead to conclude that the forces
of Nature have at the root of their existence the fact that the
materfal fields which exist are representations of certain groups.
It 1s presumably the task of the Experimentalist to find out which
groups these are but we may also ask the very fundamental question
a8 to why there appears to be, in Nature, more than one kind of
force and many kinds of material fields. The answer to this lies in
the domain of some Grand Unified Theory yet to be discovered which
possibly depends only on a single group of which the groups currently
found in Nature are non-trivial ‘'parts'. It is known, however,
that it s not possible to unite an internal group and the Lorentz
Group in any way other than the fairly trivial direct product of the
two as we have done in this chapter (see 0'Raifeartaigh (1968)).
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4.5 The Geometric Interpretation

We conclude this chapter with an elementary discussion on the
geometricai interpretation of the internal theory. We have
formulated this theory in an abstract way and by using the
covariant derivative so introduced to define the not.'n of
parallel transport we can provide a direct geometrical inter-
pretation.

4.5.1 Parallel Transport

The covar:ant derivative of the matter field is defined as
- 4" + A‘ W. ’ ("43)

1f the field 1s such that its covariant derivative vanishes

in some region of the manifold then we say thay the field is
covariantly comstant in that region. On the nther hand, given

the values of the components ¢ * at some point P and a curve C
running from P to another point Q, we may parallel transport

v from P to Q by holding the components covariantly constant
along C. More precisely, the values of the transported components
8t Q on the given curve C are given by the solution to the
differential equation

' 25’-;:- IR Y 2 | | (4.44)

integrated along C with the initial values prescribed at P also
on C. In integral form we write this as

VA - vrm - A vt et (4.48)
It 1s clear that, in general, the transported components will
depend on both the initial values and the curve and hence it {s
not possible to use the transport law to 'spread' the field out

from the initial point over a finite region of the menifold in a
unique way.

B R




87

4.5 The Geometric Interpretation

V' conclude this . hapter with an elementary discussion on the
geometrical interpratation of the internal theory. We have
formulated this theory in an abstract way and by using the
covariant derivative so introduced to define the notion of
parallel transport we can provide a direct geometrical inter-
pretation.

4.5.1 Parallel Transport

The covariant derivative of the matter field is defined as
wn -y + ar 0yt (4.43)

If the field is such that its covariant derivative vanishes

in some region of the manifold then we say thay the field is
oovariantly oonstant 1n that region. On the other hand, given

the values of the components ¢ *» at some point P and & curve C
running from P to another point Q, we may parallel transport
v2 from P to Q by holding the components covariantly constant
along C. More precisely, the values of the transported components
at Q on the given curve C are given by the solution to the
differential equation

' d A A ]
-"l,-t-.- IR " | (4.44)
integrated along ¢ with the initial values prescribed at P also
on C. In integral form we write this as

YA = v2m - [ A% v® &t (4.48)

It 1s clear that, in general, the transported components will
depend on both the initial values and the curve and hence it is
not possible to use the transport law to 'spread' the field out
from the initial point over a finite region of the manifold in a
unique way,
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4.5.2 The Curvature Tensor

The integrability condition for equation (4.44) is

A - A
v ,ab v ,ba °

However, using (4.44) we find that

A A A ]

v ,ab v ba ° “Fans v (4.46)
and we conclude that such a field cannot exist in a region unless
the curvature (field strength) vanishes in that region.

Alternatively, by noting that the gauge transformation law of the
potentials is inhomogeneous,
'y ¢ -l -lc
x“l * DAcAloD s o* 0 (4.47)
we my enquire whether or not we can perform a transformation in

which the transformed potentials vanish in some region. The group
transformation matrices must then satisfy

»
D‘G,l = D‘. A‘c . (‘v“)
The integrability condition for this equation again depends on the
curvature
A €

DA-,nb N DAl.ba * Fabels - (4.49)
Hence 1f the conriguration of gauge potentials is such that the
curvature tensor vanishes then we may simply transform these
potentials away in which case the covariant derivatives reduce to
ordinary derivatives. Of course, once the potentials have been
transformed away, the system is restricted to global transformations
only since 1ocal tra .sformations will re-introduce them.




4.5.3 The Ricci and Bianchi Identities

If we expand the transport law (4.45) to second order and
transport the field components around a closed square of side
&t 8x° then we find that the change in these components
is

VLIRS LI E N “_w'm‘ax" (4.50)

adb

from which we conclude tnat the curvature provides a measure of i
the amount of ‘distorsion’ per unit area introduced by the gauge
fields. This is essentially the content of the Ricci Identity.
In the same way we may transport v* around the odgos of 2
closed rectangular paralielepiped of sides & x , 8.x0 4 Bsx
4n such a way that each edge is traversed oxactly twice, once in
each direction, as shown:
(AsBCroDoE-oBoAsE-GrH+A)
4 (AsHeC-oBoAsP-oErD-G-F-A)

¢ (ArDoBFriestinGD+CriA)

“ % The opposed traversals of each edge ensures that all contributions
§ cance) in-pairs and the net result of this transport {s 2ero.
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Explicitly this is (Feynman (1976))

e Fromin * Feamgp) ¥ 8% szb 8% = 0 (4.51)

(Fab L be ®3a cae;

and since the 8x's and the V" are all independent we conclude
that
A A A

+ F

Fab ®;c bc »; * Fc. ab ,° (4.52)

which is the Bianchi Ildentity. This simple argument shows that

the Bianchi Ildentity imposes a fundamental geometric constraint
which the curvature must satisfy. It is apparant that the identity
represents 3 conservation condition and hence its use in the
construction of conservation laws is clarified.

We have given the most rudimentary treatment of the geometrical
aspects of gauge theory but there exists in the literature very
sophisticated formalisms designed to exploit these aspects to the
full. The most important of these are the Calculus of Forms

(see, for example, von Westenholtz (1978)) and Fibre Bundle Theory
(Trautman (1980)). Once again the reader is referred to an
extensive 1{terature.
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CHAPTER 5 The Gauge Fields of the Poincare
Group

5.1 Ingroduction

In the previous chapters we have 1imited the theaory to being
globally invariant under the action of the Poincaré Group. We
will now relax this restriction and show how gravity may be
treated as a gauge theory in a manner conceptually simtlar to o
the internal theory we have discussed so far, B

The Poincard Group is the cemi-direct product of two groups:

the Translation and the Lorentz, a fact which complicates its
implementation as a gauge group. Throughout the following we
will find a remarkable symmetry between the objects associated
with these two groups and, because of this duplication, there

{s greater freedom of choice in the Lagrangian. This s, however,
the subject matter of later chapters.

The present chapter serves to introduce the fields with which

we shall concern ourselves and the way in which the Poincard
Group is to be implemented. The Translation Group, in particular,
differs somewhat in 1ts action from the Lorentz Group. For this

: A reason we will at first discuss the gauging of translations sepa-
o | rately from that of Lorentz transformations. We will find that
. ‘ their gauging results in general co-ordinate transformations

-
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and that their potentials correspond to fields of orthonormal
vectors called tetrads. Within this scheme the tetrads are
unique only up to a Lorentz transformation on an 'internal’
index and may de used to define epresentations of the Lorentz
Group. We are then in a position to implement the full Poincaré
Group which we do in Chapter 6.

Since we are dealing with general co-ordinate transformations
we formulate the theory on a four-dimensional manifold on
which is defined a non-singular, symmetric metric and an affine
connection. We also suppose that the manifold has non-zero
torsion curvature and 1t s a primary task of the theory

to relate these quantities to the gauge fields of the group.

5.2 Ihe Base Manifold

‘The theory is formulated on a four-dimensicral differentiable
manifold which we will refer to as the Base Manifold.

We will assign to it the co-ordinates

x* ¢ us=0,1,2,3

where the local co-ordinate indices will be denoted by Greek letters

other than o , 3, v + 8 » ¢ Which are reserved for Lorentz
representations.

Ne mey define tensors locally on the manifold by:their trus§formation
properties under general co-ordinate transformations. For example,
under the co-ordinate transformation:

' + B e B(xYy, (5.1)

a second rank tensor transforms as

L 3_5_;_ Q_gf_ .rl | (502’

Voooaxt ax¥ f
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and a scalar as

T =« S (5.3)

We assume that the transformation (5.1) 1{s such that the Jaoobian
v
3 s m[ EL) (5.4)
ax¥
is finite and non-zero.

The manifold carries a non-singular, symetric metric :

8,0 * 3 (5.5)

det (gw) $ 0 (5.6)

and its inverse defined by

'3V} - u . 507

8 8, U (5.7)
Ne will use this metric to raise and lower the manifold indices.
As yet it has no particular signature but this will be deteimined
later on. '

Ne shall also suppose that the manifold is affinely connected in
that it carries the manifold cormeotion:

r ]
v
which may be used to define covarfant derivatives of Base tensors,
for example,

™, s« ™
Vaf Vs

s PV T oph o (6.8)
P pPA v pV A

To ensure that this 1s a tensorial quantity thu connection must
transform as:

i st N

o N e e A
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A o .1 p A -}
-ﬁav"’n"vx;l}a"‘p'{;v (5.9)
where we have used the notation:
g -
X . . X
L. 3;_;- ;X %x-,;- (5.10)
Oi‘xp n
.M J: v - W . (s- )
¥ u
Note that .y: K o= 8 . (5.12)
From the covariant derivative of the metric,
[ ] - A - x 50'3
L &v0 r} w By ro v (5.13)
we deduce by an index permutation:
(] o 4] -]
AN B AN A BN R . (5.14)
where ’
o U (g - 5.15
{9 V} ' i : (‘M\MP * ‘HP:V ‘Vpﬂl) ( )
is the Chrietoffel symbol and is not a tensor,
o ou " 5.16
[o v] ' bs (‘uv:o * oy 'vo;u) ( ) -
is the metrioity symbol which is a tensor and
Qe 87, » 80 4 8 (8.17)

is the oontorsion defined in terms of




the toreion
s’ =r° . r° (5.18)

both of which are tensorial. We will not immediately demand that
the connection be metric, i.e. that 8,y.p Vanishes but we shall
impose this condition later on.

Finally, the commutator of two covariant derivatives gives the
Ricci ldentity:

M ¥ oA T LM
T svp " T 1oV - Rvp A T sv 0 T - (5,]9)
where
W U u M T u T
n\’ﬂl'rvl,p‘rpl,u'[rvtrpx’rpfr\,x] (5-20)

is the manifold cumature. Together with the torsion it obeys
the First and Second Bianchi Identities:

T T T
Nrese * Moo * Rouon

T

n T n T n

Su A Rﬂﬂ o * 8)‘ p le o * Sp " Rﬂh 0 e 0 (502,)
g§°? o 81 e 87T
¥ Asp 3x H so Ui

n T n T n v
L J
su b sp n * sl [ su n * sr u sl n
T T k4

. Rux o * Rxp . Rbu A =0 (5.22)

both of which may be proved from the definitions.

AP - g2

'
3‘?
k4
¥
{
:

wm“:.:,x,.‘w‘gﬁg ‘,““‘ﬁ' i v
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8.3 Trgnshtionn Invariance

5.3.1 Genera! Co-ordinate Transformations as Local Gauge
Translations

Consider a transformation of co-ordinates:

x"-. ‘iﬂ

then, at any point P of the manifold, we may define the four
quantities

@ s P - NP (5.23)

and the co-ordinate transformation may be viewed as the generalized
translation

) = xH(P) + ¥R - (5.24)

The §* thus serve as parameters which keep track of the change
in the numerical values of the co-ordinates in going from one
co-ordinate system to another. Since the transformations are arbi-
trary but differentiable, the §* will vary from point to point
on the menifold in a differentiable manner and we may defirg the
displacement field §¥(xV)  and its derivatives.

We have immediately, from (5.24) that

K: - 8¥ . ¥ (8.28)

\Y (Y
and the corresponding J: may be found by a sertes expansion in ("w .
We may express the co-ordinate transformation as a gauge transformation

with the parsmeters ¥ similar to that of the usual group trans-
formations by observing that

‘U - !V‘U - t\’a x¥
v v

B, BN R e AL S




iroe tmamzas

"

n_u
..................._......ax = 0 n»>1l
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3x 1...Ox n

hence, formally, we may write

x e x* o+ §

(1 !vbv ) <M

oxp( £ ) =¥
So that these transformations may be viewed as gauge transformations

with generators OV and parameters &', Note that these are not
infinitesima) transformations.

5.3.2 The Action

Introduce a scalar field .¥(x") on the manifold. It transforms as

v =y (5.26)
and {ts derivative as
3." -3 N (5.27)
Define the action:
Ie [E0iv ) d*x | (5.28)

where the Lagrangian £ must transform as a scalar density:
t . J i (5.“)

to ensure that the action 1tself s an invariant scalar.

LTIV RN




Instead of working with £ directly we will assume that it may
be factorized into the product of a suitable scalar density ¢
(which we shall specify later) and a purely scalar Lagrangian L,
{.e.

£ = o L (5.30)

whose transformations are

LW ) = Livie ) (5.31)
LAY "V
and T e, (5.32)

§.3.3 General Co-ordinate Invariance - Introduction
of the Tetrad

By not including the co-ordinates explicitly in the Lagrangian
we have ensursd that tie theory is invariant under those trans-
formations for which & 1s constant (as in Chapter 2).

When the :~ are not constants, the J: in the transformation
of the derivative introduces l“ into the transformations (see
(5.27)). The r.h.s. of (5.31) is {ndepen‘ent of all ptrauntnric
quantities so differentiating both sides w th respect to !“"
setting all parametric quantities to zero we get:

i, (3, -

where the concomitants are defined to be

and ® 4 (5.34-38)

-
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From (5.26) ¥ {s independent of !",p while (5.27) gives

N

o [if"“)

- e &P" w,v (5.35)

where we have used (5.12) and (5.25) to get

(e}
[;L?'] .o acv apu
'bﬂ o

The identity (5.33) therefore reduces to

Y
L ] w‘v s 0

or, since the derivative of ¢ {s not zero everywhere

This may be satisfied by simply omitting the derivatives of ¢
from the Lagrangian. Once again, as in the internal theory, this
is the trivial solution to the problenm,

As bafora, if we want more interesting sclutions we must replace
the derivatives by covariant equivalents by introducing a set of
vector fields as gauge potentials. We are dealing with a four-
parameter group and s0 we need four vector fields which we take as
the contrvariant vectors

0.“'(:&) s = 0,1,2,8
and we define the translational oovariant derivative a8

’.‘ 8 .‘u ’.u ¢ ('o”)

.
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Being contravariant vectors the potentials transform as
NI ol T (5.39)

and the ¢ . transform as a set of four Base scalars and not as
the components of a single vector.

We must, of course, incorporate thiese potentials into a new
Lagrangian

L(v: vl .‘v ) . (5.40)

If we now differentiate the transformation law of this Lagrangian
with respect to s"o we get the identity
s

a [ o
4 v ° L w.v s 0 (5.41)

where
z® L 5.42
v a.‘\) ( )

and the appearence of the extra term avoids the conclusion (5.37).

We therefore have a viable theory in which the o' are a pre-
scribed set of vector fields whose transformations are sufficient
to ensure that the theory as a whole 1s gauge covarfant. We may
next include the derivatives of these potentials in the Lagrangian
to develop a dynamic theory but it is far from being complete

and will later emerge as a special case of a wore general theory.

Before continuing we will discuss some properties of these potentials.

(a) Orthonormality

If we take the determinant of both sides of (5.39) we get

g e A W*\%M’.‘m Ly
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det(s.") = dec(x!) det(e,") (5.43)

then, since
det(x) « L 4 o
v J

the property that

dat(o‘") ) (5.44)

s gauge covarfant. The efficacy of e,' a3 a gauge potential
14es purely in its transformation law (5.39) so that we may
restrict the o ¥ 50 that (5.44) s always satisfied. This
being sc we may define their inverses .‘uv by

o b et . (5.45)
Also, the transformation law (5.39) 1s scale invariant and we may
normalize the potentfals:

A L (8.46)

The inverses must then transform as covariant vectors:

=d v b
Ov » Ju.v . (5.47)

We conclude therefore that, at each point of the Base manifold, the
o' forms an orthonormal set of four four-vactors which we will

call & tetrad.
Finally, from (5.47' we find

doccthu) .« J dot(cbu) (5.48)

indicating that dot(-bu) transforms as a scalar density. We can
therefore take

MXMWW‘W@WMM\? R

(I
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¢ 8 dct(obu). (8.49)

for the purpose of constructing a Lagrangian density in (5.30).

(b)  The Metric
Introduce the numerical Minkowski matrix: -

W) = (ny) = diag(-1,1,1,1) (5.50)
and fix the manifold metric by taking

5, ¢ o0, o8, (8.51)

wﬁich 1s clearly a second rank Base tensor. Also

PR RN % (8.52)
then, since 2 Ny * s, | {6.83)
we have
. v 6, ° ,up . (5.84)
By (5.51)
g sdetfg )

o dot(e") dot(e®) der(n,y)
- ..2 * 0 (505')

s0 that g“V 1s non-singular and symmetric as is required of the
manifold metric. Note that the particular form of the Minkowski
matrix is extremely important since this imparts a Lorentzian
structure to the manifold. In fact 1t is only once this form has

SRR ] P R U ) R LR L R R Sk ul E,
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.

been imposed that we may refer to the manifold as space-time.
Based on this form the metric is not positive-d. finite but we
may introduce the following (covariant) conventions:

A Base vector A" s said to be

9
Space-1ike [ 5 0
Time-like | if g, A A 15 { <o (5.56)
Mll J | = 0

We see immediately that c».“ is time-11ke while

o“‘.o"‘.o.” are a1l space-like.

Finally, since

e 8, 'c" . o'v (5.87)

we will use n"' and 8y to raise and lower their n:poéti'vo
indices.

(¢) T rd{

The definition of the metric (5.51) {s remdniscent of a co-ordinate
transformation and we explore this by attempting to define a new set
of Base co-ordinates y* a4« 0,1,2,5 by

> 4 . .. u(x) | (6.58)

and taking the origin at the point P having the co-ordinates x*
fn the original system. If such a system could be found then

b T O S Ay i N
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and the metric in the new system would be

=-ab a b uv ab

£ K K g ="
everywhere. In other words we could transform the manifold
to be Minkowskian everywhere.

Howaver, the integrability condition fov (5.58) f{s

Ly - oy " O (5.59)
and it would be much too restrictive to impose such a condition
on the potentials. On the other hand, {if we restrict the trans-
formation (5.58) to a small enough neighbourhood of a point of
the manifold then we may use the tetrad at that point to define
a looal ao-ondinate system in which we can express the Base
tensors as ‘'local' tensors

¥
K@) = o (x) A ) (v.60)

The 'local' metric at each point being 7%® . Clearly, if (5.59)
is not satisfied then we cannot patch together these local systems
into a single co-ordinate system which cuvers the entire manifold,

1t 4s also clear from (5.60) that these ‘'local' quantities
are defined in a covariant way in that their components are reduced
to sets of Base scalars invariant under general co-ordinate trans-

formations.
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5.4 Local Lorentz Transformations and Representations

Returning now to the general theory, we need to be able to define
arbitrary Lorentz representations on the Manifold. In particular,
we need to define spinorial representations since many elementary
particles are found to be best described in this way. It is not
surprising that the theory readily admits such representations since
we have based its geometrical structure on the Minkowski matrix.

Consider an 'internal' transformation of the tetrad components
which does not affect the Base co-ordinates and leaves the metric
unchanged:

o® o AD ot (5.61)
such that

ot 4P e o o (5.62)
The transformation matrix must therefore satisfy
e A (5.63

Tp * AaAp g +83)
which is a necessary and sufficient condition that the matrix “‘b
be the self-representation of the Lorentz Group. What this means,
of course, 1s that the tetrads as we have introduced them are unique
only up to a Lorentz transformation. It is this non-uniqueness,
however,which provides the opportunity to gauge the Lorentz Group.
From (5.61) it follows that the Latin indices are Lorentz indices
and the local quantities defined by (5.60) are Lorentz vectors whose
components are individually Base scalars.

On the other hand, Base tensors derived from local Lorentz tensors

A = .. A (5¢“)

i AR g
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are invariant under these Lorentz transformations even if different
transformations are applied at different points of the manifold,

This is true, in particular, when the /\‘b depend on parameters «cd
which are differential functions of position:

I A GO  (5.65)

Note that we must restrict the transformations to be proper
(Chapter 1) to ensure that

o = det(AP‘) .

N T (5.66)

We now have a tetrad at each point of the Base manifold with
definite Lorentz transformation properties. We can thersfore

include matter fields in the form of arbitrary Lorentz representations
by assigning to the tetrad at each point P a set of numbers

v ®  which are Base scalars under transformations of the mani-

fold co-ordinates but which transform into each other under appro-
priate Lorentz transformations when the tetrad at P s transformed
accordin: *n  (5,65)

B A IR IO " (5.67)

We will call the y ® Zocal epin-tenscre and demand that they be
differentiable functions of the menifold co-ordinates.

Under a combined co-ordinate and local Lorent:z transformation we.have

altogether
T oe oMo g (8.68)%
AN AN (5.68)°
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AN (5.68)°

Ve s Dot vh, . (5.68)

-Among the representations of the Lorentz Group there occur. both

tensor and spinor representations (Chapter 1). The former corres-
ponds to local tensors and we may define Base equivalents for them
by ‘'projectfon' wusing (5.64). For the local spinors no such
Base equivalent can be defined ( we may define Base equivalents for
contracted pairs of spinors but not for individual ones). For this
reason we will consider the local representation spin-tensors to

be fundamental and the Base tensors to be derived. We remark that
physically observable quantities are all Lorentz tensors and there-
fore have Base equivalents.

5.5 The Gauge Fields of the Poincaré Group

Since the Base tensors are all invarfant under local Lorentz
transformations we have, in a sense, introduced these trans-
formations as 'internal' transformations quite separately from
general co-ordinate transformations. This is, however, misleading
since the tetrad components carry both types of index and are there-
fore susceptible to both transformations. We expect that the two
will mix in some inseparable way as is indicated by the Poincard
Group composition law.

We observe from (5.68) that all quantities except the field
derivatives are tensors:

L g . gV 0% 8 .
V.u MLS A ML (5.69)

and we need to define covariant equivalents.. To do this we introduce

S S ;‘Wm%uwwm
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2 set of Lorents oomneotions which are elements df m Lﬁ A‘!ma
spanned by generators of the representation to which ¥ S belongs
and, at the same time, Base manifold vectors:

[
'v ch) *
Ne define the Poinocaré covariant derivative:

w a

¥ a a 8
™ .‘ (w 0 + '\l 8 w } . (5070)

v °  carries indices corresponding to two different representations
of ‘the Lorentz Group and we demand that it transforms as & tensor
tn the direct product of these two

a -1t .o 8
w ;‘ - s D B w : . (5.71)
Using (5.70) and (5.68)°*Y this is

X" Yy _ugeo “lb @ VY (]
¢eV+ D' "W - A LN v, ’} v

vV 0
Uuns.vs g8 a2 uy a

aV p8 =V -1b &
¢{JuDo-A.D

. .b"}wfv - 0. (5.72)

]
Since the matter field and its derivative are independent we get

-y u a~1ld v
'l * ‘VA l.b

as we expect for the tetrad, and

a . gV Y a-18 (] -1y
i; . 3, 0% w00 - D%,,\0 o (8.73)

for the connection. Note that under pure “-ordinate transformations

the connection transforms as a set of Base vectors.
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Ne may also specialize (5.73) to the vector representation of
the Lorentz Group:

- g V ;.8 ¢ ,-ld a2 -1¢c
Whom NS AT - A AT (5.T4)

5.6 Connections, Curvatures and Torsions

We have, finally, all the fields we will require and we conclude
this chapter by relating the Base connection to the gauge fields.

By using the transformation laws of the connections, (5.73) and
(5.9), we may define a covariant derivative of 'mixed' tensors;
for example, suppose we have a tensor transforming as:

P, - J; 0% ™, - {5.78)

and its ordinary derivative as:

v , A0 B
Tup = B O 0T, . (8.76)
Now,
v A A
Qo -"‘“_.(32’.‘_..._(’2_-3"
P (u),v E; ax’ 03?') =° b'x'") ad ¢ (8.27)

and , using (5.9) and (5.73) in the forms:

o L a LY _ oY gpo .
; gy = Oy W K 0", W7, (8.78)
A Amy v L0 A
Yo ° Iy F; T o Ju rv ¢ (8.79)

as well as (5.77)s we may eliminate the derivatives of the trans-
formation matrices occuring in (5.76) to find that the quantity:

gE =

AN

e e g
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™ s ° -r9 ™ L, yo 18 (5.80)
uip Yap puU O P8 u

transforms as a tensor. As is indicated we will define this to be
the covariant derivative.

We have also the Lorents aovariant derivative

wt;lu - w?u + Wuasws . (5.81)

As a particular instance of the derivative (5.80) we have that
of the tetrad:

' s . c .a a b. 5.82
";p- 4,0 rou.a"‘pb’u ( )

So far the manifold connection 1s stil} arbitrary but we can fix 1t
by making 1t such that the tetrad is covariantly constant:

© ., = 0. (5.83)

l“A -yt .c.x"'»\.a . (5.84)

This has the immediate interpretation that I Au is the Base
manitold equivalent of the local quantity

b beb
Yace ® % " (8.86)

found by transforming from local co-ordinates to manifold co-ordinates

in the manner of §5.3.3. Equation (5.83) has the further consequence
that, by definition of the metric,

8y, * O (5.86)

$0 that the connectfon I’ is a metrio commeotion.
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We next evaluate the commutators of various covariant derivatives
to introduce the curvatures. The Lorentz derivative gives

a - [+ G a 3 * v c a (5.87)
Viw ~ Vier " S T
where
L « o a Y ¢ Y 5.88
] - - .
Geo 8 LAV AN (v, AR A o] (5.88)

is the gauge cwrvature and

¢ ¢ d c 4 ¢ _ 5.89
Veo * Mea®o " Mod®c”* %o, ® 2,0 (5.89)

is the gauge torsion. For the manifold covariant derivative

we recall
u ¥ Y A e g u .
I R RvaA.*sp\,A;a (5.90)
where
" g u TR TR )
Rioa ® Do “Toa,w " Mg loa =T Iyl (8.91)
{s the manifold curvature, and
s’ «1r° -rf° (5.92)

is the manifold torsion. If we substitute (5.84) dnto (5.91)
and (5.92) we get

- oy 8
8%« o0V (5.93)

Rvp“x - .‘A ..“ Gvc‘e (5.94)
where now va'c has been specialised to the vector representation.
We observe that 1f we had not imposed the condition (5.83) then

(5.93) and (5.94) would have contained additional terms stemming -
from the arbitrariness of T and the gauge curvature would effectively
have been decoupled from the manifold curvature. Because of (5.93)
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We next evaluate the commutators of various ovarfant derivatives
to introduce the curvatures. The Lorentz derivative gives

a . a - a 8 c a (5.87)
w:ra wwr Grosw * vtawic
where
]
o a a a Y o Y .
Gras'"ta,a'"aa,t'["ry"os'"ov'ra] (5.88)

is the gauge curvature and

vc!'cd-cd'cq_c (5.89
¢ cd "c,'r 't,c )

1s the gauge toreion. For the manifold covariant derivative

we recall
¥ M by -] '] !
N - N nvp ORI AN g (5.90)
where
u u ¥ TR U .0 .
LR WL AN | ) r B A (5.91)

1s the manifold curvature, and

c -] -]
Svp - l’vp - rﬂ\’ (80’2’

fs the manifold torsion. If we substitute (5.84) into (5.91)
and  (5.92) we get

¢ ) a
87, = 00V (5.93)

: R Y . .cx .‘u vanc (5.94)

where now G ‘g has been specialised to the vector representation.

‘ We observe that if we had not imposed the condition (5.83) then |
(5.93) and (5.94) would have contained additional terms stemming - g
from the arbitrariness of T and the gauge curvature would effectively
; have been decoupled from the manifold curvature. Because of (5.93)
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ond (5.94) we shall drop the distinction between the gauge
curvature and torsion and the manifold curvature and torsion
denoting them by R and S . Their tensorial nature follows
directly from their definitions.

The Lorentz connection was introduced as an element of the Lie
Algebra hence we may expand it in terms of the generators and in
so doing introduce the Lorents potentials aa'b(x):

o o ,,%¢ a
LA (5.95)
where w® . Wb (5.96)
M u
By using the structure relation
a Y . a Y of o
v Y Sed 8 Sed Y Sab ] Cab cd Sot 8 (6.97)
it follows that Ruvua is also an element of the Lie Algedra:
o . ad o
nuv ] Ruv Sab ] (5.97)
where R % . g be (5.98)
uv uv

{s the gaugs field strength tensor given by

luv‘b - qg.?v - %.‘:p - ccd.b'f q‘cd %Cf . (5.”)

It follows that the field strength tensor is actually the curvature
in the vector representation. Once it is known the curvature in any
other representation may be found from (5.97).

Similarly, the connection in the vector representation is
a cd 'Y s '
o W S4p * 9 (5.100)

since we know the generator of the vector representation explicitly.
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Hence we also know the transformation law of the potential
explicitly (unlike the situation in the internal theory where

the potentis! transformation was known only as an expansiun in the
parameters)

- g vV LA Cc L-1ld a -l¢
@y I W @A b "N AT (5.101)
The torsion is
] ] s b 8
Svo - [w\ab.p LI (o » V)] (5.102)
snd the Bianchi ldentities are:
adb ab ab
Ry 50 * R o * Ry
o adb s adb o adb
+ 80 R e 8 R 8%, Roa = 0 (V)
a4 a a
Suaie * Bio * S
0 o8 _ o0 o8 0 .8
su A so o S [ su | sn u sx ¢
+ R s + R 8 ¢ R s s 0 . (2)

Ap U oy A

Finally a remark on the integrability of the gauq& fields. For the
tetrad this 1s (5.59) which we write in the form

s8 | wt b, wt P o (8.103)

and for the Lorentz potential it is

a

Rﬂ\’b a 0 (5.10‘)
Thus 1f the curvature vanishes then we transform the «~field away
but both the curvature and the torsion must vanish 1f we are to be
able to integrate the tetrad field.
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CHAPTER 6 Gravity

6.1  Introduction

In the last chapcer we introduced all the fields and thefr trans-
formations which we will require to construct a theory of gravity
based on the Poincare Group. In this :hapter we proceed to the
construction which i{s again based on the invariance identities
sat{sfied by the functional derivatives of the Lagrangian and the
equations of motion.

After deriving the identities and writing them in covariant form
we use the equations of motion to deduce the conservation laws

. . associated with the general Lagrangfan. We find pair of covariant
- tensors which behave as sources in the field equations but which

' dre not conserved in the general case without further ascumptions.

We next define a minimally coupled Lagrangian whose structure is
determined by the identities. In this Lagrangian the field derivatives
are separated into different terms and hence the contributions made

by the individual fields may be distinguished. It is in this form
that the standard theories of gravity are expressed and we investigate
& number of particular cases in Chapter 7.
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6.2 The Invariance Identities
The field content of the General Lagrangian is

L = L(y:ayieidc:wdnd (6.1)
and it transforms as

T = 1L (6.2)

under the field transformations

AN XA (6.3)*
T « J° (0° v B (6.3)°
]| u -] »v

-8 A A8 b ¢

.u - JuAb.x (6.3)

- . Y (h A oY d

® W Jp (Ju A b L A) v (5.3)
o8 . R (A‘ ¢ A-ld - A A-lc ) (6 ”.

L b ue4da b coh b . ‘

-3 A8 ¢ ,-ld s -l¢ 1 4
w\l b, * J: (Jll (A < “ d A b ~ A CHh A b)).v (‘.3)

where the parameters are twice diferentiable functions of the manie
fold co-ordinates. We deduce the identities by diferentiating both
sides of (6.2) with respect to the parameters and their derivatives
in turn and setting all these quantities to zero. In the trens-
formations (6.3) the parsmeters occur together with their first

and second derivatives and so we expect six sets of identities

which are (Appendix €A):
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: u u G -1
o A e . Ap 8
- B '! ®au :a ®,0u
adb - o) adb 0 a
- daq, s et (6.4)

‘l' *O * :‘T .‘x * d‘b “&l

A {"u.x ) "x.u}
g M an‘b (“{,‘?1 - 9&“:"} = 0 (5.“)b
1 N
\ z.“'a * :‘Uf s 0 (Q.Q)C
) \ersntz;
. LRSI Ag e
| A AR LY o

cd

. ed of P of d
* d‘cd (‘l.‘, of “il + ‘f cd c'b of % 0 0 (60‘)

1 hocal:

5 ! 8 uA
| ‘ v} Swg V0 *ES 84l

e ‘ A cd of e
: ) “\nb * dlcd Cab o4 * 0 (6.4)

d
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Structure:

AT T2 f
[y] o * (1] b "0 (6.4)

The concomitants are defined by:

1A p L e
v, ¥ R 2 6.5
) ;;'B A ;;:?; (6.5)
A Y Ao . AL b SN
a "‘x a a.‘k,p
A 1 Ap aL ¢
aQ ——— 3§D E (6.5
| ad ‘“k‘b ab au&'Fp )

We can find the transformation laws of these quantities by diff-
erentiating both sides of (6.2) with respect to the fields them-
selves and inverting the results (Appendix 68). We get:

LR e AR T (6.6)*
, LA S L (6.6)°
é LY - gzt (6.6)°
- ; Y, o R A ar e wl A 8ty (6 |
i
" z nuk.b - '{4. ‘: oxp(-c‘f c.fcd.b) nwcd . ("‘)f

P e o e 1 e e hmorie

Note that the concomitants associated with the field derivatives are
gauge tensors while the others are not. As in the case of the interna)

> EIRIEI e e X

il
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theory we can construct equivalent tensors for these (Appendix 6C):

ab 8 p a
% = ¥ - “ Seba wﬁ (6.7)
] P cd b pu b
nl * 1; W Saa L (6.7)

 JL + L AL P

of uv c
ab ab v Ced ab B o (6.7)

6.3 The Identities in Covariant Form

As they stand the identities are not in a manifestly covariant form
and it is our next task to bring them into this form.

(6.4)°’f are already covarfant and (6.4)' 1s easily made so by
using (6.7)%:

d (6.8)

A A o [} uA ¢
z s ¥ 8§ v 01‘: slbd'u'

ab a "ab 8
By using (6.4)® and (6.7)° to eliminate QT ad 2°
from (6.4)" we simultaneously introduce the covariant derivative of
v? » the torsion and the curvature. (6.4)b in covariant form is

therefore:

’a' *:& . 'ﬂ.‘ .nx* z‘tﬂ’ sxau . n“nb “ux“ = 0. (6.9)
We next use (6.7)*+%:€ o introduce I, @, M 1into the global
Lorentz identity (5.4)‘. This introduces three additional terms,
one for each field, which contain contracted generators. We then
use the structure relatfon (1.41) and the Jacobd Identity to comm-
ute these and in doing so break these terms into two parts; one part
of each contributing to the introduction of the covariant derivative
of the matter field, the curvature and the torsion, and the other
parts, having a common factor w ,being collected together. The

result {s:
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e 8 [ a ] P c d
‘E Sab ] v * 1& sah 8 v e * ﬂ% sab a® P

ue ¢ d Ko cd ef
+ 4 IE sab d sp w * i cd Cab ef Ruo

veflog M (Th - w08, v b Z' 8,5y "} = 0 (6.10)
in which the non-tensorial term vanishes because of the identity (6.8).
In obtaining (6.10) we also had to make use of the structure
identities (6.4)°'" to introduce the curvature and torsion. These
and the local identities are therefore necessary to the local covariance
of the global {dentity. This is to be expected, as we pointed
out in the internal theory, since the local identities embody the
assumption of local invariance. A similar situatfon exists when the
global translational identity (6.4)® 1s written in a locally co-
variant form.

Ustng (6.7)**P we introduce T, o.M into (6.4)° and then
eliminate I by using (6.8); next subtract (6.10)(without the
o non-tensorial term) contracted with w to complete the covarfant
N derivative of y and also subtract (6.9) contracted with ' ,
< . Finally we collect terms to find the covariant derivatives of the
curvature and the torsion and the temm n;* C‘A;u (the only one
containing I1 ) which vanishes on account of the metricity ass-
umption (5.83). We are left with

a ] a
Ly ~ %V, - %,

iaM, R ® o0 (6.11)

u 3u

Ao o 8
) I; sp A;

;R where we have used the fact that L 1is a scalar to replace its ord-
d inary derivative by its covariant derivative. It is interesting to
| note that the covariance of this identity can only be established
T | by using all the other identities including the global Lorentz

L identity.

S

For ease of reference we collect all the identities together:

R R R R e A M P

Py

RPN wwmmsswwmﬂtméé i




(6.12)

(6.12)®

.12y

From these we can clearly see the similarity between the roles
played by the torsion and curvature; we may even go so far as to
interpret the torsion as the curvature associated with the trans-

lation group.

6.4 The Equations of Motion

The action is

1 = oLd‘x

which gives rise to the equations of motion:

e
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slo
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L
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E
L]
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o

e

Introducing the conccmitants and using the fact that

in (6.14)°,

Y

Du(

au(c l‘”) - o!‘p - oo.pl. s 0

pu
Ou(o Q

9 (el

<]
a

-]

u
e¥") - e¥ = 0

ab’

- .np‘b s 0 .
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(6.14)*

AL

(6.14)°

(6.15)

we may write the equations of mtion in the form:

(6.16)"
(6.16)°

ga;16)°

Ne may also write these in a manifestlv covariant form: Since o
is ¢ scalar density its covariant derivative 1s

Hence

uﬂhw- “%%m"°"“

- rv
A K

]

g g
Sab o ’5

(6.17)

(6.18)
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and so, using (6.7)a to introduce &, , (6.18) becomes

¥, - =o0. (6.19)
We have also
)]
(e X,7).,
= ez s oerfx™ - ew® 1™ (620

By the structure identity (6.12)c we may write
P o VH P Vi
'k ps K - (6.21)

Then, using (6.7)° to introduce M° , (6.20) and (6.21), the
equation of motion (6.16)b becomes '

(e I;pu);u -~ je supv :;vu = e o‘° L ¢« ¢ nkp . (6.22)

Fisally, since ﬂpu,b is an adjoint tensor its covariant deri-
vative is

pu Pu p i
ea™ ., = ea®p s erfia¥y

£ cd )

: - ey Cp gy BTy (6.23)
Using the structure identity (6.12)’ as well as (6.7)° the
equation of motion (6.16)° 1s

Cen™y), - bes’a%, = ezl . (6.24)

The equations of motion in covariant form are then (6.19), (6.22)
and (6.24).
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6.5 The Stress Tensors and their Conservation

It is customary to define a gravitational stress tensor by
¢ b g Ae) -.oo“‘l.tol‘". (6.25)

We know, however, that l“‘ is' not a tensor so we will call t‘“
the non-covariant strese density. We will define instead

T“!.o“L#el‘&“ (6.26)

which is a tensor and which we will call the total covariant strese
tensor density. We see that it is a source on the r,h.s. of the
tetrad field equation w@ich is now

ou . P o UV P
e, - jesf W . TP (6.27)
Stmilarly the non-covariant spin-stress density 1{s defined as
¥ 3 (el - u
S ! a-:-'-a% e ., (6.28)
which, again, is not a tensor. Define instead’

3““ t eX "‘b (6.29)

8s the total covariant spin-stress tensor density. The field
equation (6.24) {s then

pu P AV . of
e, -iesf av, = s, . (6.30

The local {dentities (6.12)b'° give explicit expressions for
these stresses. They are:
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P A P . Py
T o= ee L8, LA
wghb | qw ac
and
0, = o (V0 S,°%, v vz s, odu} . (6.32)

Because these stresses are sources it is necessary to find their
conservation laws. We could derive these directly from (6.31)

and (6.32) 1in which case we would have to use the global
{dentities, the Bianchi Identities and the equations of motion.
Instead we will use the equations of motion directly; this 1s much
shorter and produces the same results which stems from the fact that
the equations of motion and the {dentities are not all entirely

{independent.

For the spin-stress we have, on taking the divergence of both
sides of (6.30),

0 0]
‘ ‘b - (. n ‘b) .

e b (o sunvnw‘b’)” . (6.33)

H

By the Lorentz structure identity (6.12)' we may write

- i(nbu - nﬂu }

0
Y ab;up ab;ou

1"
abjup

) T - ed . of pu
= R BTy - MR T Cy 87 g

-]

v ]
visy A (6.34)

where we have used the Ricci ldentity on n""“. We also have

s s ¢ - oIV
v

H') ¥ u
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- - S v L] (6035)
and hence

e = eS* sV . esV . (6.36)
Jup Ap vu vV uie
Then, expanding out the last term of (6.33), using (6.34), (6.36)
and the second Bianchi ldentity, we finc

cd

ef
d C.f ab Rup . (6.37)

P - up
§ ab;po i a

By an almost identical calculation we find the conservation law
of the stress tensor. Taking the divergence of both sides of

(6.27):

. ou . P g W .
19. 0 (e X, );uo d (o Sy . );p ) (6.38)

The translational structure identity (6.12)C allows us to write

ou o Vi b ou
e ® Povk tRoa

+ dsVzx

pu K
up & ; (6.39)

4

.

where we have again used the Ricci ldentity. (6.36),(6.38) and
the second Bianchi ldentity now gives .

e up b
ANUEINE L WL (6.40)

The similarity between these conservation laws is striking and
they should be compared with that of the internal case (3.70). It
1s clear that neither stress will be coveriantly conserved

without either a special choice of Lagrangian or some further
restriction being placed on the gauge fields. As in the internal
case we may interpret the conservation conditions as orthogonality
conditions. We shall take this up in the next chapter when we
consider some special cases.
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6.6 Minimal Couplin

So far we have been dealing with the most general system which allows

for coupling between derivatives and makes it impossible to distinguish

the contributions made by the idividual fields to the stress tensors.
For example, if there is a coupling between the derivative of the
matter field and that of one of the potentials then this potential
would make a contribution to the concomitant ¥ ° which would
affect both the stress and the spin-stress of matter. We therefore,
as in the internal case, separate the general Lagrangian into a sum
of simpler ones each containing the derivatives of one field only.

We again observe that the concomitants associated with the field
derivatives are tensors and interpret this to mean that the corre-
sponding derivatives may be omitted from the L2:;rangian without
destroying the symmetry. In this way we can isolate the derivatives
into separate terms and then use the linearity of the identities

and the equations of motion to construct the complete Lagrangiam

as their sum.

s) The Matter Lagrangian

We omit the derivatives of both the potentials from the Lagrangian
whose contents reduce to

L, = LGV tavie:a) | (6.41)
It follows that

a .

Qv = 0; XP¥ = 0 (6.42)

and hence
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are both tensors by (6.7)b'c. We will call L. the matter
Lagrangian and it must satisfy the identities:

o o] a - |
R A 2 AT (6.44)
n
A
n’ = -9 vlie (6.44)°

n
p c d ¢
QS;bBW +‘la be“"r.’"-. s;bd'p'o(s'“)

]
P o« ¢yPsg. 8 d
T " ¥ SV (6.44)
We will omit the overscript m except where absolutely necessary.

b) The Gauge Field Lagrangians

We know that ~r ® s a tensor and hence we may omit the derivative
of the matter fmd from the general Lagrangian so that ¥ ° vanishes
identically. The transformation equation (6. 6) then shows that

¥, also becomes tensorial and therefore we may omit the matter field
from the Lagrangian entirely., Wi are then left with a purely gauge
Lagrangian containing only the gauge fields and their derivatives.

The existence of such & Lagrangian shows that the gauge fields by

themselves form a closed dynamic system. The field content of this
Lagrangian is

Lo - Locc:n:u:na) . (6.48)

However, we can further divide the Lagrangian by omitting derivatives
which avoids the possibility of having, for example, the curvature
coupled directly to the torsion.
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1) The Curvature Lagrangian

l‘-"‘“’ s a tensor and so we omit the derivatives of the tetrad

and take
: L, = L(e:w: dw) (6.46)
; then
("]
IV . o (6.47)
) and
| I° o M° 2
w w ed , of g
% " 8% - @ Cea ap 87T (6.48)° R

We will call Lw the curvature Lagrangian and it must satisfy
the identities:

. Ap adb - 'y

! baw ~ A8 T Ry, 7 O (6.49)
¥ - T e -0 A nu‘f R adb ‘ " b l
nC ¢ ab ui (6.49)
. ’ W .

. u ¢ d uo cd of ¢

| MY 8, 0", + 48" 0 R % =0 (6.49)
y
; W d '

TP = O (6.49)

Co Ap Y S ¢
‘ o o '8 ab 0 . (6.49)

N 4 e v hRs S e o SR
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The Torsion Lagrangjgn

Fimlly, we omit the derivatives of the Lorentz potential w:
L, * L.(o:w:ao) (6.50)
e Ao
n ‘b s 0O (‘05])
e e cd . b o0 Y
ll. - t‘ - Scd a :b (6.52)
e e
P . Qq°f b
I°, = 8°, . (6.52)
Ao . 8 -
Lo - 1% S = O (6.53)
l.l ' . ® A z ¥ g 6.53 b
c "% Ta AL ( . )
' . 2™ .0 (6.53)¢
% v ¢ d We ¢ od d
‘ n Spwa®, * X S el " O (6.53)
A 3e L gwgc (6.83)°
{ ab ¢ abd v ’ *

ln?alI of the above we have omitted all overscripts which are not
s absolutely necessary.

LB R s i AR A
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c) The Complete Lagrangian

Since the identities (6.12) are Tinear in the Lagrangian we
can take the complete minimally coupled Lagrangian as

L.L_.L..;,' (6.54)

@

which will satisfy the identities (6.12) provided that the
individual Lagrangianssatisfy their respective identities.

We have also

p S S ne
l‘l‘ - nf +«nf +n (6.55)

from which it follows that

| ] [ ] @ ‘
1'." J 1‘9 . 1'“‘ + T° (6.57) -

where, by the identities (6.44)°, (6.49)° and (6.53)°,
n
p - A p -
T, oo (L3, iv: v ?x} (6.58)
B is the matter stress tensor density,

e
ASERUERE (5 AR LR AN (6.59)

is the tetrad etrese tensor density and
"]
P A e ue ad ‘
T, e (LS -0 cb*ux } (6.60)

is the Lorents strese temsor density.

In the same way we have

n e (
t"‘b . Ep.b A 2““ . Ep‘b (6.61)

ks s e, e Mo R

s . i
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hence |

:9 . 8° . 8° (5;62)

where, by the identities (6.44)%, (6.49)% and (6.54)% ,

o 8 . 63
" Sy Y (6.63)

is the matter cp&-wuu density ,
»
is the tetrad cpiu-otmu density and

pu g ¢ d
= eXTU S, ", " (6.64)

« 0 (6.68)

i

is the Zorents epin-stvess density which vanishes identically,

8°,, corresponds to what we previously called (Chap. 4) the

fntrinsic spin of matter. By analogy, we see that the tetrad

also has a covariant spin while the Lorentz potential does not.
Formally, the existence of a covariant tetrad spin is due to the
fact that the tetréd is a gauge tensor unlike any of the other
gauge potentials wé have encountered. This has other consequences
al30 in that in the internal theory, for example, when we specialized
to the minimally coupled Lagrangian the 1dentities demanded that |
the {nhomogeneous ferm which 1s responsible for the non-conservation
of the current vanished (3.79)%, Here the tensortal mature of

the tetrad leads to additional terms appearing in the equivalent
tdentities (6.49)€ and (6.53)7 and hence the corresponding
stresses are not automatically conserved when the Lagrangfan {is
minimally coupled.

The vanishing of the Lorentz spin-stress implies that the Lorent:

potential has no covariant intrinsic spin which corresponds, in the
internal theory, to the gauge potentials having no covariant charge.

BRI SRR R e I U T
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6.7 Detailed Conservation

The stress tensors are still rnupled by the field equations
since these equations are -sourced by the total stresses.

From (6.58) we have

n

o - P - A P, @ .
Ta'so o (el o (¥ V), (6.66)
Using the global identity (6.44)% , the matter equation of motion
(6.19), equation (6.17) and the Ricci Identity to commute the

covariant derivatives of the matter field we arrive at

ab (6.67)

ol L o
T -1‘0 sxutt.bkﬂ .

A e
In a similar vay, except fo} the use of the first Bianchi Identity,
(6.60) gives
&b (6.68)
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where si i3 the total spin-stress. Because of (6.65) we can
write this as:

W W
T .Tuso
g A

) ) b ‘
" o - @, ) R . (6.69)

]
Finally, by a similar calculation proceeding from (6.59), or by
the direct use of (6.40), we have

e w o |
TP wp b & S Uy g @ u &b (6,70
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We see that the couplings, through which energy and momentum are
exchanged between the fields, occur in essentially two ways: &
stress-torsion coupling and a spin-curvature coupling both of which
have the form of the generalized Lorentz force we found in the
internal theory (Chap. 4). Note that, as is shown by the signs,
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