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Abstract

Missing data creates various problems in analysing and processing of

data in databases. Due to this reason missing data has been an area of

research in various disciplines for a quite long time. This report intro-

duces a new method aimed at approximating missing data in a database

using a combination of genetic algorithms and neural networks. The

proposed method uses genetic algorithm to minimise an error function

derived from an auto-associative neural network. The error function is

expressed as the square of the difference between the actual observa-

tions and predicted values from an auto-associative neural network. In

the event of missing data, all the values of the actual observations are

not known hence, the error function is decomposed to depend on the

known and unknown (missing) values. Multi Layer Perceptron (MLP),

and Radial Basis Function (RBF) neural networks are employed to train

the neural networks. The research focus also lies on the investigation

of using the proposed method in approximating missing data with great

accuracy as the number of missing cases within a single record increases.

The research also investigates the impact of using different neural net-

work architecture in training the neural network and the approximation
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found to the missing values. It is observed that approximations of miss-

ing data obtained using the proposed model to be highly accurate with

95% correlation coefficient between the actual missing values and cor-

responding approximated values using the proposed model. It is found

that results obtained using RBF are better than MLP. Results found us-

ing the combination of both MLP and RBF are found to be better than

those obtained using either MLP or RBF. It is also observed that there

is no significant reduction in accuracy of results as the number of missing

cases in a single record increases. Approximations found for missing data

are also found to depend on the particular neural network architecture

employed in training the data set.
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Chapter 1

Introduction

1.1 Statement of the problem

Inferences made from available data for a certain application depends

on the completeness and quality of the data being used in the analysis.

Thus, inferences made from a complete data are most likely to be more

accurate than those made from incomplete data.

Missing data in a database may arise due to various reasons. To mention

some it can arise due to data entry errors, respondents non-response

to some items on data collection process, etc. In Table 1.1 we have a

database consisting of five variables namely, age, gender, race, income,

and educational level, where the values for some variables are missing.

Assume Table 1.1 consists of many records of the five variables. But some

of the variables in some records are not available. For instance, in Table

1.1 the income and race for the second and fourth records respectively

1



CHAPTER 1. INTRODUCTION

Table 1.1: Table with missing values

Age Gender Race Income Educational level

25 Male Black 5000 B.Sc
33 Female White ? M.Sc
45 Female Black 1500 Ph.D
15 Male ? 3000 Diploma

are not available. The question that arises in this case is how do we know

the income for the second record? Similarly how do we know the race for

the fourth entry? Are there any mechanisms to predict or approximate

the missing data depending on the interrelationships that exist between

the variables in the database?

The aim of this research is to approximate missing data in databases using

a technique which employs combination of genetic algorithm and neural

networks. The proposed method uses the interrelationships between the

variables in the database to approximate the missing values.

1.2 Missing data

Missing data creates various problems in many applications which depend

on good access to accurate data. Hence, methods to handle missing data

have been an area of research in statistics, mathematics, and other various

disciplines [Yuan 2000; Allison 2000; Rubin 1978]. The reasonable way

to handel missing data depends upon how data points become missing.

According to Little and Rubin [1987] there are three types of missing

2



CHAPTER 1. INTRODUCTION

data mechanisms. They are Missing Completely at Random (MCAR),

Missing at Random (MAR) and non-ignorable. MCAR situation arises if

the probability of missing value for variable X is unrelated to the value

X itself or to any other variable in the data set. This refers to data

where the absence of data does not depend on the variable of interest

or any other variable in the data set [Rubin 1978]. MAR arises if the

probability of missing data on a particular variable X depends on other

variables, but not on X itself and the non-ignorable case arises if the

probability of missing data X is related to the value of X itself even if

we control the other variables in the analysis [Allison 2000]. Depending

on the mechanism of missing data, currently various methods are being

used to treat missing data. The various methods used in treatment of

missing data are presented in Chapter 4.

1.3 Importance of the research

As pointed out previously the presence of missing data in databases cre-

ates various problems hence, one of the obvious uses of the research is

that it directly provides a new and efficient method for alleviating the

problem by approximating the missing values in the database. Other

important contributions of the research are:

• Introduces a new research direction into the literature of missing

data analysis through neural networks and evolutionary computing

3



CHAPTER 1. INTRODUCTION

angle.

• As complete and accurate data are the basis for good decisions,

the research will have crucial contribution to the process of decision

making process.

• Highlights the application of the proposed algorithm in this research

to other problems.

• Apart from applications in databases, there are time critical appli-

cations which require us to estimate or approximate the values of

some missing variables that have to be supplied in relation to the

values of other corresponding variables in some systems. Such sit-

uations may arise in a system which uses a number of instruments

and in some cases one or more of the sensors used to monitor the

instruments fail. In such situation the value of the sensor have to be

estimated within short time and with great precision, and by taking

into account the values of other sensors in the system. The proposed

method in this research can be used to approximate the values of

the missing sensors in the system.

1.4 Overview of approach

The approach used in this research employs a genetic algorithm to min-

imise an error function derived from an auto-associative neural network.

The error function is expressed as the square of the difference between

4



CHAPTER 1. INTRODUCTION

the actual observations and predicted values from an auto-associative

neural network. In the case of missing data, all the values of the actual

observations are not known, hence, the error function is decomposed to

depend on the known and unknown (missing) values. Multi-Layer Per-

ceptron (MLP), and Radial Basis Function (RBF) neural networks are

employed to train the neural networks.

To evaluate the accuracy of the approximated missing values using the

model a complete database was used in the experiment. Entries from

the database were removed and approximated using the model. A neu-

ral network toolbox by Nabney [2001] and genetic algorithm toolbox by

Houck et al. [1995] were used to implement the proposed model. Corre-

lation coefficients and standard error of approximated values were used

to evaluate the accuracy and validity of approximated values using the

model.

1.5 Overview of results

The results of the research has revealed a high correlation coefficient be-

tween approximated values and actual missing data removed from the

database. This means that the proposed method’s approximation to

missing values to be highly accurate. It is found that the specific ar-

chitecture used in training the data set have a significant impact on the

approximations. There was no significant reduction in accuracy observed

5



CHAPTER 1. INTRODUCTION

as the number of missing cases in single record gets bigger. Results found

using both MLP and RBF combined are better than either MLP or RBF

individually. Results found using RBF are relatively better than MLP.

1.6 Structure of report

In the following chapter, background information regarding artificial neu-

ral networks is presented. Definition of neural networks and different neu-

ral network architecture are described. Chapter 3 begins by introducing

genetic algorithms and their applications in finding solutions to difficult

real world optimization problems. The significance of the literature in

relation to the research is also highlighted.

Chapter 4 describes missing data, different missing data mechanisms and

various missing data imputation algorithms. Chapter 5 begins by giving

the research question that the research is attempting to answer in this re-

search. This leads to the formal hypothesis detailing the results expected

in the research regarding the approximated values in missing databases.

Detailed methodology used in the research process is outlined at the end

of the chapter.

Chapter 5 presents results obtained from the experiments and corre-

sponding discussion on the results. Hypotheses testing is done based

on the results observed. Finally, Chapter 6 presents conclusion, and pos-

sible future research. Applications of the proposed algorithm in finding

6



CHAPTER 1. INTRODUCTION

new solutions to other problems is also given at the end of the chapter.

7



Chapter 2

Artificial Neural Networks

A neural network is an information processing paradigm that is inspired

by the way biological nervous systems, like the brain process information

[Yoon and Peterson 1990; Haykin 1999]. It is a machine that is designed

to model the way in which the brain performs a particular task or function

of interest [Haykin 1999].

A neural network consists of four main parts [Haykin 1999]. These are

the processing units uj, where each uj has a certain activation level aj(t)

at any point in time, weighted interconnections between the various pro-

cessing units which determine how the activation of one unit leads to

input for another unit, an activation rule which acts on the set of input

signals at a unit to produce a new output signal, and a learning rule that

specifies how to adjust the weights for a given input/output pair. One of

the main important features of a neural networks is its ability to adapt

to new environment. Hence, learning algorithms are critical to neural

8



CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

networks.

Due to their ability to derive meaning from complicated data, neural net-

works are used to extract patterns and detect trends that are too com-

plex to be noticed by many other computer techniques [Hassoun 1995]. A

trained neural network can be considered as an expert in the category of

information it has been given to analyse [Yoon and Peterson 1990]. This

expert can then be used to provide predictions given new situations. Be-

cause of their ability to adapt to a non-linear data neural networks are

also being used to model various non-linear applications [Haykin 1999;

Hassoun 1995].

Neural networks have many advantages as machine learning technique

and some of them are outlined as follows.

• Adaptive learning: An ability to learn how to do tasks based on

the data given for training or initial experience [Haykin 1999].

• Nonlinearity: An artificial neuron can be linear or nonlinear. A

neural network made up of an interconnection of nonlinear neurons

is nonlinear. Haykin [1999] points that, nonlinearity is a highly

important property, especially if the underlying physical mechanism

responsible for generation of the input signal is inherently nonlinear.

• Adaptivity: Neural Networks have a built in capability to adapt

their synaptic weights to changes in the surrounding environment.

In particular, a neural network trained to operate in a specific envi-

9



CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

ronment can easily be retrained to deal with minor changes in the

operating environmental conditions [Haykin 1999].

• Fault Tolerance: Partial destruction of a network leads to the cor-

responding degradation of performance. However, some network ca-

pabilities may be retained even with major network damage [Haykin

1999].

2.1 Simple neuron

A neuron is “an information-processing unit that is fundamental to the

operation of a neural network”[Haykin 1999, p.10]. In neural networks

we can have a single or multiple input neurons as illustrated in Figure

2.1 and 2.2.

Figure 2.1 shows a single input neuron. The scalar input p is multiplied

by the scalar weight w to form wp, one of the terms that is sent to the

summer. The other input 1 is multiplied by a bias b and then passed to

the summer. The summer output n often referred to as the net input, goes

into an activation function f which produces the scalar neuron output a.

Figure 2.2 shows a multiple input neuron with R inputs. The individual

inputs are each weighted by corresponding elements w11, w12, ....w1R, of

the weight matrix W . The neuron has a bias b, which is summed with

10



CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

Figure 2.1: Single input neuron

the weighted inputs to form the net input n:

n = w11p1 + w12p2 + ...... + w1RpR + b (2.1)

Equation (2.1) can be written in matrix form as:

n = WP + b (2.2)

Where the matrix W for the single neuron case has only one row. Now

the neuron output can be written as

a = f(WP + b) (2.3)

The bias b is an external parameter of the neuron. The activation function

f in Figure 2.1 and 2.2 defines the output of a neuron in terms of the

result from n. According to Haykin [1999] there are three basic types of

activation functions. These are the threshold functions, piecewise linear

function and sigmoid function.

11
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Figure 2.2: Multiple input neuron

2.2 Learning rules

One of the most significant attributes of a neural network is its ability to

learn by interacting with its environment or with an information source

[Hassoun 1995; Haykin 1999]. Therefore learning algorithm are central

to neural networks. Depending on the existence or absence of a target

value in the training process, learning rules in neural networks are mainly

classified into supervised and unsupervised learning.

2.2.1 Supervised learning

Supervised learning which is also called learning with a teacher is learning

which involves a target values for the network outputs [Haykin 1999;

Bishop 1995]. For each input pattern the value of the desired output is

specified.

Supervised learning is based on the system trying to predict outcomes

12
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for known examples and is a commonly used training method [Freeman

and Skapura 1991]. It compares its predictions to the target answer and

adjusts the weights accordingly. The data starts as an input to the input

layer neurons. The neurons pass the inputs along to the next nodes.

In a supervised learning system, the predicted output is compared to the

actual or target output. If the predicted output is equal to the actual

output, no change is made to the weights in the network. However, if the

predicted output is higher or lower than the actual or target value, the

error is propagated back through the system and the weights are adjusted

accordingly.

The process of feeding errors backwards through the network is called

back propagation [Nabney 2001]. Both the Multi-Layer Perceptron and

the Radial Basis Function are supervised learning techniques. The Multi-

Layer Perceptron uses the back-propagation while the Radial Basis Func-

tion uses a feed-forward approach which trains on a single pass [Nabney

2001].

2.2.2 Unsupervised learning

The other form of learning is unsupervised learning or learning without

teacher as it is called. Unsupervised learning does not involve the use

of target data. Instead of learning an input-output mapping, the aim is

to discover or model the probability of input data [Bishop 1995]. Neural

13
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networks which use unsupervised learning are most effective for cluster-

ing or detection of similarities on unlabeled patterns of a given training

[Hassoun 1995; Kolarik and Rudorfer 1994]. In unsupervised learning

the idea is to optimize some criterion or performance function defined in

terms of the output activity of the units in the network. The main use

of unsupervised neural networks are in cluster analysis where the goal is

to group or classify in to groups. The advantage of the neural network

for this type of analysis is that it requires no initial assumptions about

what constitutes a group or how many groups there are [Hassoun 1995].

2.3 Architecture of neural networks

The arrangement of neural processing units and their interconnections in

neural network can have a profound impact on the processing capabilities

of a network [Haykin 1999]. Hence, there are many different connections

of how the data flows between the input, hidden and output layers. Neu-

ral networks have some set of processing units that receive inputs from

the outside, known as the input units. Most neural networks also have

one or more layers of hidden layer that receive inputs only from other

layers. A layer of processing unit receives a vector of data or the outputs

of a previous layer [Freeman and Skapura 1991]. The set of processing

units that represent the final result of the neural networks are known as

output units. The following sections present single layer perceptron and

proceed to the two neural network architecture (MLP and RBF) which

14
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are used in the research.

2.3.1 Single layer perceptrons

A single layer perceptron network consists of a single layer of output

nodes. The inputs are fed directly to the outputs via a series of weights.

In this way it can be considered as the simplest kind of feed-forward

network. Single layer networks implement the well known statistical

techniques of regression and Generalised Linear Models (GLMs) [Nab-

ney 2001].

Figure 2.3 depicts the architecture of a single layer perceptron. There

is a direct connection between the inputs and outputs. If we denote the

input values to the network by xi where i = 1, ......, d. The output aj

associated with each output unit can be represented [Nabney 2001]:

aj =
d∑

i=1
w

(1)
ji xi + b

(1)
j j = 1, ...., c (2.4)

Where w
(1)
ji represents the elements of the weight matrix, b

(1)
j are the

bias parameters, and c the number of outputs. The variables aj are then

transformed by the activation functions of the output layer to give the

output values yj. The three different activation functions commonly used

are the linear, logistic sigmoidal and the softmax activation functions

[Nabney 2001]. The linear activation function is appropriate in regression
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problems. It is given by

yj = aj (2.5)

The sigmoidal activation function which is commonly used for classifica-

tion problems is given by

yj =
1

1 + exp(−aj)
(2.6)

And finally the softmax is

yj =
exp(aj)

∑
j′ exp(aj′)

(2.7)

Figure 2.3: Architecture of single layer perceptron
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2.3.2 Multi layer perceptrons

Multi Layer Perceptrons (MLP) neural networks consist of multiple lay-

ers of computational units, usually interconnected in a feed-forward way.

Each neuron in one layer is directly connected to the neurons of the sub-

sequent layer. In most cases the network consist of two layers of adaptive

weights with full connectivity between inputs and hidden units, and be-

tween hidden units and outputs [Nabney 2001]. In many applications the

units of these networks apply a sigmoid function as an activation function

[Bishop 1995].

Figure 2.4 shows the architecture of an MLP network, with three input

units, a hidden layer with two neurons and three output units. Analogous

to single layer perceptron if xi denotes input values to the network, where

i = 1, ......, d. The first layer of the network forms M linear combinations

of these inputs to give a set of intermediate activation variables a
(1)
j with

one variable a
(1)
j associated with each hidden unit.

aj =
d∑

i=1
w

(1)
ji xi + b

(1)
j j = 1, ...., M (2.8)

In equation (2.8) w
(1)
ji represents the elements of the first-layer weight

matrix and b
(1)
j are the bias parameters associated with the hidden units.

The variables of a
(1)
j are then transformed by the non-linear activation

functions of the hidden layer. If hyperbolic tangent function (tanh) is

taken as an activation function, the outputs of the hidden units are then
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Figure 2.4: MLP architecture

given by

z
(1)
j = tanh(a

(1)
j ) j = 1, ...., M (2.9)

The zi are then transformed by the second layer of weights and biases to

give second-layer activation values a
(2)
k

a
(2)
k =

M∑

i=1
w

(2)
kj zj + b

(2)
k k = 1, ...., c (2.10)

c in the above equation denotes the number of outputs. At the final stage

the values are passed through the output unit activation function to give

the output values yk where k = 1, ..., c. There are three activation func-

tions which are commonly used [Nabney 2001]. For regression problems
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the linear activation function is used

yk = a
(2)
k (2.11)

For classification problems involving multiple independent attributes the

logistic sigmoidal activation function is applied

yk =
1

1 + exp(−a
(2)
k )

(2.12)

Finally for more usual kind of classification problems in which there are a

set of c mutually exclusive classes, the softmax activation function given

below is applied

yk =
exp(a

(2)
k )

∑
k′ exp(a

(2)
k′ )

(2.13)

Back-propagation: MLP networks apply different learning techniques,

the most popular being back-propagation [Bishop 1995]. In back-propagation

the output values are compared with the correct answer to compute the

value of some predefined error-function. By various techniques the error

is then fed-back through the network. Using this information, the algo-

rithm adjusts the weights of each connection in order to reduce the value

of the error-function by a small amount. After repeating this process

for a sufficiently large number of training cycles the network converges
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to some state where the error of the calculations is small. In this state

the network is said to have learned a certain target function [Bishop

1995; Haykin 1999]. This algorithm provides a computationally efficient

method for the training of multi-layer perceptron [Haykin 1999]. Given

yj(k) = φj(vj) (2.14)

dj(k) =
n∑

i=1
wijyi (2.15)

The error at the output of neuron j is given as:

ej(k) = yj(k)− dj(k) (2.16)

Where dj is the desired output, yj is the neuron output, and k indicates

the kth output. The sum of the squared output errors is given by:

ε(k) =
1

2

l∑

j=1
e2
j(k) (2.17)

l is the number of neurons of the output layer. The average squared

error energy is obtained by summing equation (2.17) over all n and then

normalising with respect to the set size N :

εav =
1

N

N∑

k=1
ε(k) (2.18)

The objective at this stage is to adjust the parameters (synaptic weights

and bias levels) of the network to minimize equation (2.18) using an
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optimization technique [Haykin 1999].

2.3.3 Radial basis function

Supervised neural network can be designed in a variety of ways [Haykin

1999]. The above section described one of the ways a supervised neu-

ral network can be designed. The back-propagation method used in

MLP networks is considered as the application of recursive technique or

stochastic approximation [Haykin 1999]. Radial Basis Function (RBF)

networks employ a different design approach which is considered as curve-

fitting [Haykin 1999].

RBF networks are feed-forward networks trained using a supervised train-

ing algorithm. They are typically configured with a single hidden layer

of units whose activation function is selected from a class of functions

called basis functions [Haykin 1999].

While similar to back propagation in many aspects, radial basis function

networks have several advantages. They usually train much faster than

back propagation networks [Nabney 2001]. They are also less prone to

problems with non-stationary inputs due to the behavior of the radial

basis function [Hassoun 1995]. Figure 2.5 depicts the architecture of

an RBF network. In back-propagation networks, all weights in all of

the layers are adjusted at the same time. On the other hand in radial

basis function networks, the weights into the hidden layer basis units are
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Figure 2.5: RBF architecture [Haykin 1999]

usually set before the second layer of weights are adjusted. Radial basis

function mapping can be represented as [Nabney 2001]

yk(x) =
M∑

j=1
wkjφj(x) + wko (2.19)

Where φj are the basis functions, and wkj are the output layer weights.

The three commonly used basis functions in RBF are [Haykin 1999]

1. Gaussian functions:

φ(r) = exp


− r2

2σ2


 for some σ > 0 and r ∈ R (2.20)

22



CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

2. Multiquadrics:

φ(r) =
(
r2 + c2

) 1
2 for some c > 0 and r ∈ R (2.21)

3. Inverse multiquadrics:

φ(r) =
1

(r2 + c2)
1
2

for some c > 0 and r ∈ R (2.22)

2.4 Chapter summary

This chapter presented background material related to artificial neural

networks. A neural network is an information processing paradigm that

is inspired by the way biological nervous systems, like the brain process

information. It is designed to model the way in which the brain performs

a particular task or function of interest. The interconnection of units in

neural networks affect the performance of neural networks, hence, there

are various ways the units can be connected in neural network and based

on the connections between the units they are classified into various archi-

tectures. MLP and RBF network architectures are used in this research

and more specific details related to the MLP and RBF architecture used

in this research are given in Chapter 5.
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Chapter 3

Genetic Algorithms

Genetic algorithms (GAs) are defined as algorithms that are used to find

approximate solutions to difficult problems through application of the

principles of evolutionary biology [Michalewicz 1996]. Genetic algorithms

use biologically derived techniques such as inheritance, mutation, natural

selection, and recombination [Banzhaf et al. 1998].

The idea behind genetic algorithms is to do what nature does and they

use vocabulary borrowed from natural genetics [Michalewicz 1996]. GAs

have been proved to be successful in optimization problems like wire

routing, scheduling, adaptive control, game playing, cognitive modeling,

transportation problems, traveling salesman problems, optimal control

problems and database query optimization problems [Michalewicz 1996].

Genetic algorithms view learning as a competition among a population of

evolving candidate problem solutions [Alfonseca 1991; Back et al. 1992].

A fitness function evaluates each solution to decide whether it will con-
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tribute to the next generation of solutions. Through operations analo-

gous to gene transfer in sexual reproduction, the algorithm creates a new

population of candidate solutions [Banzhaf et al. 1998].

3.1 Why genetic algorithms?

There are so many ways that makes a genetic algorithm superior to other

optimization techniques. GAs differ from traditional optimization and

search methods in several aspects [Jones and Konstam 1999; Pendharkar

and Rodger 1999]. Rather than focusing on a single candidate solution

genetic algorithms operate on populations of candidate solutions, and the

search process favors the reproduction of individuals with better fitness

values than those of previous generations [Goldberg 1989; Michalewicz

1996]. Whereas calculus-based and other traditional optimization meth-

ods of solution are local in the scope of their search and depend on

well-defined gradients in the search space.

Thus, GAs do not only differ in approach from traditional optimization

methods but also offer an alternative method for cases in which tradi-

tional methods are inappropriate. Genetic algorithm as a discrete opti-

mization process is distinct from more conventional optimization tech-

niques in four ways [Goldberg 1989; Michalewicz 1996; Forrest 1996]:

• GAs encode designs in a string, and it is this encoding which the

GA works with. Each individual in a population is an encoding
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of a possible solution to the discrete optimization problem being

analyzed.

• GAs work simultaneously with a population of designs, not a single

design or candidate solution.

• GAs use only an objective function to evaluate candidate solutions,

not derivatives or other auxiliary information.

• GAs use random change in their search, not solely on deterministic

rules.

Taking the above mentioned merits of genetic algorithm into considera-

tion, the choice of genetic algorithm as an optimization method in this

research was imminent from the fact that genetic algorithms provide more

feasible and optimum solution than other ordinary optimization methods.

3.2 Structure of genetic algorithm

The procedure of a genetic algorithm is given as follows [Goldberg 1989;

Michalewicz 1996]

1. Generate randomly a population of solutions.

2. Calculate the fitness for each of the population elements.

3. Create offsprings by three genetic operators (reproduction, crossover,

and mutation).
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4. Evaluate the new solution and calculate the fitness of each solution

5. If optimum solution is achieved, stop and return, otherwise go to

step 3.

Thus, the most common steps involved in genetic algorithm for solving

a particular problem involves [Michalewicz 1996, p.17] the following:

• Representation of the problem.

• Generation of an initial population of potential solutions.

• Developing fitness or evaluation function.

• Determining genetic operators that alter the composition of children.

• Determining various parameters that the genetic algorithm uses

(population size, probabilities of applying genetic operators, etc.).

The following pseudo-code from Michalewicz [1996] illustrates the high

level description of how genetic algorithms work. P (t) represents the

population at generation t.
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procedure genetic algorithm
begin

t ← 0
initialise P (t)
evaluate P (t)
while (not termination condition) do
begin

t ← 0
select P (t) from P (t− 1)
alter P (t)
evaluate P (t)

end
end

Michalewicz [1996] states that, unlike evaluation programs which leave

the original problem unchanged, a genetic algorithm transforms the prob-

lem into appropriate form. This process is depicted in Figure 3.1 where

the problem will be modified first in some form before the genetic algo-

rithm is applied.

Problem Genetic 
Algorithm

Modified
Problem

Figure 3.1: Genetic algorithm approach [Michalewicz 1996]
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The major steps involved in genetic algorithms are Encoding, Evaluation,

Crossover, Mutation and Decoding. To make the discussion more easier a

basic explanation is given to understand how the different steps of genetic

algorithms work in solving a particular optimization problem.

The following problem will be used throughout this section to make the

discussion on genetic algorithm concepts more easier. The example will

be to maximize the function f = −x2 + 10x + 2 over the integer interval

of [0, 10].

f(x) = −x2 + 10x + 2 (3.1)

3.3 Optimization of a simple function

Applying elementary mathematical techniques, it can be easily observed

that equation (3.1) is maximized when x=5. Now the following discus-

sion will lead us on how genetic algorithm can be used to maximize this

function to find the approximate maximum solution.

3.3.1 Representation of the problem

The first and most difficult step in genetic algorithm is encoding the

problem in a suitable manner. It is often the most difficult aspect of

solving a problem using genetic algorithms. When applying them to a

specific problem it is often hard to find an appropriate representation of

the solution that will be easy to use in the crossover process.

29



CHAPTER 3. GENETIC ALGORITHMS

It should be possible to encode many possible solutions to create the

initial population. The traditional way to represent a solution is with a

string of zeros and ones. However genetic algorithms are not restricted

to this encoding, they can also be represented in real or some other way

[Michalewicz 1996]. For this example a binary string representation will

be used.

Considering the problem defined above. The possible solutions are ob-

viously just numbers, so the representation is simply the binary form of

each number. For instance, the binary representations of 7 and 8 are

0111 and 1000, respectively. Note that zero is added to the beginning of

the string 0111 even though it has no real meaning. It is added so that

all the numbers in the set have the same length. These strings are called

chromosomes and each element (or bit) of the string is called a gene. Af-

ter representing the problem, the next step is generating randomly many

chromosomes and they constitute the initial population.

3.3.2 Evaluation

The evaluation function plays an important role in genetic algorithms.

The evaluation function is used to decide how good a chromosome is. The

evaluation function usually comes straight from the problem. In this case

the evaluation function would simply be the function f = −x2 +10x+5,

and the larger the value for f , the better, as the aim is to maximize the

function. So, in this case, the evaluated values for 7 and 8 are
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f(7) = 26

f(8) = 21

From the above evaluation function it can be observed that 7 is a better

solution than 8, because 7 has a higher fitness than 8. This fitness is

then used to decide the probability that a particular chromosome would

be chosen to contribute to the next generation. The scores are normal-

ized and then used to create a cumulative probability distribution. The

cumulative probability distribution is used in the crossover process.

The stopping criteria is used in the evaluation process to determine

whether or not the current generation and the best solution found so

far are close to the global optimum. Various stopping criteria can be

used, and usually more than one is employed to account for different

possibilities during the running of the program. The decision depends

on whether an optimal solution is found, optimal solution is not found,

a local optimum is found, and etc.

The standard stopping criteria that is used to stop the procedure is after

a given number of iterations which is called the number of generations in

genetic algorithm. This is so that if we do not find a local optimum or

a global optimum and do not converge to any one point, the procedure

will still stop at some given time.

Another stopping criteria is to stop after the best solution has not changed

over a specified number of iterations. This will usually happen when an
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optimum solution which can be either local, global or a point near the

optimum solution is found. Another stopping criteria is when the aver-

age fitness of the generation is the same or close to the fitness of the best

solution.

3.3.3 Crossover

Crossover can be a fairly straightforward procedure. In this example,

which uses the simplest case of crossover, two chromosomes are randomly

chosen to crossover. Randomly pick a crossover point, and then switch

all genes after that point. For example, using the chromosomes

v1 = 0111

v2 = 1000

It can be randomly chosen the crossover point to be after the second gene

v1 = 01 | 11

v2 = 10 | 00

Switching the genes after the crossover point would give

v′1 = 0100 = 4

v′2 = 1011 = 11

Now the two new chromosomes will be moved into the next population

called the next generation. Not every chromosome is used in crossover.
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The evaluation function gives each chromosome a score which is used

to decide that chromosomes probability of crossover. The chromosomes

are chosen to crossover randomly and the chromosomes with the highest

scores are more likely to be chosen.

The cumulative distribution created in the evaluation stage is used to

choose the chromosomes. A random number between zero and one is

generated to choose which chromosome corresponds to the distribution.

This is done again to get a pair, then the crossover is performed and both

the new chromosomes are moved into the new generation.

This will hopefully mean that the next generation will be better than the

last because only the best chromosomes from the previous generation

were used to create this generation. Crossover continues until the new

generation is full.

It is possible to check each new chromosome to make sure it does not

already exist in the new generation. This means that a variety of possible

solutions in each generation will be obtained, but also that once the

optimal solution in one chromosome is found, the other chromosomes

will not probably be optimal.

This means that the average fitness of the generation can never be as

good as the fitness of the optimal chromosome, which could be used as

a decision criteria on when to stop. It is also possible to move the best

solution from the previous generation directly into the new generation.
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This means that the best solution can never get any worse since even if

on average the generation is worse, it will still include the best solution

so far. There can also be two point crossover. In this case we randomly

choose two crossover points and switch the genes between the two points.

In our problem we could pick the points after the first gene and after the

third gene.

v′1 = 0 | 11 | 1

v′2 = 1 | 00 | 0

to get

v′′1 = 0001 = 1

v′′2 = 1110 = 14

There are many different crossover methods which can be used in different

manners, accordingly. It is important to choose the crossover method

so that it will not be possible to reach unacceptable chromosome (an

infeasible solution).

3.3.4 Mutation

The next step that follows after cross over is mutation. Mutation is

used so that the solution will not be confined to a local optimum, which

makes genetic algorithm peculiar from other optimization techniques like
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hill climbing and simulated annealing. Due to the randomness of the pro-

cess occasionally the chromosomes can be near a local optimum solution

rather than near the global optimum solution. Therefore the chromo-

somes near the local optimum will be chosen to crossover because they

will have the better fitness and there will be very little chance of finding

the global optimum solution.

Mutation is therefore a completely random way of getting to possible

solutions that would otherwise not be found. Mutation is performed after

crossover by randomly choosing a chromosome in the new generation to

mutate. A random point is chosen to mutate by switching that point.

For instance, in the example we had v1 = 0111. If we chose the mutation

point to be gene three, v1 would become v′1 = 0101. We simply changed

the 1 in position three to a 0. If there had been a 0 in position three then

we would have changed it to a 1. This is extremely easy in our example

but we do not always use a string of zeros and ones as our chromosome.

Like crossover, mutation is designed specifically for the problem that

it is being used on. Inversion is a different form of mutation. It is

sometimes used in appropriate cases. Here the inversion operator on

our basic example will be explained. The inversion operator consists of

randomly choosing two inversion points in the string and then inverting

the bits between the two points. For instance v2 = 1000, the two points

are chosen after gene one and after gene three (v2 = 1 | 00 | 0).

Now, since there are only two genes between the inversion points, they
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are switched to give v′2 = 1000. If there was a larger chromosome, say

v3 = 110100101001111 the inversion points can be chosen after the third

point and after the eleventh point. v3 = 110 | 00101001| 1111. Now,

we start at the ends of the cut region and switch the genes at either end

moving in to get v′3 = 110001010011111. Essentially we are just reversing

(or inverting) the order of the genes in between the two chosen points.

3.3.5 Decoding

After repeating this step up to a given number of generations, the final

stage is to convert the final strings of zeros and ones to its corresponding

real value. This value found is supposed to be the optimum solution

obtained by the genetic algorithm.

In this example if the final chromosome was 0100, its corresponding real

value is 4 and the value of the function evaluated at this point is

f(4) = −x2 + 10x + 5 = (−4)2 + 10(4) + 5 = 29.

Figure 3.2 shows the graphic representation of the above genetic oper-

ations that are performed by genetic algorithm. Initially at generation

Tn we have a population consisting of four chromosomes. After apply-

ing mutation and crossover we get a new population at generation Tn+1,

which is more fit (evaluated in terms of a fitness function) than the initial

population (chromosomes).
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Figure 3.2: Genetic algorithm overview [Forrest 1996]

Other important steps in genetic algorithms are determining the param-

eters like population size, probability of crossover, and probability of

mutation.

3.4 Chapter summary

Genetic algorithms are algorithms that are used to find approximate

solutions to difficult problems through application of the principles of

evolutionary biology. It uses the principles of natural selection to find the

global optimum solution to problems that other optimization techniques

are not sufficiently capable. Genetic algorithms have been proved to be

successful in many classical optimization problems.
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Missing Data

Missing data refers to the case that some of the components of the data

vectors are not available for all data items in the database, or may not

even be applicable or defined [Rubin 1978]. This creates various problems

in many applications which depend on good access to complete data.

Consequently methods to handle missing data in database have been an

area of research for long time in various disciplines [Yuan 2000; Allison

2000; Rubin 1978].

There are many ways that a missing data may occur in database. It may

occur due to respondents non-response to questions in the data collection

process, data entry process, and other various cases. There are also other

situations in which missing data may occur due to failure of instruments

in recording process. The following sections present mechanisms and

pattern of missing data and the various methods used to handle missing

data in databases.
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4.1 Missing data mechanisms

The reasonable way to handle missing data depends upon how data points

become missing. Little and Rubin [1987] define three missing data mech-

anisms. These are Missing Completely at Random, Missing at Random,

and non-ignorable case.

4.1.1 Missing completely at random

Missing Completely At Random (MCAR) situation arises if the proba-

bility of missing value for variable X is unrelated to the value X itself

or to any other variable in the data set. This means that the missing

data does not depend on the variable of interest or any other variable in

the data set [Rubin 1978]. In other words missing data values are simple

random samples of all data values in the database. The missing data for

a variable age for example is said to be MCAR if the missing value is

unrelated to the variable age itself or to the values of any other variable

in the database, whether missing or observed [Allison 2002].

Another example of MCAR is that if people who do not report their

income are the same as people who do report income, income in this case

is considered as MCAR. In this situation, cases with complete data are

indistinguishable from cases with incomplete data.

In Table 4.1 the missingness of the missing value in x3 is said to be MCAR
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if the missingness does not depend on x1, x2, x4, and x5 and the variable

x3 itself.

Table 4.1: Table with missing entries

Observation x1 x2 x3 x4 x5

1 25 3.5 ? 5000 -3.5
2 ? 6.9 5.6 ? 0.5
3 45 3.6 9.5 1500 46.5
4 27 9.7 ? 3000 ?

4.1.2 Missing at random

Missing at Random (MAR) arises if the probability of missing data on a

particular variable X depends on other variables, but not on X itself. If

the probability of missing income depends on marital status but within

each category of marital status, the probability of missing income is un-

related to the value of income, income in this case is considered as MAR

[Little and Rubin 1987].

Cases with incomplete data differ from cases with complete data but the

pattern of missingness is traceable or predictable from other variables in

the database rather than being due to the specific variable on which the

data are missing. MAR means the value for the variable is missing, but

conditional on some other X variable observed in the data set, although

not on the Y variable of interest [Scheffer 2000]. Thus, the probability

of missing data on any variable is not related to its particular value.

In Table 4.1 the missingness of the missing value in x3 is said to be MAR
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if the missingness depends on x1, x2, x4, and x5 but not in the variable

x3 itself.

4.1.3 Non ignorable case

The third type of missing data mechanism is non ignorable. The non

ignorable case arises if the probability of missing data X is related to

the value of X itself even if we control the other variables in the analysis

[Allison 2000]. This means missing data are not random and depend on

the values that are missing.

If high income households are less likely to report their income even after

adjusting for other variables, then the probability of missing income is

said to be non ignorable [Little and Rubin 1987]. In this case the pattern

of data missingness is non-random and it is not predictable from other

variables in the database. Non ignorable missing data is the most difficult

to approximate and model than the other two missing mechanisms [Rubin

1978].

In Table 4.1 the missingness of the missing value in x3 is said to be non

ignorable if the missing value in x3 depends on the variable x3 itself.

4.2 Patterns of missing data

Little and Rubin [1987] defined two ways of missing data patterns. These
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are arbitrary and monotone missing pattern. In arbitrary missing data,

missing observation may occur anywhere and ordering of variables is

unimportant [Rubin 1978]. In monotone missing pattern the ordering of

variables is important. In monotone a data set with variables x1+1, x1+2,

x1+3...x1+n in the order is said to have a monotone missing pattern, if

a variable xj is observed for a particular individual it implies that all

previous variables xk, where k < j, are also observed for that individual.

Table 4.2 shows an arbitrary missing data and Table 4.3 shows a mono-

tone missing data pattern. In Table 4.2 the missing values are random

and can happen in any place, whereas in Table 4.3 it can be observed

that missing values have some common order. That is if a value for a

variable xj is missing so are the values for other variable i, where i > j.

Table 4.2: Arbitrary missing data pattern

Observation x1 x2 x3 x4 x5

1 25 3.5 ? 5000 -3.5
2 ? 6.9 5.6 ? 0.5
3 45 3.6 9.5 1500 46.5
4 27 9.7 ? 3000 ?

Table 4.3: Monotone missing data pattern

Observation x1 x2 x3 x4 x5

1 25 3.5 15 ? ?
2 2.0 6.9 ? ? ?
3 45 3.6 9.5 1500 46.5
4 27 ? ? ? ?
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4.3 Missing data imputation algorithms

Depending on the situation and data missing mechanisms, currently

there are various data imputation methods used in statistical packages

[Yansaneh et al. 1998]. These include simple methods like listwise or

casewise data deletion to methods employing sophisticated statistical and

artificial intelligence techniques. The following discussion presents some

of the most commonly used missing data handling mechanisms. The dis-

cussion starts with the simple methods and proceeds to introduce the

most complicated and efficient ones.

4.3.1 Listwise or casewise data deletion

Many statistical procedures will eliminate an entire observation or case

if there are any missing data in the defined variables. This is known as

listwise or casewise data deletion and occurs when a record has missing

data for one or more identified variables.

The listwise or casewise data method is the simplest and easy way of

treating data. But it is also the worst choice of treating missing data. In

this method a record containing missing data for any variable is omitted.

Note that treating missing data using this method is plausible only if the

missing data are very small compared to the available complete data in

the database [Little and Rubin 1987]. Otherwise, using this method when
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the missing data is relatively larger than the complete data, it may lead

to a biased estimates to be obtained from the database. Taking Table

4.2 as an example casewise deletion method will remove records number

1, 2, and 4 and proceed the analysis based on the remaining records.

4.3.2 Pairwise data deletion

The pairwise data deletion method works by making the required analy-

sis from available pairwise data. This means a record with missing data

on one variable will be used only in calculations that do not involve that

variable. In this manner, the sample size is often larger than when using

complete case analysis. Allison [2002] points that unless the data are

MCAR, pairwise deletion produces biased estimates and is not recom-

mended.

Taking Table 4.2 as an example pairwise deletion method means record

number 1 will be used, whenever there is any analysis that do not involve

variable x3.

4.3.3 Mean substitution

In this method, the variable’s mean value is calculated from the available

cases and is used as the imputed value for the missing cases. As with

the pairwise deletion method, mean substitution has a high likelihood of

producing biased estimates and is not recommended [Allison 2002] .
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Employing mean substitution method to Table 4.2 the values for all miss-

ing values in variable x3 will be substituted by averaging the values of

the available values in that variable. In this case the value will be

∑2
i=1 xi

n
=

5.6 + 9.5

2
= 7.55 (4.1)

4.3.4 Hot deck imputation

In hot deck imputation method, we identify the most similar case to the

case with a missing value and substitute the most similar case’s x value

for the missing case’s x value [Allison 2002; Scheffer 2000].

Considering Table 4.2, using this method the value for the missing value

in the first record will be substituted by finding the most similar record

to record number one and substituting the most similar record’s x3 value

to record one x3 variable.

Case two and four have a missing data cell. Hot deck imputation ex-

amines the cases with complete records (case three in this example) and

substitutes the value of record number four into one. Thus, the missing

value in record one will be substituted by 9.5. In this case since there is

only one complete record, there is no way where we can make a similar-

ity comparison. But, in case there are more than one complete record in

the database the most similar case for the missing data point have to be

substituted.
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Once the hot deck imputation determines which case among the observa-

tions with complete data is the most similar to the record with incomplete

data, it substitutes the most similar complete case’s value for the missing

variable into the data matrix.

Some of hot deck’s advantages are its conceptual simplicity, its main-

tenance of the proper measurement level of variables thus a categorical

variable remains categorical and continuous variable remains continuous,

and the availability of a complete data at the end of the imputation pro-

cess that can be analyzed like any complete data [Roth 1994; Rubin 1978;

Hu et al. 1998].

One of hot deck’s disadvantages is the difficulty in defining similarity.

There may be any number of ways to define what similarity is in this

context. Thus, the hot deck procedure is not an out of the box approach

to handling incomplete data [Hu et al. 1998]. More sophisticated hot

deck algorithms identify more than one similar record and then randomly

select one of those available donor records to impute the missing value

or use an average value if it is appropriate [Hu et al. 1998; Scheffer 2000;

Little and Rubin 1987].

4.3.5 Regression methods

In regression method we develop a regression equation based on complete

case data for a given variable, treating the missing variable as dependent
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variable and using all other relevant variables in the database as predic-

tors. For the records where the value is missing we predict or approximate

its value by the regression equation developed in terms of other variables

[Little and Rubin 1987].

Note that, in this method a regression model is fitted for each variable

with missing values, with the other variables as dependents. The process

is repeated sequentially for variables with missing values, which means

that for a variable xj with missing values, a model is fitted using obser-

vations with observed values for the other variables.

Using regression method in Table 4.2 to approximate the missing value

in record 1, a regression equation will be fitted in terms of variables x1,

x2, x4, and x5. The equation can be formulated as

x3 = b1x1 + b2x2 + b4x4 + b5x5 + ε (4.2)

The fitted model includes the regression parameter estimates bi and an

error ε. Equation 4.2 can then be used to estimate the missing value by

plugging the values of x1, x2, x4, and x5 into equation (4.2).

4.3.6 Expectation maximization

The Expectation maximization (EM) approach is an iterative procedure

that proceeds in two steps [Little and Rubin 1987]. The first step called

the expectation (E) step computes the expected value of the complete
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data log likelihood based upon the complete data cases and the algo-

rithm’s best guess as to what the sufficient statistical functions are for

the missing data based upon the model specified and the existing data

points.

In the second step called the maximization (M) step, it substitutes the

expected values for the missing data obtained from the E step and then

maximizes the likelihood function as if no data were missing to obtain

new parameter estimates. The new parameter estimates are substituted

back into the E step and a new M step is performed. The procedure

iterates through these two steps until convergence is obtained. Conver-

gence occurs when the change of the parameter estimates from iteration

to iteration becomes negligible.

Thus, the main steps involved in EM approach are [Little and Rubin

1987]:

• Replace missing values by estimated values.

• Estimate parameters.

• Reestimate the missing values assuming the new parameter esti-

mates are correct.

• Reestimate parameters, iterating until convergence.

The advantage of the expectation maximization approach is that it has

well known statistical properties and it generally performs better than
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methods such as listwise, pairwise data deletion, and mean substitution

because it assumes incomplete cases have data missing at random rather

than missing completely at random [Allison 2002; Rubin 1978].

The main disadvantage of the EM approach is that it adds no uncertainty

component to the estimated data. Practically speaking, this means that

while parameter estimates based upon the EM approach are reliable,

standard errors and associated test statistics are not [Allison 2002; Ru-

bin 1978]. This weakness led to the development of two newer likelihood

based methods for handling missing data, the raw maximum likelihood

approach (full information maximum likelihood) and multiple imputa-

tion.

4.3.7 Raw maximum likelihood methods

Raw maximum likelihood, which is also known as Full Information Max-

imum Likelihood (FIML), methods use all available data points in a

database to construct the best possible first and second order moment

estimates under the MAR assumption. In simple terms, if the missing

at random (MAR) assumption can be met, maximum likelihood-based

methods can generate a vector of means and a covariance matrix among

the variables in a database that is superior to the vector of means and

covariance matrix produced by commonly used missing data handling

methods such as listwise deletion, pairwise deletion, and mean substitu-

tion [Little and Rubin 1987].
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It uses all available data to calculate a vector of means and covariance

matrix (i.e., maximum likelihood-based sufficient statistics) in a way that

is superior to other methods. Under an unrestricted mean and covariance

structure, raw maximum likelihood and EM return identical parameter

estimate values. Unlike EM, however, raw maximum likelihood can be

employed in the context of fitting user specified linear models, such as

structural equation models, regression models, etc.

Raw maximum likelihood also produces standard errors and parameter

estimates under the assumption that the fitted model is not false, so

parameter estimates and standard errors are model-dependent. That

is, their values will depend upon the model chosen and fitted by the

investigator.

Raw maximum likelihood has the advantage of convenience or ease of

use and well known statistical properties. Unlike EM, it also allows for

the direct computation of appropriate standard errors and test statistics.

Disadvantages include an assumption of joint multivariate normality of

the variables used in the analysis and the lack of a raw data matrix

produced by the analysis [Rubin 1978; Little and Rubin 1987; Scheffer

2000].

Raw maximum likelihood methods are also model based. That is, they

are implemented as part of a fitted statistical model. The investigator

may want to include relevant variables that will improve the accuracy

of parameter estimates, but not include these variables in the statistical
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model as predictors or outcomes. While it is possible to do this, it is not

always easy or convenient, particularly in large or complex models.

Finally, raw maximum likelihood assumes the incomplete data cells are

missing at random [Little and Rubin 1987]. Raw maximum likelihood

can offer superior performance to listwise and pairwise deletion methods

even in the non ignorable data situation [Hu et al. 1998].

4.3.8 Multiple imputation

Multiple imputation (MI) is similar to raw maximum likelihood but it

creates five to ten data sets in which raw data are generated that can

be used to fill in the missing data [Scheffer 2000]. The data from the

imputed data set are then pooled and parameters are estimated.

Multiple imputation combines the well known statistical advantages of

EM and raw maximum likelihood with the ability of hot deck imputa-

tion to provide a raw data matrix to analyze [Allison 2000; Scheffer 2000].

Multiple imputation works by generating a maximum likelihood based co-

variance matrix and vector of means, like EM. Multiple imputation takes

the process one step further by introducing statistical uncertainty into

the model and using that uncertainty to emulate the natural variability

among cases one encounters in a complete database. Multiple imputa-

tion then imputes actual data values to fill in the incomplete data points

in the data matrix, just as hot deck imputation does [Little and Rubin
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1987].

The primary difference between multiple imputation and hot deck im-

putation from a practical or procedural standpoint is that multiple im-

putation requires that the data analyst generate five to ten databases

with imputed values. The data analyst then analyzes each database,

collects the results from the analyses, and summarizes them into one

summary set of findings. For instance, suppose a researcher wishes to

perform a multiple regression analysis on a database with incomplete

data. The researcher would run multiple imputation, generate ten im-

puted databases, and run the multiple regression analysis on each of the

ten databases. The researcher then combines the results from the ten

regression analyses together into one summary.

Multiple imputation has several advantages. It is fairly well understood

and robust to violations of non-normality of the variables used in the

analysis. Like hot deck imputation, it outputs complete raw data ma-

trices. It is clearly superior to listwise, pairwise, and mean substitution

methods of handling missing data in most cases. Disadvantages include

the time intensiveness in imputing five to ten databases, testing models

for each database separately, and recombining the model results into one

summary.

Multiple imputation (MI) appears to be one of the most applicable meth-

ods for general purpose handling of missing data in multivariate analysis.

The basic idea of multiple imputation as presented in Little and Rubin
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[1987] are:

1. Impute missing values using an appropriate model that incorporates

random variation.

2. Repeat this M times (usually 3-5 times), producing M complete data

sets.

3. Perform the desired analysis on each data set using standard com-

plete data methods.

4. Average the values of the parameter estimates across the M samples

to produce a single point estimate.

5. Calculate the standard errors by (a) averaging the squared stan-

dard errors of the M estimates (b) calculating the variance of the

M parameter estimates across samples, and (c) combining the two

quantities using a simple formula.

Currently, raw maximum likelihood and MI methods appear to be the

methods of choice for handling missing data. Other methods such as ex-

pectation maximization, regression, and hot deck imputation do not have

any notable advantages over raw maximum likelihood or MI. MI methods

are particularly flexible for a wide variety of linear and nonlinear models.

Even when missing data are non ignorable it has been observed that raw

maximum likelihood outperforms pairwise deletion and complete case

analysis methods [Scheffer 2000; Allison 2000; Hu et al. 1998].
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4.4 Chapter summary

Missing data refers to the case that some of the components of the data

vectors are not available for all data items in the database, or may not

even be applicable or defined. This creates various problems in many

applications which depend on good access to complete data. Currently

there are various methods of dealing with missing data. Each of the

methods have their pros and cons, and they are used in different situa-

tions based on the mechanism of the missing data in the database. Since

multiple imputation and raw maximum likelihood perform better even

when the missing data is non ignorable, they appear to be the methods

of choice for handling missing data in most cases.

54



Chapter 5

Research Method

5.1 Introduction

In discussing the methodology used in the research this chapter first

states, in the form of the research question, the specific research ques-

tions examined in the research. Formal statement of the hypotheses de-

rived from the research question details expected results in the research.

Detailed description of the proposed model used in the research also is

presented. Approach followed and analysis taken to answer the research

question are detailed thereafter. Finally, procedures on how the approach

followed in the research was used to accept or reject the hypotheses is

highlighted.
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5.2 Research question and statement of hypothesis

It should be clear at this stage that the study concentrated on how it

would be possible to efficiently approximate missing values in a database.

In looking at this, the research attempted to answer four main questions:

• Is it possible to approximate or predict missing values in a database

efficiently using a model employing an artificial neural networks and

genetic algorithms?

• Is there any relationship between the accuracy of the approximated

or predicted values and the number of missing cases/variables in a

single record?

• Does approximated values found using the proposed model depend on

the particular neural network architecture employed in training the

neural network?

• Does using the combination of both architectures (MLP+RBF) en-

hance the accuracy of approximated values?

The expected answers to these questions, in the light of prior research

done and related work, are detailed in the hypotheses of this research.

Hypothesis One

• It is possible to approximate or predict the missing values in a database
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efficiently using a model that employs an artificial neural networks

and genetic algorithms.

Hypothesis Two

• It is expected that as the number of missing cases within a single

record gets larger the approximation tends to be less reliable.

Hypothesis Three

• Approximated values found using the proposed model depends on the

particular neural network architecture employed in training the neu-

ral network.

Hypothesis Four

• It is expected that using a combination of both architecture (MLP+RBF)

enhances the accuracy of approximated values.

5.3 Hypotheses testing

To accept or reject the above hypotheses, they were tested individually

as follows:

In order to test hypothesis one, approximated values from the proposed

model and the actual values corresponding to each missing value were
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compared. To examine the degree of relationship between the actual

and approximated values using the model, correlation coefficient was cal-

culated between the actual and approximated values. The correlation

coefficient was used to decide whether to accept or reject the hypothesis.

Hypothesis two was tested using approximated values obtained from the

model as the number of missing cases within a single record gets larger

and actual corresponding missing values. This was done by calculating

coefficient of correlation and standard error between the actual and ap-

proximated values and observing the value of the correlation coefficient,

and standard error as the number of missing cases get larger. Decision

to accept or reject the hypothesis was done depending on the values of

correlation coefficient and standard error.

Hypothesis three was tested using approximated values obtained from the

proposed model using different neural network architectures and actual

corresponding missing values. This was done by calculating coefficient of

correlation and standard error between actual and approximated values

and observing the value of the correlation coefficient and standard error

obtained by training the neural networks using different neural network

architectures.

Hypothesis four was tested using approximated values obtained from the

proposed model using MLP, RBF, and MLP+RBF, and actual corre-

sponding missing values. This was done by calculating coefficient of

correlation and standard error between actual and approximated values
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and observing the value of the correlation coefficient and standard error

obtained by MLP, RBF individually and the combined (MLP+RBF).

5.4 Proposed method

The neural network was trained to recall to itself or predict its input

vector (auto-associative neural network). Mathematically the neural net-

work can be represented as

~Y = f( ~X, ~W ) (5.1)

where ~Y is the output vector, ~X the input vector and ~W the vector of

weights. Since the network is trained to predict its own input vector, the

input vector ~X will be approximately equal to output vector ~Y ( ~X ≈ ~Y ).

In reality the input vector ~X and output vector ~Y will not always be

perfectly the same hence, we will have an error function expressed as the

difference between the input and output vectors. Thus, the error can be

formulated as

e = ~X − ~Y (5.2)

Substituting the value of ~Y from equation (5.1) into equation (5.2) we

get

e = ~X − f( ~X, ~W ) (5.3)

We want the error to be minimum and non-negative. Hence, the error
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function can be rewritten as the square of equation (5.3)

e = ( ~X − f( ~X, ~W ))2 (5.4)

In the case of missing data, some of the values for the input vector ~X are

not available. Hence, we can categorize the input vector ( ~X) elements

into ~X known represented by ( ~Xk) and ~X unknown represented by ( ~Xu).

Rewriting equation (5.4) in terms of ~Xk and ~Xu we have

e =








~Xk

~Xu




− f








~Xk

~Xu





, ~W







2

(5.5)

To approximate the missing input values, equation (5.5) is minimized

using genetic algorithm. Genetic algorithm was chosen because it finds

the global optimum solution [Goldberg 1989]. Since a genetic algorithm

always finds the maximum value, the negative of equation (5.5) was sup-

plied to the GA as a fitness function. Thus, the final error function

minimized using the genetic algorithm is

e = −







~Xk

~Xu




− f








~Xk

~Xu





, ~W







2

(5.6)

Figure 5.1 depicts the graphical representation of proposed model. The

error function is derived from the input and output vector (obtained from

the trained auto-associative neural network). The error function is then

minimized using genetic algorithm to approximate the missing variables
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in the error function.

Neural 
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Algorithm

Minimum
Yes
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Figure 5.1: Schematic representation of proposed model

5.5 Selecting best neural network architecture

As discussed in chapter two, the result of a neural network depends on

the particular network architecture and parameters (number of hidden

layers, hidden units, activation and optimization functions) used in train-

ing the neural network. To select the best architecture that gives best

results, different network architectures and parameters were selected and

the network trained using the parameters. The architecture and parame-

ters that gave best results were sleeted to be used in this research. Below

are the MLP and RBF architectures and parameters used in this research.
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5.5.1 MLP architecture used in the research

A fully connected two layered MLP architecture was used in the exper-

iment. Each neuron in one layer is directly connected to the neurons of

the subsequent layer. A NETLAB toolbox that runs in MATLAB dis-

cussed in Nabney [2001] was used to implement the MLP neural network.

A two-layered MLP architecture was used because it resulted in better

results and due to the universal approximation theorem, which states

that a two layered architecture is adequate for MLP [Nabney 2001].

Figure 5.2 depicts the architecture of the MLP used in the research. The

MLP network contains 14 inputs, 2 hidden layers with 10 neurons and

14 output units. A linear activation function (equation 2.11) discussed

in Chapter 2 was selected. The optimisation technique used for train-

ing this architecture was the Scaled Conjugate Gradient (SCG) method.

SCG method was used because it gave better results and has been found

to solve the optimization problems encountered when training an MLP

network more efficiently than the gradient descent and conjugate gradient

methods [Bishop 1995].

5.5.2 RBF architecture used in the research

A fully connected two layered RBF architecture was used in the experi-

ment. Each neuron in one layer is directly connected to the neurons of

the subsequent layer. Like the MLP a NETLAB toolbox that runs in
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Figure 5.2: MLP architecture used in the research

MATLAB discussed in Nabney [2001] was used to implement the RBF

architecture. Like the MLP, the network has 14 inputs, 10 neurons and 14

output units. The thin plate spline function was used as hidden unit acti-

vation function and the SCG was used as network optimization method.

The RBF network used in this research is depicted in Figure 5.3.

5.6 Experimental data

The input data (real database) used in the experiment was obtained from

the South African Breweries (SAB). The database used has 14 variables.

To examine the distribution of the database and its representability in the

investigation, key statistical summary of the database are given in Table

5.1. Where N represents the number of observations in the variable.
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Figure 5.3: RBF architecture used in the research

Looking at the distribution of statistical summaries of the database, it

can be observed that the database has ideal measures of central tendency

and variation.

5.7 Genetic algorithm implementation

Genetic algorithm toolbox implemented in MATLAB by Houck et al.

[1995] has been used in this research. After running (executing) the tool-

box with different genetic operators, operators that gave better results

were selected to be used in the experiment. Detailed operators and im-

plementation of the genetic algorithm used in the research is presented

in the next chapter.
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Table 5.1: Statistical summary of input data

Variables N Mean Min Max Standard deviation

x1 198 4.248 3.900 4.540 0.117
x2 198 6.925 5.600 8.800 0.549
x3 198 9.442 0.000 39.800 7.355
x4 198 21.230 12.900 25.000 1.720
x5 198 63.652 34.000 98.000 13.968
x6 198 0.042 0.010 0.180 0.022
x7 198 161.419 72.000 286.000 82.501
x8 198 2.090 1.000 3.200 0.239
x9 198 0.342 0.100 0.800 0.148
x10 198 0.160 0.000 0.300 0.057
x11 198 35.384 13.000 64.000 8.005
x12 198 5.824 1.700 13.600 2.130
x13 198 20.325 8.000 38.000 4.714
x14 198 1.849 1.000 4.300 0.620

5.8 Approach followed

The task of accepting or rejecting the hypotheses was approached by us-

ing data obtained from the experiment and analysis done on it. The steps

followed in conducting the experiment are training of the MLP and RBF

auto-associative neural networks and implementing Equation (5.6) as the

fitness function in the genetic algorithm. Each value of the database was

removed (considered as missing value) and then approximated using the

model.

For the individual cases of MLP and RBF Equation (5.6) was used as

the fitness function, where f in the equation refers to MLP or RBF. The

fitness function used in the genetic algorithm for the combined case was

a simple linear combination of the MLP and RBF networks. The error
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function used in this case was the negative of Equation (5.7). In Equation

(5.7) the first f refers to the MLP function and the second f refers to

the RBF function.
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(5.7)

5.9 Data analysis

The following estimates are used to asses the accuracy and similarity of

approximated values with the actual missing observations.

The estimates used to measure the modeling quality are:

• Correlation coefficient (r): the correlation coefficient measures

the linear relationship between two variables. The absolute value of

“r” provides an indication of the strength of the relationship. The

value of “r” varies between negative and positive 1, with -1 or 1

indicating a perfect linear relationship, and r = 0 indicating no rela-

tionship. The sign of the correlation coefficient indicates whether the

two variables are positively or negatively related [Draper and Smith

1998]. For a given data x1, x2, ...., xn and corresponding approxi-

mated values x̂1, x̂2, ...., x̂n the correlation coefficient is computed as

r =

n∑

i=1

(xi − xi)
(
x̂i − x̂i

)

[
n∑

i=1

(xi − xi)
2

n∑

i=1

(
x̂i − x̂i

)2
]1/2

(5.8)

66



CHAPTER 5. RESEARCH METHOD

Correlation coefficient (r) in this context measures the degree of

relationship between the actual missing data and corresponding ap-

proximated values using the model. A positive value indicates a

direct relationship between the actual missing data and its approx-

imated value using the model.

• Standard error (Se): the standard error represents average devi-

ation between actual and predicted observations [Draper and Smith

1998]. For a given data x1, x2, ...., xn and corresponding approxi-

mated values x̂1, x̂2, ...., x̂n the Standard error (Se) is computed as

Se =

√√√√√√√

n∑

i=1
(xi − x̂i)

2

n
(5.9)

The higher the value of the standard error, the less the accuracy and

vice versa.

5.10 Chapter summary

This chapter introduced the research methodology followed in conduct-

ing the research. The research question and hypotheses clearly stated

the problem that the research tries to address. Correlation coefficient

and standard error were used to asses accuracy of the model and ap-

proximated values. A fully connected two layered MLP and RBF ar-

chitectures were used in the experiment. Each neuron in one layer is
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directly connected to the neurons of the subsequent layer. A NETLAB

toolbox that runs in MATLAB described in Nabney [2001] was used to

implement both the MLP and RBF neural networks. A two-layered ar-

chitecture was used because it gave better results. Genetic algorithm

toolbox implemented in MATLAB discussed in Houck et al. [1995] was

used to implement the genetic algorithm and genetic operators that gave

better results were selected to run the genetic algorithm.

68



Chapter 6

Results and Discussion

6.1 Introduction

In this chapter experimental results and related discussion are presented.

The first section presents the experiment done to evaluate the training of

the neural network and measure the performance of the genetic algorithm

in the experiment. Subsequent sections present methods investigated to

approximate missing data in the database using MLP, RBF and their

combination.

To test the hypotheses proposed in the previous chapter, correlation coef-

ficient and standard error between the approximated and actual missing

values are used. It is found that the approach approximates missing data

with accuracy of 95% correlation coefficient between the actual missing

data and corresponding approximated values.
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6.2 Training of neural network

An MLP and RBF neural networks with 10 hidden neurons, 14 inputs

and 14 outputs were trained on the data obtained from South African

Breweries (SAB). A total of 198 training inputs were provided for each

network architecture. Each element of the database was removed and

approximated using the model. Cases of 1, 2, 3, 4, and 5 missing values

in a single record were examined to investigate the accuracy of the ap-

proximated values as the number of missing cases within a single record

increases. To asses the accuracy of the values approximated using the

model the standard error and correlation coefficient explained in the pre-

vious chapter were calculated for each missing case.

Before going into the main experiment (approximation of missing values),

first the trained network was examined, to asses how the trained network

actually fits to the input data. Different input records were randomly

selected from the 198 training records used in training the network. Since

all randomly selected records can not be presented graphically, only one

representative record is presented for each network (MLP and RBF).

Figures 6.1 and 6.2 illustrate the data and trained network of one record

for both MLP and RBF, respectively. It can be observed that trained

values using the network are similar to the actual data for both MLP

and RBF networks.
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Figure 6.1: Data vs trained using MLP
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Figure 6.2: Data vs trained using RBF
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6.3 Performance of genetic algorithm

The MATLAB implementation of genetic algorithm described in Houck et

al. [1995] has been used to implement the genetic algorithm. The genetic

algorithm was evaluated by altering genetic operator values (number of

generation, mutation, crossover, etc.). The final genetic algorithm cho-

sen in the experiment was the one that gave the best fitness illustrated

in Figure 6.3. As depicted in Figure 6.3 the number of generation was

selected to be 500. The number of generation was selected to be 500,

because there was no any improvement in fitness observed after 500 gen-

erations for all the experiments done. Other operators were selected in a

similar manner as the number of generation.
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Figure 6.3: Performance of the genetic algorithm during the run
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6.4 Missing data analysis

The result of the correlation and standard error measures obtained from

the experiment are given in Table 6.1 and 6.2 respectively. The results

are also depicted in Figure 6.4 and 6.5 for an easy comparison between

the results found by MLP, RBF and MLP+RBF1. The results show that

the models approximation to the missing data to be highly accurate.

There seems to be less significant difference among the approximations

obtained for the different number of missing cases within a single record.

The standard error (Se) estimates the capability of the model to predict

the known data set, and the correlation coefficient (r) measures the de-

gree of relationship between the actual missing data and corresponding

approximated values using the model. It always ranges between -1 and

1. A positive value indicates a direct relationship between the actual

missing data and its approximated value using the model. The more the

value is closer to one the more the similarity between the two values.

Approximations obtained using the combined model (MLP+RBF) in all

the missing cases are better than the corresponding values found for MLP

and RBF. Results found for RBF are significantly better than the ones

found using MLP for all the missing cases.

A sample of the actual missing data and its approximated values using

the model for the 14 variables used in the model are presented in Table

6.3 and 6.4, and Figure 6.4 and 6.5. The results show that the models
1Is the evaluation function which uses the linear combination of MLP and RBF
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approximation of the missing data to be similar to the actual missing

values. It can also be observed that the estimates found for 1, 2, 3, 4,

and 5 missing cases are not significantly different from within each other.

Table 6.1: Correlation coefficient

Number of Missing
Value

1 2 3 4 5

MLP 0.94 0.939 0.939 0.933 0.938
RBF 0.968 0.969 0.970 0.970 0.968

MLP+RBF 0.96 0.97 0.97 0.97 0.96

Table 6.2: Standard error

Number of Missing
Value

1 2 3 4 5

MLP 16.62 16.77 16.8 16.31 16.4
RBF 11.89 11.92 11.80 11.92 12.02

MLP+RBF 12.02 11.78 11.36 11.23 12.60

Figure 6.6, 6.7, 6.8, 6.9, and 6.10 illustrate the actual missing values

and the corresponding approximated values using the model for 1,2,3,4,

and 5 missing cases respectively. The figures show that the approximated

values in all the missing cases2 are more accurate. It can also be observed

that there is no significant difference in the approximated values for the

1,2,3,4, and 5 missing cases. It can also be observed that approximations

found using the combined3 is better than MLP and RBF. Approximations

2all missing cases refers to 1,2,3,4, and 5 missing cases examined in the research
3MLP+RBF
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found using RBF are relatively higher than MLP. For further illustration

the values depicted in Figure 6.6, 6.7, 6.8, 6.9 are also presented in Table

6.3, 6.4, and 6.5.
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Figure 6.4: Correlation coefficient MLP, RBF, and MLP+RBF
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Figure 6.5: Standard error MLP, RBF, and MLP+RBF
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Figure 6.6: One missing case: actual vs. approximated values using MLP, RBF, and
MLP+RBF
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Figure 6.7: Two missing case: actual vs. approximated values using MLP, RBF, and
MLP+RBF
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Figure 6.8: Three missing case: actual vs. approximated values using MLP, RBF, and
MLP+RBF
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Figure 6.9: Four missing case: actual vs. approximated values using MLP, RBF, and
MLP+RBF
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Figure 6.10: Five missing case: actual vs. approximated values using MLP, RBF, and
MLP+RBF

Table 6.3: Actual and approximated values using MLP

Number of missing cases in a record
Data 1 2 3 4 5
4.28 4.54 4.54 4.53 4.47 4.07
7.5 6.86 6.79 6.41 6.80 6.52
17 15.50 15.10 15.8 15.5 15.0

23.8 21.20 20.90 21.3 21.0 22.0
71 59.20 59.20 59.0 58.5 58.4
0.1 0.18 0.17 0.17 0.05 0.02
75 79.90 81.1 80.3 80.3 81.2
1.8 2.48 2.41 1.81 2.54 2.21
0.4 0.10 0.104 0.72 0.22 0.72
0.2 0.58 0.06 0.02 0.11 0.159
40 38.10 37.8 38.4 37.2 38.0
5.7 6.64 6.66 6.96 5.82 5.67
24 22.10 22.4 22.3 23.0 23.2
2.9 3.23 3.86 3.74 3.83 3.97

78



CHAPTER 6. RESULTS AND DISCUSSION

Table 6.4: Actual and approximated values using RBF

Number of missing cases in a record
Data 1 2 3 4 5
4.28 4.21 4.20 4.12 4.25 4.13
7.5 7.89 8.79 8.71 8.21 8.65
17 16.96 17.16 16.04 12.48 15.95

23.8 20.74 21.25 20.60 18.88 21.43
71 68.11 55.83 83.21 81.46 59.78
0.1 0.06 0.04 0.05 0.05 0.08
75 83.92 74.84 75.96 78.79 75.70
1.8 1.00 1.14 2.15 1.73 2.01
0.4 0.70 0.71 0.76 0.55 0.71
0.2 0.10 0.10 0.09 0.16 0.11
40 56.45 57.73 61.73 62.16 62.65
5.7 9.79 9.30 10.43 9.33 6.54
24 22.40 22.52 27.81 36.79 34.45
2.9 3.31 3.48 2.87 3.98 3.50

Table 6.5: Actual and approximated values using MLP+RBF

Number of missing cases in a record
Data 1 2 3 4 5
4.28 4.50 4.20 4.12 4.24 4.20
7.5 7.40 8.42 8.71 7.85 7.47
17 14.46 16.17 16.04 15.13 15.53

23.8 21.63 21.24 19.88 20.38 22.67
71 65.38 59.16 75.92 54.66 59.89
0.1 0.01 0.04 0.06 0.07 0.03
75 72.09 80.37 80.56 77.16 80.44
1.8 2.26 1.20 2.50 2.21 1.30
0.4 0.20 0.71 0.75 0.72 0.67
0.2 0.30 0.11 0.11 0.21 0.10
40 37.66 38.36 38.13 38.23 37.43
5.7 7.40 7.78 8.40 7.87 7.34
24 27.91 21.87 21.51 26.55 23.09
2.9 2.56 3.35 2.81 3.33 1.61
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6.5 Results and hypotheses testing

The results and analysis presented above are used to assess the hypothe-

ses presented in the previous chapter.

The strong correlation coefficient and low standard error obtained for the

missing values using the two networks and combined (MLP+RBF) leads

to accepting the first hypothesis put forward in the previous chapter.

This leads to the conclusion that the model proposed in this research can

be used to approximate missing values in a database efficiently.

Since results obtained for the different missing cases were not significantly

different to each other, as it is observed from the correlation coefficient

and standard error as well as from the figures depicted to compare the

approximated and actual missing values, this leads us to rejecting the

second hypothesis proposed in the previous chapter. This means that

there is no significant difference on accuracy and similarity observed as

the number of missing cases within a single record increases. This result

is contradictory to other results found using hot deck imputation, case

wise analysis, etc in different researches and needs a complete further

investigation.

Results found for different network architecture used in the research are

significantly different. As it can be observed in Figure 6.4 and 6.5, cor-

relation coefficients found using RBF are stronger than MLP and stan-

dard errors found for RBF are smaller than MLP. Correlation coefficients
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found using MLP+RBF are stronger than MLP and slightly better than

RBF. Standard error found for MLP+RBF is also smaller than MLP and

slightly better than in the case of 1 and 5 missing cases in RBF. This

shows that the specific neural network employed in the training of data

set has a significant impact on the approximated values. This result can

also be used to accept hypotheses four, which leads to a conclusion that

using a combination of both architectures in the error function leads to

better results.

6.6 Comparisons of results with other methods

Since there was no other research found employing the methodologies

used in this research, it is really difficult to compare the results of this

research with other results found using currently used missing data im-

putation algorithms. This is primarily due to the evaluation methods

used in the research. Though this is the case, based on the correlation

coefficient found in the research, it can be concluded with great con-

fidence that the proposed method outperforms the old fashioned data

imputation methods like listwise or casewise data deletion, pairwise data

deletion, mean substitution, hot deck imputation, and regression meth-

ods. It is recommended that future works compare the advantages and

disadvantages of the proposed method in relation with other missing

data imputation algorithms. Further research is needed to exactly exam-

ine the effectiveness of each algorithm on the same database with similar
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experimental methodology.

6.7 Chapter summary

This chapter attempted to give analysis and discussion to prove the hy-

potheses presented in the previous chapter. Results from the experiments

revealed a high correlation coefficient between actual missing data and

approximated values. This leads to the acceptance of hypothesis one.

It is found that the specific architecture used in training the data set

has a significant impact on the approximations. There was no significant

reduction in accuracy observed as the number of missing cases in single

record gets bigger.
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Chapter 7

Conclusions and Further Research

This chapter begins by summarizing the research. It then provides sug-

gestions for areas of further investigation. After examining the contribu-

tions of this research, final conclusions are given.

7.1 Conclusions

7.1.1 Summary of research

This research evaluates the effectiveness of using neural network and

genetic algorithm to approximate missing data in database. Thus the

research attempted to answer four basic questions:

• To approximate or predict missing values in a database efficiently

using a model employing an artificial neural networks and genetic

algorithms.
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• To investigate the relationship between the accuracy of approximated

or predicted values using the proposed model and the number of miss-

ing cases/variables in single record.

• Asses the impact of using different neural network architecture em-

ployed in training the neural network on the approximated values.

• Asses accuracy of results found using individual networks as com-

pared to combined approach.

7.1.2 Summary of results and conclusions

Neural networks and genetic algorithms are proposed to predict missing

data in a database. An auto-associative neural network is trained to

predict its own input. An error function is derived as the square of

the difference of the output vector from the trained neural network and

the input vector. Since some of the input vectors are missing, the error

function is expressed in terms of the known and unknown components of

the input vector. Genetic algorithm is used to approximate the missing

values in the input vector that best minimise the error function.

RBF and MLP neural networks are used to train the neural network.

Moreover the combination of both RBF and MLP trained networks was

employed to investigate if it could lead to a better results.

It is found that approximated values using the proposed model are highly

accurate with over 95% correlation coefficient between the actual miss-
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ing values and corresponding approximated values. It was observed that,

though there is a slight decrease in correlation coefficient, there was no

significant reduction in accuracy of results observed as the number of

missing cases within a single record gets larger. It is also observed that

results found using the combination of both RBF and MLP trained net-

works are superior than the one found using either RBF or MLP. Results

found using RBF are found to be far better than MLP.

7.2 Future work

While the results presented in this report are quite promising and reliable,

a number of avenues for future work exist that may greatly improve the

effectiveness of this approach or which can utilize the approach proposed

in this research to tackle other problems/applications.

7.2.1 Using different machine learning techniques

The research employed neural network as a learning method to train the

data set. Though the choice for neural network was imminent from its

merits compared with other machine learning techniques and has revealed

good solutions, it is worthwhile trying to investigate/construct the model

using other machine learning approaches. One of those approaches which

could be used to tackle the same problem is to train the model using

Support Vector Machine (SVM) instead of neural networks. Other than
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SVM, other learning methods can also be used to train the data set.

7.2.2 Using different optimization methods

The research employed genetic algorithm to optimize the error function

and approximate the missing values in the error function. Though the

choice of genetic algorithm was due to its superiority as an optimization

method compared to other optimization methods, it is worthwhile in-

vestigating the model by applying other optimization approaches. Some

of the optimization approaches which could be used to tackle the same

problem are simulated annealing, particle swarm optimization, and hill

climbing.

7.2.3 Comparison with other models under the same data set

As it is presented in Chapter 4, currently there are various missing data

imputation algorithms used under different situation. Each algorithms

has its own advantages and disadvantages. Despite the promising results

obtained using the proposed model in this research, one of the crucial

investigations that have to be done is to compare the results found in

this research with the other missing data imputation algorithms under the

same data set with different database categories. The database categories

could be

• Qualitative: where the database only consists of qualitative values.

86



CHAPTER 7. CONCLUSIONS AND FURTHER RESEARCH

• Quantitative: where the database only consists of quantitative

values

• Combination of both: where the database consists of both qual-

itative and quantitative values.

The investigations could also be conducted on different data missing

mechanism assumptions (MCAR, MAR, and non-ignorable case).

7.2.4 Forecasting and risk analysis

The research attempted to use the proposed model to approximate miss-

ing data in databases. Apart from this, the proposed model can be

applied to forecasting and risk analysis applications. Table 7.1 shows a

database ideal for using the proposed model on forecasting and risk anal-

ysis. In Table 7.1 the data for time 1, 2, and 3 are complete, but some

of the values for time 4 are missing. If we consider time 1, 2, and 3 as

past complete historical data and the known values for time 4 as known

or expected values for time 4, we can utilize the proposed model in this

research to forecast the values of x3 and x5 for time 4. Similarly, if we

Table 7.1: Proposed model on forecasting and risk analysis applications

Time x1 x2 x3 x4 x5

1 25 3.5 236 5000 -3.5
2 45 6.9 5.6 3600 0.5
3 45 3.6 9.5 1500 46.5
4 27 9.7 ? 3000 ?
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consider that we have only the complete data for time 1,2, and 3, and

would like to use risk analysis on the future values of variable x1, x2, x3,

x4, and x5 at time 4. We can fix the expected values of some variables

(which could be done on applications like stock market prediction, ex-

change rate determination, and scientific stochastic processes) and asses

the likelihood of other variables.
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Appendix 1

Conference Paper

During the project, selected topics of the work were used to write con-

ference papers. In particular the new proposed model and its reliability

in approximating missing data.

The papers have been accepted to be published in the IEEE 3rd Inter-

national Conference on Computational Cybernetics, April 13-16, 2005,

Mauritius, and International Joint Conference on Neural Networks, July

31-August 4, 2005, Montreal, Canada. See below for the full references.

Mussa Abdella and Tshilidzi Marwala. The Use of Genetic Algo-

rithms and Neural Networks to Approximate Missing Data in

Database. IEEE 3rd International Conference on Computational Cy-

bernetics, Mauritius, 2005.

Mussa Abdella and Tshilidzi Marwala. Treatment of Missing Data

Using Neural Networks and Genetic Algorithms. International

Joint Conference on Neural Networks, Montreal, Canada, 2005.
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